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Résumé

Cette thése a pour objet I’étude théorique et numérique de solutions singuliéres apparais-
sant dans des équations aux dérivées partielles non linéaires de la physique, en particulier en
dynamique des fluides. La présence de discontinuités dans les solutions de ces équations com-
plique la compréhension mathématique des phénoménes mis en jeu et leur traitement numérique,
notamment en vue de simulations informatiques.

Les discontinuités étudiées dans cette thése sont principalement de trois types. Les ondes
de choc, qui peuvent apparaitre spontanement au cours du temps ou étre imposées en condition
initiale. C’est par exemple la brusque variation de pression lorsqu’un avion dépasse le mur du son.
Les delta-ondes qui sont des discontinuités surmontées par une masse de Dirac. Elles apparaissent
notamment dans les systémes de la dynamique des fluides sans pression. Les chocs singuliers sont,
quant & eux, des solutions de forme non classique qui restent & étre élucidées mathématiquement.

Nous étudions ces équations par une méthode de régularisation dans un espace fonctio-
nel approprié. L’idée de base qui a servi & I’élaboration de ce travail est la suivante : lorsque
des schémas numériques construits par des méthodes différentes conduisent a des résultats iden-
tiques, ceci jusque dans leurs moindres détails, il semble naturel de s’interroger dans quelle mesure
ces suites de solutions numériques constituent une approximation d’une solution des équations
étudiées. Nous construisons des suites de solutions approchées & partir d’un schéma numérique
original, stable et suffisament simple pour démontrer que ces suites constituent une méthode
asymptotique de Maslov au sens des distributions en dimension trois d’espace. La technique em-
ployée consiste a étendre les variables réelles du probléme (domaine physique) en des variables
complexes (domaine non physique), ce qui nous permet de construire des familles de solutions
particuliéres que I’on raméne au cas réel en faisant tendre un petit paramétre vers 0. Les solutions
physiques recherchées apparaissent alors comme valeurs au bord de fonctions holomorphes.

Nous illustrons les résultats obtenus par des applications en dimension deux d’espace en
cosmologie dans les cadres Newtonien et relativistes pour des systémes sans pression, puis avec
pression et auto-gravitation, ainsi que pour le systéme des gaz parfaits.

Mots-clés : Ondes non linéaires ; Solutions singuléres ; Méthode itérative ; Méthode asympto-
tique de Maslov ; Valeurs aux bord de fonctions holomorphes ; Equations d’Euler compressibles ;
Dynamique des fluides Newtoniens et relativistes ; Cosmologie ; Gaz parfaits.



Abstract

This thesis is devoted to the theoretical and numerical study of irregular solutions appea-
ring in nonlinear partial differential equations of physics, more specifically in fluid dynamics. The
mathematical understanding of the phenomena under concern and their numerical treatment, in
particular in view of computer simulations, is made difficult by the presence of discontinuities in
the solutions of these equations.

The discontinuities concerned in this thesis range mainly into three kinds. The schock
waves, which can appear sponteanously as time passes or be imposed in the initial conditions.
For instance the sudden variation of pressure when a plane bypasses the sound speed. The delta
waves are discontinuities linked to a Dirac mass. They appear in particular in pressureless fluid
dynamics. The singular shocks are solutions having a nonclassical shape that are not completely
elucidated.

We study these equations by a regularization method in a convenient functional space.
The basic idea at the origin of this work is the following : when numerical schemes from very
different numerical methods give identical results, up to the smallest details, it seems natural
to ask oneself to what extent these sequences of numerical solutions approximate a solution -
in a sense to be made precise - of the equations under study. We construct sequences of ap-
proximate solutions from an original numerical scheme which is stable and simple enough to
prove that these sequences form a weak asymptotic method in the sense of distributions in three
space dimension. The regularization in use consists in extending the real physical variables into
complex variables, which permits to construct families of particular solutions that are physically
interpreted by letting a small parameter tends to zero. The sought physical solutions appear as
boundary values of holomorphic functions.

Results are illusttrated by applications in two spaces dimension in cosmology in the New-
tonian and relativistic domains for pressueless systems, then for systems with pressure and self-
gravitation, as well as for the system of ideal gases.

Keywords : Nonlinear waves ; Irregular solutions ; Iterative method ; Weak asymptotic me-
thod ; Boundary values of holomorphic functions ; Compressible Euler equations ; Newtonian and
relativistic fluid dynamics; Cosmology ; Ideal gases.
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0.1 Foreword.

The equations of fluid dynamics have applications in numerous domains : cosmology and
astrophysics, oceanography, meteorology and climatology, industry and petroleum. ... The aim
of this work is an attempt to contribute to a theoretical and numerical study of some basic
equations of compressible fluid dynamics. One main difficulty in dealing with these equations
is that solutions of the Cauchy problem, even those starting from analytic initial data, usually
develop singularities in a finite time such as shock waves, delta waves, contact discontinuities,
concentrations of matter and void regions, among other irregular solutions. Therefore we are
particularly interested in the case where these equations provide irregular solutions. One also
faces a severe problem of lack of uniqueness for these irregular solutions.

We study these equations by a regularization method.
e This method consists firstly of exhibiting approximate solutions from a suitable original nume-
rical scheme which is shown to be stable and consistent.
e Secondly of interpreting these approximate solutions in a convenient functional space which
permits to regularize them so that they could satisfy the equations.
e Thirdly one shows that one can pass to the limit in this functional space on a sequence of
approximate solutions. Then the limit can be considered as a solution of the equations even if it
is irregular.
e Finally this solution is concretely put in evidence as a finite set of Radon measures which is an
interpretation of the genuine function solution, by letting the regularization variable tend to 0. In
the cases solutions are known (for instance in the system of ideal gases : Sod, Woodward-Colella,
Toro, Lax, ...) we observe that the concrete solutions obtained in this way are exactly the same
as the solutions previously obtained by all authors and widely accepted. In the case of previously
unknown solutions we obtain the solutions compatible with physics (large structure formation
in cosmology, evolution of rotating dust clouds looking like formation of solar systems, Jeans
theory,. ..).

