TQFT and Loop Quantum Gravity : 2+1 Theory and Black Hole Entropy

par Daniele Pranzetti

Thèse de doctorat en Physique Théorique et Mathématique

Sous la direction de Thomas Schücker.

Le président du jury était Carlo Rovelli.

Le jury était composé de Thomas Schücker, Carlo Rovelli, Etera R. Livine, Martin Bojowald, Alejandro Perez, Daniele Oriti, Karim Noui.

Les rapporteurs étaient Etera R. Livine, Martin Bojowald.

  • Titre traduit

    TQFT et Gravitation quantique à boucles : 2+1 Théory et entropie des trous noirs


  • Résumé

    Ce travail de thèse se concentre sur l'approche non-perturbative canonique à la formulation d'une théorie quantique de la gravitation dans le cadre de la Gravitation quantique à boucles (LQG), répondant à deux problèmes majeurs. Dans la première partie, nous étudions la possible quantification, dans le cadre de la LQG, de la gravité en trois dimensions avec constante cosmologique et nous essayons de prendre contact avec autres approches de quantification déjà existantes dans la littérature. Dans la deuxième partie, nous nous concentrons sur une application très importante de la LQG: la définition et le comptage des états microscopiques d'un ensemble en mécanique statistique qui fournit une description de l'entropie des trous noirs. Notre analyse s'appuie fortement sur et s'étend à un traitement manifestement SU(2) invariant les travaux fondateurs de Ashtekar et al.


  • Résumé

    This thesis work concentrates on the non-perturbative canonical approach to the formulation of a quantum theory of gravity in the framework of Loop Quantum Gravity (LQG), addressing two major problems. In the first part, we investigate the possible quantization, in the context of LQG, of three dimensional gravity in the case of non-vanishing cosmological constant and try to make contact with alternative quantization approaches already existing in the literature. In the second part, we concentrate on a very important application of LQG: the definition and the counting of microstates of a statistical mechanical ensemble which provides a description and accounts for the black hole entropy. Our analysis strongly relies on and extends to a manifestly SU(2) invariant treatment the seminal work of Ashtekar et al.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Provence. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.