Convergence de Fisher et H-différentiabilité des applications multivoques

par Géraldine Pascaline

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Michel Henri Geoffroy.

Le jury était composé de Alain Piétrus.

Les rapporteurs étaient Aris Daniilidis, Samir Adly.


  • Résumé

    Dans cette thèse nous présentons dans un premier temps une nouvelle notion de différentiabilité généralisée pour les applications multivoques, faisant intervenir des applications positivement homogènes: la H-différentiabilité. Nous étudions la stabilité de cette notion en utilisant la convergence de Fischer, d'abord dédiée aux ensembles mais que nous avons adaptée aux applications multivoques. Nous nous intéressons ensuite à l'étude de la dépendance continue des ensembles de points fixes d'une application multivoque contractante par rapport aux données. Finalement nous analysons la convergence d'une méthode d'approximations successives de type forward-backward splitting, des zéros de la somme de deux opérateurs multivoques non monotones, jouissants notamment de propriétés de pseudo H-différentiabilité

  • Titre traduit

    Fisher convergence and H-differentiability of set*valued mappings


  • Résumé

    In this thesis we present at first a new concept of generalized differentiation for setvalued mappings, involving positively homogeneous applications: the H-differentiability. We study the stability of this notion by using Fischer convergence,firstly dedicated to sets but which we have adapted to set-valued mappings. We establish the continuous dependence of fixed points sets of set-valued contraction and finally we study the convergence of a forward-backward splitting method for approximating the zeros of the sum of two non-monotone set-valued mappings, notably using properties of pseudo H-differentiability.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (96 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 95 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université des Antilles et de la Guyane (Pointe-à-Pitre, Guadeloupe). Service commun de la documentation. Section Droit-Sciences.
  • PEB soumis à condition
  • Cote : TA0548
  • Bibliothèque : Université des Antilles et de la Guyane (Pointe-à-Pitre, Guadeloupe). Service commun de la documentation. Section Droit-Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.