As pointed out by P.D. Lax in [25] and [26] numerical methods often give good results. When
several completely different numerical methods give the same results up to the smallest details
one can reasonably expect that these numerical results suggest the existence of a mathematical
solution of the equations. This idea was the basis and the main motivation of this work : use
as auziliary tool a numerical method (to be found so as to be valid and efficient in any space
dimension, and to be suitable for proofs of stability and consistency) and use it in an appro-
priate functional space in which one could prove the convergence of the approrimate solutions
to a "solution” of the equations in a natural sense, from a result "stability and consistency im-
ply convergence”. Therefore the aspect of this solution is approximated by the results from the
scheme. This method unfortunately does not bring abstract results of uniqueness.

In the first part of the thesis one considers successively basic equations of fluid dynamics
(chapters 1 to 3) : pressureless fluid dynamics, presence of self-gravitation and/or presence of
pressure, ideal gases. These three systems model a large variety of physical situations. We offer
a numerical scheme valid in any space dimension. This scheme is simple and therefore it is only
of order one in the space step, but its simplicity is a great mathematical advantage in that it
allows us to obtain mathematically rigorous proofs of consistency and convergence in important
cases. More precisely let us consider a system of the form

U+ (F(U))s + (GU))y + (HU)), =0, u=(u1,uz,...,up)".
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Let (Up), h — 0, be a family of step functions issued from a numerical scheme. We say that the
scheme "is consistent in the sense of distributions" on R3x]0, T'[ iff V) € C°(R3x]0, T7[),

/ {Untbt + F(Up) ¥z + G(Up) 0y + H(Up ). Ydadydzdt = O(h®)

for some a > 0 when A — 0. This means that the approximate step functions Uy tend to satisfy
the equations when A — 0 within an approximation of order « in A in the sense of distributions.
This concept of consistency provides a "weak asymptotic method" obtained from the numerical
scheme. The concept of weak asymptotic methods and their relevance have been first put in
evidence by V.G. Danilov, G.A. Omel’yanov, and V.M. Shelkovich in [12] by explicit calculations
and by reducing the problem of the description of interaction of nonlinear waves to the one of
solving some systems of ODEs.

We prove the consistency above for the system of pressureless fluids in 3-D and for the sys-
tem of self-gravitating pressureless fluids in 1-D (chapters 1 and 2). We can presume that for the
systems involving pressure such as the classical system of ideal gases the numerical tests done so
far indicate that this consistency would be true (chapters 2 and 3).

This leads to the natural question [26] p. 144 : to what extent do the results above indicate
that the existence of the flow that we are approximately calculating exists as a mathematical
object that could be qualified as a mathematical solution of the equations ? A tentative answer to
this question has been proposed from an analysis of the singular shocks solutions of the Keyfitz-
Kranzer system (chapter 5) [22], [21], [33], as well as from explicit calculations on systems of
relativistic cosmology (chapter 4) [8], [30]. To take into account the full shape of singular shocks
we study them in an appropriate functional space in which convergence can be obtained. The
functional space in which the equations are considered remains unchanged in 2-D and 3-D and
convergence holds as well.

We will construct elements Uy, in the functional space defined with a regularizing parameter
from the step functions in the numerical scheme.Then we can extract a convergent subsequence
(Un,, )p- Let U be its limit. Then we will show that U is solution of the equations in a natural weak
sense close to the classical concept of a weak solution, whose aspect is the numerical solution
observed from the scheme.

The weak solutions obtained have the well-known defects of classical weak solutions, in parti-
cular a strong problem of lack of uniqueness. Fortunately explicit calculations in very particular
cases (shock waves) put in evidence the existence in these cases of stronger solutions for which
some uniqueness can be obtained. In chapter 7 we show that in some particular linear cases
existence-uniqueness can be obtained by adaptation of the classical method based on coercivity
for elliptic boundary value problems. This does not provide even an hint for the above problem of
uniqueness for equations of fluid dynamics but shows that extension of classical general results of
existence-uniqueness to the case of irregular solutions makes sense. Other existence-uniqueness
results are presented in appendix 2 as a work which is presently being investigated.

As a clarification let us divide the methodology into successive steps :
1) find a 3-D numerical scheme that should be rather general to be applied at least to signi-

ficant equations of fluid dynamics and rather simple to be the starting point of mathematical
proofs. As a consequence the (original as far as the author knows) scheme we present is only of



order one for the 3-D usual systems such as the system of ideal gases, the shallow water equa-
tions, the systems of collisional and collisionless self-gravitating fluids,.... However it seems this
scheme could be useful in numerical practice since in 1-D it gives results similar to the classical
Godunov scheme. We show that this scheme extends at once to systems of a large number of
equations, and to 3-D problems without dimensional splitting and without any loss of accuracy
relatively to 1-D problems.

2) use this scheme for proofs of stability (L' stability in density follows from the scheme) and
proofs of consistency. Consistency consists in a proof that the approximate solutions from the
scheme tend to satisfy the equations when the space step tends to 0. Consistency is rigorously
proved as much as possible (3-D pressureless fluids without gravitation, 1-D pressureless fluids
with gravitation) and when a proof is lacking (3-D collisional self-gravitating fluids, ideal gases,
shallow water equations,...) consistency is reduced to very simple criteria which are verified as
convincingly as possible from numerical tests.

