Convergence de Fisher et H-différentiabilité des applications multivoques

par Géraldine Pascaline

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Michel Henri Geoffroy.

Soutenue le 08-12-2011

à Antilles-Guyane , dans le cadre de École doctorale pluridisciplinaire (Pointe-à-Pitre) .

Le jury était composé de Alain Piétrus.

Les rapporteurs étaient Aris Daniilidis, Samir Adly.


  • Résumé

    Dans cette thèse nous présentons dans un premier temps une nouvelle notion de différentiabilité généralisée pour les applications multivoques, faisant intervenir des applications positivement homogènes: la H-différentiabilité. Nous étudions la stabilité de cette notion en utilisant la convergence de Fischer, d'abord dédiée aux ensembles mais que nous avons adaptée aux applications multivoques. Nous nous intéressons ensuite à l'étude de la dépendance continue des ensembles de points fixes d'une application multivoque contractante par rapport aux données. Finalement nous analysons la convergence d'une méthode d'approximations successives de type forward-backward splitting, des zéros de la somme de deux opérateurs multivoques non monotones, jouissants notamment de propriétés de pseudo H-différentiabilité

  • Titre traduit

    Fisher convergence and H-differentiability of set*valued mappings


  • Résumé

    In this thesis we present at first a new concept of generalized differentiation for setvalued mappings, involving positively homogeneous applications: the H-differentiability. We study the stability of this notion by using Fischer convergence,firstly dedicated to sets but which we have adapted to set-valued mappings. We establish the continuous dependence of fixed points sets of set-valued contraction and finally we study the convergence of a forward-backward splitting method for approximating the zeros of the sum of two non-monotone set-valued mappings, notably using properties of pseudo H-differentiability.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des Antilles et de la Guyane (Pointe-à-Pitre, Guadeloupe). Service commun de la documentation. Section Droit-Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.