3) from an analysis of irregular solutions we can prove the convergence of a sequence of ap-
proximate solutions from the scheme to this object. In short this is no more than a version of
the familiar fact that "stability and consistency imply convergence". This step has mainly been
made possible from an analysis of the singular shock solutions of the Keyfitz-Kranzer equations.

The contents of chapters 1 and 2 have been published in [9] and [10].
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0.2. SUM UP OF EQUATIONS OF FLUID DYNAMICS UNDER STUDY.

0.2 Sum up of equations of fluid dynamics under study.

e Equations of pressureless fluid dynamics
In 1-D

pe+ (pu)z =0, (pu); + (pu*)e =0,

in 3-D
pt+ V.(pi) =0, (pii); + V.(pi @) = 0.

(1)

(2)

We recall that the notation V.(p# @ @) means the vector of components ((pu?), + (puv), +
(puw) 5, (puv)z + (pv?)y + (puw), (puw), + (pvw), + (pw?),) if (u,v,w) are the components of

—

.
e Equations of self-gravitating pressureless fluids

In 1-D
pt + (pu)x =0, (P“)t + (pu2)z + pq)w =0, D, = 47TGP;

in 3-D
pr + V.(pit) =0, (pil)s + V.(pi @ @) + pV® =0, AP = 47Gp.

e Equations of collisional self-gravitating fluids

In 1-D
pe + (pu)e =0, (pu) + (pu®)y + po + p®y = 0,y = 47Gp,p = kp,

in 3-D

pe +V.(pit) = 0, (pil) + V.(pii @ @) + Vp+ pV® = 0, A® = 47Gp,p = kp.

e Equations of perfect gases

In 1-D
Pt + (pu)r =0, (pu)t + (pu2)w +pe =0,
2
u
(pe)e + (pew)s + (pu)e =0, p=(y—=1)(pe = p7),
in 3-D 5 5
N O S
g T V-(0) =0, = (pid) + V.(pi®u) +Vp =0,
B) - . T2
—(pe) + V.[(pe +p)i] =0, p=(y—1)(pe—p—).

ot 2
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e Equations of special relativistic fluid dynamics

In 1-D [8]
pr+((p+ 5w =0, (p+ &) (u+uug) +pe + (p+ 5)P2 =0,

Pyp = 4AnG(p + 30%)47 =kp,
in 3-D [§]
pe +V.((p+ &)i) =0, (p+ &) + (V.a))u] + Vp+ (p+ 5)VE =0,

A® = 4nG(p + 3%)717 = kp,

with k = %62 for pure radiation where ¢ is the velocity of light.

In 1-D [30]
pre+ ((p+ Z)u)e =0, (p+ &) (ue + uug) + po +ups + (p+ 5)® =0,

Dy = 47G(p+3),p = kp,

in 3-D [30]

—

pi +V.((p+ £)d) =0, (p+ &)@ + (V@)@ + Vp+ Li+ (p+ £)VO =0,

A® = 47G(p+35),p = p.

(10)

(11)

(12)

In all these equations p is the density of matter (the density of energy in the relativistic case
10-13), 4 is the velocity vector, p the pressure, e the density of total energy per unit mass in

(7,9), @ is the gravitation potential and G is the gravitation constant.
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0.3 Sum up and main results.

Part I is made of three chapters in which one considers successively in 1-D, 2-D and 3-D
the system of pressureless fluids (1)-(2), the system of collisional (5)-(6) (and collisionless, (3)-
(4), as a particular case) self-gravitating fluids and the system of ideal gases (7)-(8). These are
among the most classical systems of fluid dynamics. The aim is to find a convenient numerical
scheme valid in 1-D, 2-D and 3-D that gives of course good numerical results, but whose aim is
to serve as basic starting point for a theoretical study motivated by the questions raised by P.D.
Laz [25], [26] and other authors [17], [28], [34]. This scheme will provide a weak asymptotic
method, i.e. an asymptotic method whose discrepancy is intended in the sense of distributions,
as introduced by V.D. Danilov, G.A. Omel’yanov and V.M. Shelkovich [12] as an extension in the
sense of distributions of Maslov’s method. This is some kind of consistency between the scheme
and the equations : it provides a sequence of approximate solutions that are plugged into the
equations stated in the sense of distributions. Therefore we also call this property "consistency
in the sense of distributions" as stated in the foreword. To prove this property, the scheme has
to be as simple as possible : indeed it is an order 1 scheme only. L! stability and positiveness of
the density follow at once from the scheme. This scheme is obtained in three steps : transport
step from "free streaming" originating from cosmology and studied in chapter 1 for pressureless
fluids, averaging step and finally correction step from a centered discretization. The averaging
step is needed to eliminate oscillations due to the centered discretization in the correction step.
This scheme is inspired from a convection-correction splitting of equations introduced by Le
Roux et al [2]. In Part I, besides the statement of the scheme for the various systems and careful
numerical tests showing its accuracy (Sod, Woodward-Colella, Toro, Lax and coworkers,. . .), one
proves consistency in the sense of distributions as far as possible. In the case of the 3-D system
of pressureless fluids this proof is completely rigorous as well as in the case of the 1-D system
of pressureless self-gravitating fluids. In the other cases one obtains very simple criteria to be
checked numerically for a family of values of the space step h that tend to 0. Of course one
cannot test an infinity of values of i and the tests are limited to values of h as small as possible.
If one admits the verification should hold as well when h — 0 then one can apply the consistency
result. All tests give a strong impression one can put faith in this extrapolation. If one limits to
the finite number of tested values of h then the proof gives an approximation result showing that
the numerical solution from the scheme satisfies the equations up to a small deviation of order 1
in the space step. Now let us describe the contents of each chapter.

e In chapter 1 we consider the system of pressureless fluids. In 1-D the solution of the Riemann
problem may contain delta waves. The Godunov method consists in taking an average in each cell
(projection step) of the solution of the Riemann problems at the interfaces of cells. This average
creates a discontinuity that looks somewhat in contradiction with the concept of cosmic fluid
since the delta waves can be close to the interface of cells or even change their location according
to minor details of calculation when they are located very close to an interface. We introduce
a continuous sharing of these delta waves between left and right cells from the observation of
the case in which there is coexistence of a physical solution made of discontinuities and of an
unphysical delta wave. The scheme so obtained corresponds exactly to the physical intuition : let
the constant state fluid in adjacent cells interpenetrate (which represents exactly the free strea-
ming of the cosmic fluid), then average over each cell in order to have well definite values at each
time ¢,, (the averaging corresponds to the sticking of close enough particles). We observe that we
obtain very good numerical results by letting the free streaming take place between several cells
(2 or 3) before the averaging, which permits unusually large CFL conditions. In the case one
decides that the free streaming is allowed only through a single interface the scheme had already
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been noticed in mathematics as a very simple kinetic scheme [4]. In this case we have been able
to fully prove the consistency of the scheme which is particularly technical for arbitrary signs of
velocity in 2-D (each cell has 8 neighbors) and in 3-D (each cell has 26 neighbors) : therefore
direct evaluation is impossible and should be replaced by abstract reasoning. We have obtained

Theorem 1.5.1. Let the initial conditions be L' in density p® > 0, more generally a positive
bounded Radon measure, and L> in velocity. Then the scheme for system (1)-(2) is well defined,
L'-stable and consistent in the sense of distributions for all positive time in 1-D, 2-D, and 3-D.

Various numerical simulations are presented : in particular structure formation in 2-D, and
the fact that structure formation is far less efficient in presence of expansion, and frozen by too
fast expansion (Meszaros effect). These results are obtained with a very large CFL condition

rllullso < 2.5 if u is the velocity and r = £L.

e In chapter 2 we consider the system of self-gravitating collisional (presence of pressure)
and collisionless (absence of pressure) fluids in 1-D, 2-D and 3-D. In absence of pressure the
proof of consistency can be extended in 1-D at the price of a different proof since gravitation can
increase the velocity. This proof extends in 2-D and 3-D under the assumption that the gradient
of the gravitation potential is bounded, which always holds in 1-D, but not always in 2-D (point
concentration of matter) and in 3-D (concentration of matter in points and strings). We have
obtained

Theorem 1.7.1. Let the initial conditions be L' in density p° > 0, more generally a positive
bounded Radon measure, and L in velocity. Then the scheme for the self-gravitating pressu-
reless system (3)-(4) is well defined, L'-stable and consistent in the sense of distributions for
all positive time in 1-D. This result remains true in 2-D and 3-D as long as the gradient of the
gravitation potential remains bounded.

Anyway, we observe numerically that the scheme works even in cases the gravitation potential
is unbounded. Consistency can be proved in presence of pressure as long as the CFL condition
7||t]loo < 1 holds and the gradient of the gravitation potential remains bounded :

Theorem 1.8.1. Let the initial conditions be L' in density p° > 0 and L™ in velocity. Then
in 1-D, 2-D, and 3-D the scheme for the collisional system (5)-(6) is well defined, L'-stable
and consistent in the sense of distributions as long as the velocity remains bounded (in the CFL
condition) and the gradient of the gravitation potential remains bounded.

These properties are checked numerically in all tests since in presence of pressure one observes
that collapse to a point or string appears impossible. One applies the scheme to the numerical
simulation of gravitational collapse of clouds of gas : in absence of pressure gravitational collapse
to a point is observed in absence of expansion or slow expansion. In the case of a fast expansion
one observes absence of gravitational collapse (Meszaros effect). In 2-D when the cloud of gas is
rotating one observes creation of some structure looking like a solar system : most matter agglo-
merates in the center and there appear smaller agglomerations of matter accompanied by some
clouds, that rotate around the "sun" located in the center. In presence of pressure one observes
numerically Jeans theory : a cloud of gas whose size is large enough collapses gravitationally in
spite of pressure while a smaller cloud is smeared and dissipated by pressure.

e In chapter 3 we apply the scheme to the 2-D Riemann problems for ideal gases considered by
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P.D. Lax in [25] and [26]. We prove consistency as long as the CFL condition holds (boundedness
of the velocity) and as long as the density of total energy remains > 0 (which has always been
observed in all tests).

Theorem 2.3.1. Let the initial conditions p° and € be positive L' functions and the ve-
locity u0 be L>. Assume that on some time interval [0,T] the velocity is bounded (in the CFL
condition) and that the density e of total energy remains > 0. Then concerning the conserva-
tion laws the scheme is consistent in the sense of distributions. The consistency in the sense of
distributions of the state law takes place in regions in which p is strictly positive and in which
the approzimate solution has the familiar aspect of piecewise C' functions having limits on both
sides of the surfaces of discontinuity : shock waves, contact discontinuities, rarefaction waves,
for instance.

These assumptions on the boundedness of velocity and positiveness of the density of total energy
are immediate to check throughout the iterations and have always been satisfied in all tests. 1-D
numerical tests : Sod, Woodward-Colella, Toro, show that the scheme gives the correct result
with arbitrary precision and with efficiency, although it is only of order one. For the six 2-D
Riemann problems considered by P.D. Lax [25] and [26] the scheme gives exactly the results
obtained by the other authors with completely different numerical methods. The proof of consis-
tency of the scheme shows that the numerical results obtained by all schemes (the one in this
paper and the schemes mentioned by P.D. Lax in [25] and [26]) represent some approximate
solution of the equations of ideal gases with a possible deviation of order one in the space step.
This is an encouragement and it suggests to go on the investigations in order to put in evidence
a mathematically exact solution of the equations, as developped in Part II.

Part II. After Part I that provides a method to obtain approximate solutions as a mathematical
tool for theoretical investigation, Part II consists in using this method to answer to the ma-
thematical problems that motivated this work : put in evidence rigorously defined mathematical
objects that could be proposed as solutions of the equations, prove they correspond to the known
or classically accepted solutions, study their existence, uniqueness and numerical approximation.
Of course, once the stability and consistency of the scheme have been proved in Part I, it re-
mains to put in evidence a convenient functional space in which one could pass to the limit by
compactness in the approximate solutions from the scheme, show that the limit so obtained is
"solution" of the equations in a natural sense, then try to study from "abstract mathematical
methods" the problem of existence-uniqueness of solutions in the functional space previously put
in evidence. From an analysis of the special relativistic equations (10)-(13) in chapter 4 and,
above all, in chapter 5, from an analysis of the singular shocks solutions of the Keyfitz-Kranzer
equations [22], [21], [33], [35], [36] one will put in evidence a space of germs of holomorphic func-
tions on a boundary of the real space R™, which can be interpreted as a particular regularization
procedure as well as a holomorphic version of the Egorov spaces of generalized functions [15].
In this space of holomorphic germs one can use convergence and compactness. The approximate
solutions from the scheme are extended as holomorphic germs. An analog of the classical result
"stability and consistency imply convergence" is proved by compactness. The results in Part I
permit to apply this convergence result and obtain convergence to a proposed solution of the
equations. Unfortunately the problem of uniqueness remains open and our various theoretical
attempts to state the equations in a more precise way -on physical ground- so as to guarantee
existence and uniqueness for the Cauchy problem have failed so far. Existence-uniqueness results
have been obtained but not for the above equations or, when the above equations are concerned,
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we only recover the known cases of regular solutions. In short we can mathematically justify -to
some reasonable extent- the numerical facts that are observed, but we have failed on the pro-
blem of uniqueness, even in the search of more precise formulations of the equations on physical
ground that would ensure existence and uniqueness of the irregular solutions. Now we describe
the contents of the various chapters.

e In chapter 4 we consider the equations that rule a radiation dominated universe as our
universe during the period from soon after the Big Bang to the time of decoupling 380000 years
later (13 billion years before the present time) when the cosmic microwave background was crea-
ted. The importance of these equations come from the fact that the seeds of the to-day universe
were created during this period. General Relativity is not indispensible since the fields are weak.
Therefore the equations proposed in cosmology [30], [42] are issued from special relativity. The
universe is approximately regarded as a perfect fluid because of the very large scale of length used
by the observers. The Euler equation in (10)-(13) are in nonconservative form which makes an
important difference with the equations considered up to now in Part I. For equations in noncon-
servative form the classical Rankine-Hugoniot conditions do not hold as in the conservative case.
Discontinuous solutions of these equations do not make sense within the theory of distributions
and one cannot obtain the jump conditions by a mere integration as in the classical case. In
order to obtain jump conditions for equations (10)-(13) we propose a regularization that permits
to give a mathematical sense to the equations when the solutions are the regularized objects.
The classical Heaviside function H(x) is replaced by a function H (z,€) where € is a regularizing
parameter so that H(z,€) tends to H(x),z # 0, when ¢ — 0. The calculations on the regularized
objects make sense. The problem to obtain well defined jump conditions at the limit ¢ — 0 is not
directly solved by the regularization. It has been solved on physical ground simply by observing
that physicists do nonlinear calculations to obtain the relativistic continuity and Euler equations,
so that we state these equations in a stronger form than the state law whose validity appears
to be far less precise. This statement gives nonambiguous jump conditions for systems (10)-(11)
and (12)-(13) :

Theorem 4.4.1. The system (10)-(11) of special-relativistic fluids, with G=0 and in one space
dimension, admits step functions solutions when stated in the following form, where the state law
is satisfied only in a weak sense

p P .
pr+ ((p+ F)wa =0, (p+ ) (ur +uug) +pr =0, p "= kp.

Besides the classical jump condition of the conservative continuity equation, the shock waves

satisfy the nonclassical jump condition

VAu
2

D
VAp:cZ(pl—f—g)(V—ul)(exp -1)
which follows from the nonconservative Euler equation. As a consequence the Euler equation can
equivalently be stated in the form u; +uu, + pfm% = 0 (these two formulations are found in texts
of cosmology). Similar results with a different second formula hold for the system (12)-(13).

We check that adaptations of the numerical scheme used in Part I give the explicit jump condi-
tions so obtained, with a very good approximation in the physical domain under concern. We
observe that on this domain the two approximate systems (10)-(11) and (12)-(13) give approxi-
mately the same numerical solution. It is convenient to consider H (z, €) as a real analytic function
in z and € in order to benefit of the uniqueness of analytic continuation in the statement of the
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space of germs that we introduce for the explicit calculations. This shows the relevance of holo-
morphy in this context and opens the way for the next chapter.

e The main purpose of chapter 5 is to put in evidence a functional space in which we will
find by compactness mathematical objects that could satisfy the equations in a natural sense
and appear as limits of the numerical scheme. In Part I it has been rigorously proved or observed
from numerical calculations that L'-stability and consistency hold. It remains to prove in a
suitable functional space that "L!-stability and consistency imply convergence". The singular
shock solutions of the Keyfitz-Kranzer equation will permit to put in evidence such a functional
space, as an improvement of the space of holomorphic germs introduced in the previous chapter
for the need of explicit calculations. The scheme of Part I provides approximate solutions (chapter
6 below). In a singular shock solution of the Keyfitz-Kranzer equations

1
ug + (u? — )y = 0,v; + (gug —u), =0,

the function v is a delta wave i.e. it carries a Dirac delta measure over the discontinuity. The
function v is a mere discontinuity with very small peaks of measure 0 located on the disconti-
nuity. Therefore in distribution theory the function u is equivalent to a mere discontinuity. The
facts that the function u is a mere discontinuity and that the function v is a delta wave, both
travelling with the same constant speed, are incompatible with the equations : for instance in the
first one u? — v would contain the Dirac function of v that would not be compensated in u;. This
shows that one has to dissociate the numerical solution u observed in the sense of distributions,
which is a mere discontinuity in distribution theory, from the "genuine" solution u, which is not
a distribution. Indeed one observes two small peaks in the discontinuity of u, that are negligible
in the sense of distributions, but whose participation in u?,u? become essential to compensate
the delta wave in the variable v. In the space of holomorphic germs suggested in chapter 4 for
the study of explicit solutions of equations of relativistic cosmology these small peaks make sense
and permit the equations to hold because they have a significative contribution in u? and «? and
can compensate the Dirac delta distribution in v. In these holomorphic germs one can define a
family of Banach spaces and a concept of compactness so that, to any L' bounded sequence of
step functions which are approximate solutions (for instance the approximate solutions obtained
from the scheme) we can associate holomorphic germs which are solutions of the equations in a
natural sense provided the given sequence of step functions satisfies the property of consistency,
i.e. we obtained a result of the form "L!-stability and consistency imply convergence". For sim-
plicity we state the theorem in the case of a system of two scalar conservation laws

w4+ (f(u,v))y =0, v+ (9(u,v)), =0.

Theorem 5.3.1. Under the assumptions of L'-stability and consistency in the sense of distri-
butions the approximate solutions, denoted (un,,v,), satisfy the following :

there exists a subsequence of the sequence (uy,, vy, ), still denoted (u,,v,) to simplify the notation,
two sequences (U,), (V,,) of elements of the functional space on Rx]|0,T[ and a pair U,V of ele-
ments of the functional space such that

1)Vn, Upn,V, have the "real interpretations” ., v, respectively (the real interpretations are ob-
tained by letting the regularization parameter tend to 0),

it) U,V have the "real interpretation” u,v respectively,

i1) U, — U, V,, = V in the functional space,

iv) the pair (U,V) is a weak solution of the equations in a natural sense.
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This applies to an arbitrary number of equations in 1-D, 2-D and 3-D, in particular to all
equations considered up to now and in any dimension. When using the scheme considered in this
work the numerical results -which have always been observed to approximate the exact ones when
exact solutions are known and to be in agreement with physics in absence of previously known
solutions- are approximations of the exact "solution" put in evidence in theorem 6. The problem
is that these proposed "solutions" are some kind of weak solutions and therefore as usual for weak
solutions they suffer from a lack of uniqueness. Various attempts have failed to solve this problem.

e In chapter 6 we extend the scheme considered in Part I and its consistency proof (or
consistency criterion when proofs are replaced by numerical tests) to a rather large family of
conservation laws, those of the form

(i)t + (ui®(U))e = (A(U))a,

U = (uy,...,u,)", and their natural multidimensional extensions. The left member is a dege-
nerate system in which ®(U) plays the role of the numerical velocity that we consider in the
transport step. As in Part I, the scheme is completed by a centered discretization of the right
hand side members with, in between, an averaging step imposed by the centered discretization.
The scheme applies to the Keyfitz-Kranzer equations.

)T

1
U + (u2 _’U)x = O,Ut + (§U3 _u)m’ = 0,

stated in the form above with ®(U) = u.

e In chapter 7 we extend a classical method to the functional space used in theorem 6 : one
introduces generalized Sobolev spaces in which one can use standard tools such as coercivity,
the Lax-Milgram theorem, minimisation of convex functionals. A nontrivial extension is possible
and yields an extension of the classical results of existence-uniqueness for elliptic boundary value
problems in case of possibly very irregular data (our Sobolev spaces contain the distributions
with compact support for instance). This was motivated by the presence of the Poisson equation
inside the equations of self-gravitating fluids and it yields existence-uniqueness for other linear
equations without solution in a more classical context. This extension of the classical methods
has been done only in 1-D. The theorems look like the classical ones but take place in our gene-
ralized Sobolev spaces. It is clear all the results could be extended to several dimensions taking
inspiration from the classical theory. This shows that the space of holomorphic germs is suitable
for extensions of classical methods but up to now these results are limited to linear equations.
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Chapitre 1

Pressureless fluid dynamics

Some systems of PDE’s; such as the one of pressureless fluid dynamics, show delta waves in
the solution of the Riemann problem. A method of projection of these delta waves in Godunov’s
scheme is proposed. It provides a modification of the original Le Rouz et al. scheme in case of
changes in sign of velocity. Stability and convergence of the scheme are proved in one space
dimension for the system of pressureless fluids. As an application, this method has been exten-
ded to classical systems of fluid dynamics, used for the numerical simulation of large structure
formation in cosmology, in presence of expansion of the background. This method of projection
of delta waves can also be applied to systems of conservation laws that have delta waves in the
solution of the Riemann problem.

1.1 Introduction.

In [1] the authors noticed that the solution of the Riemann problem for the system of pres-
sureless fluid dynamics

oo+ (pu)e = 0, (1)
(pu); + (pu?), = 0, (1.2)

shows a delta wave located on the discontinuity of the solution. Nevertheless, they succeeded
to extend the Godunov scheme to this case, and obtained excellent numerical results. After the
pioneering article [2], various numerical methods have been proposed for the numerical solution
of system (1.1)-(1.2). References are given in [3], [4], [7] and [27]. In the Godunov methods the
delta waves are projected on the cell in which they are located. This method of projection lacks
continuity relatively to the initial conditions, since infinitesimal variations can change the loca-
tion of the delta waves when they are close to the interfaces of meshes. The method in [2] has
been modified in this chapter to fit with physical intuition at the level of cells for the case of a
cosmic fluid modelled by pressureless material [8] p.34, p.210. The idea developped here is the
following : in this case the cosmic fluid is made of collisionless particles that interact through
gravitation only. Therefore the above lack of continuity looks irrealistic at the level of cells in
the case of large structure formation in cosmology.

To obtain a continuous flux as in usual Godunov schemes, in the projection step of the Go-
dunov method, one has to share the delta waves into left-hand-side and right-hand-side contri-

17
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butions. In the solution of the Riemann problem there occur two cases. In the first case, we have
only one solution of the Riemann problem. It is made of a physically meaningful delta wave,
that we do not know a priori how to share. In the second case, one has two possible solutions :
a physical one that has a classical form (step functions without delta waves), and an unphysical
one involving a delta wave. In this second case, one obtains a Godunov scheme from the physical
solution in form of step functions, which permits to compute the formulas governing the sharing
of the unphysical delta wave that would lead to the same scheme. The method in this chapter
consists in applying the same formulas in the first case, when the unique solution is in form of
a delta wave. This method gives back, after some calculations, a very natural scheme from the
physical viewpoint (Theorem 1.5.1) : let the constant-state fluids in adjacent cells "interpenetra-
te”, then average over the overlapping states.

One could conjecture that this method works for pressureless fluid dynamics because by
chance it gives this very natural scheme. An example is given in which the formulas of the sha-
ring of delta waves are different from those in the case of pressureless fluids and it is checked that
the scheme gives the exact solution (figure 1.9.4). The above method of sharing delta waves can
be applied to systems of PDE’s for which there is some coexistence of delta waves and classical
waves as described above in case of system (1.1)-(1.2).

In this chapter one proves stability and consistency of order one of the scheme, i.e. that the
scheme provides a weak asymptotic method of order one in the sense [12] for any configuration
of the velocity field in one space dimension with initial condition any positive Radon measure of
finite mass in density and any L* function in velocity. The proof is new and relies completely on
the very specific form of the scheme. The proof extends to two and three space dimension and
also in expanding background.

1.2 Description of the numerical scheme in [2].

Standard 1D notation is used : the space cells are the segments [ih — %,ih + %],z € Z, the

space step is denoted by h and the time step by At; we set t, = nAt and r = %. The constant
values of p and u on the cell [ih — %, ih+ 2] at time t,, are denoted by pJ and u!'. In the scheme

in [2] the passage from (p},ul)icz to (pP™" ul™)icz is done as follows. One introduces three

intermediate values (attached to the junctions of cells)

n n n
Wi 1 =P /Pt (1.3)
and
n n
ui+%api+%a
defined by :
o if u > 0 and ui,; > 0 then UZ_% = u?7p?+% = p?,

o if ui >0 and u,; <0,
if w? , >0 then u?+% = u?,p?+% =p?,

i+35
3 n n — n 7 — AN
if Wiy < 0 then U1 = U1 P = P

e if v} <0 and u} ; > 0 then u;‘+% :O’p?+% =0,
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o if u! <0 and uy; <0 then qu% = uﬁ_l,p;zr% =il

n+1 n+1

Finally one computes the values (p; ", u;"" );cz from the formulas

e TP?Jr%uﬂ% + Tﬂ?,%u;i%a (1.4)
(pu)i*t = pru = vl (w2 vl ()2, (15)
+1
1 _ (pu)f
uftt = e (1.6)
Pi
In the case u? > 0 and u,; < 0, if wZF% = 0, then the two possible values of p!'*! dif-
fer by a significative quantity. As an example, let the values of pi |,p}' and p},; be equal
(= p), vy = Lup = 1and uj; = —1 — ¢; then one computes that the scheme gives
pit = (1 + 2r + re)p. Now, if one changes ul and ul',; into u} = 1+ ¢ and ul,; = —1,
one computes pI'T' = (1 — re)p, which differs from the previous value by a quantity 2rp (when

¢ — 0, which makes the two possibilities undistinguishable while 2rp is not at all small). In the
case w;‘+ 1 = 0 one can take an average.
2
In the case uj’ > 0 and u,; < 0 there is a collision of two volumes of fluid. From formulas
(1.8)-(1.13) below, in this case the solution of the Riemann problem is made of a delta wave
whose velocity has the sign of (LA It is easy to check that in the scheme above this delta
2

wave is projected on the cell in which it is located. This looks physical in hydrodynamics [2] but
not in cosmology. As an example in the collision of two galaxies there is no star collision but
interpenetration of the two galaxies.

1.3 Solution of the Riemann problem.

The formulas of the solution of the Riemann problem for the system of pressureless fluid
dynamics can be found in [4] and [27]. The values of (p,u) are (p;,u;) on the left-hand-side of
the initial discontinuity located at x = 0 and (p,, u,-) on the right-hand-side. If w is any variable,
we set Aw = w, — w;. We set

u(z,t) = w + AuH (z — ct), (1.7)

plx,t) = pr + ApH(x — ct) + atd(x — ct), (1.8)
(pu)(z,t) = (pu); + A(pu)H(z — ct) + fté(xz — ct), (1.9)
(o0 = . (pu), = pru = 22, (1.10)

where H is the Heaviside function and § is the Dirac delta function. The velocity u is disconti-
nuous at x = ct, while p and pu display a §-peak on the discontinuity, which is proportional to
time.

Calculations give [4] and [27] :

c= VPrtr + o1 (1.11)
VPr +/pi
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o= —/piprAu, (1.12)
B = ca. (1.13)

In the case u; > u, one has Au < 0, therefore a > 0, as requested since the density p cannot
be < 0. But in the case u; < u,, Au > 0, therefore a < 0, which is not acceptable for a density.
Therefore the solution (1.7)-(1.10) is not physically acceptable in the case u; < u, (one also finds
it is unstable). Fortunately, in this case, one finds another solution, which is physically acceptable
[2], [4] and [27] :

o if v < wyt then u(z,t) = uy, p(z,t) = pr (left-hand-side region),
o if uit <z < u,t then u(z,t) undefined, p(z,¢t) =0 (void region),
o if x > u,t then u(z,t) = u,, p(x,t) = p, (right-hand-side region).

(1.14)

This solution corresponds to the physics of the problem : in absence of pressure the two sides
depart each other with their respective velocities.

1.4 Projection of delta waves.

When a function is regular enough, say L, one usually projects it on a discretization lattice
by taking its mean value on each cell [ih — g, th+ g] This method lacks continuity when a delta
wave is located close to an interface. Such a delta wave that, within the unavoidable uncertainty,
would be located on the interface, could be as well attributed to any side. In presence of delta
waves, the knowledge of the function itself is not sufficient to permit a correct projection on a
discretization lattice. The presence of delta waves in the solution (1.7)-(1.9) of Riemann problems
for the equations (1.1)-(1.2) and for the systems of physics in [8], [30] and [31] therefore makes
the projection step of a Godunov scheme nontrivial. The delta waves from the Riemann problems
should have non trivial right-hand-side and left-hand-side contributions to be discovered.

How can we treat the delta wave in the projection step of a Godunov scheme in the case
u; > u, 7 The idea developed here is the following :

e In the case u; < u,, one applies the classical Godunov scheme using the solution (1.14)
which has the usual form of step functions.

e Still in this case u; < u,, one seeks how to share the (unphysical) delta-waves in p and pu
in (1.8) — (1.9), so as to obtain the classical Godunov scheme. The delta wave in p is assumed to
contribute to the left-hand-side cell by a factor A\; and to the right-hand-side cell by a factor A,
with A\; + A, = 1. Same for the delta wave in (pu) whose explicit contributions are proportional
to factors p; and p,., with g + p, = 1. We compute explicitely the values Aj, A, p; and p,- that
give the same numerical scheme as the one from the step functions solution.

e Now, in the case uw; > u,, for each configuration of the waves, one adopts the same formulas
for A\, A, oy and g, to share the delta waves into left-hand-side and right-hand-side contributions.

In the sequel of this section the sharing coefficients A\;, A, y; and p, are calculated in the case
u; < u, as functions of the variables u;,u,, p; and p,.. We denote by w; (respectively w,) the
mean value of a variable w on the segment [—%,0] (resp. [0, 4]).
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e Case : 0 < u; < u,. In this case u; < ¢ < u, from (11). Projection of the step functions
(two discontinuities of velocities u; and wu,., provided the CFL condition wu, At < % ie. ru, < %)
gives from (1.14) :

PL = Pl
. (pu)i = (pu)i,
Pr = prulitpr(y —urdl) _ pr + 2rpju; — 2rpru,,

r =

[ k]

2 2
I
(pu)r = (pu)r + 2rpiui — 2rpyug.

Projection of the (unphysical) delta wave gives from (1.8)-(1.10) :

h
_ pL2+NaAt
pL= % = -|-27")\la7

2

_— h

(pu); = (pu)i i—mﬁﬁt
2

= (pu)l + 2T,LLl/85
h_
Pr = plCAH_/\T(XAfL-FpT 28l =pr+ QTC(pl - pr) + 27"/\7'047

2
Uu)icC. r U ) L_.
(pu), = et AW (G 28D — (py), 4 2r¢((pu)i — (pu),) + 2ri, .

2

Identification of the two sets of formulas gives

AN =0,
=0,
oy — prr = (o1 — pr)c+ Arey,
pruz — prui = ((pu)r — (pu)r)c + pr .

Using (1.11)-(1.13), the last two formulas give, after immediate calculation, A, =1 and p, = 1.
Therefore, in this case, the sharing coefficients are

Al :07)\r:1;/~l/l:07/’67‘:1-

This means that in this case the delta wave contributes only to the right-hand-side.
e Case u; < u, < 0. In this case one obtains similarly as above

Al :17)\r:0;/~l/l:17/’67‘:0-

e Case u; < 0 < u, and ¢ > 0. Projection of the step functions (provided the CFL condition
maz (|, u,)At < 2 ie. rmaz(lu|, u,) < 1) gives from (1.14) :

(B +uAr)
e —

= 7 = pi + 2rprug,
(pu) = (pu)l(%}%m) = (pu); + 2r(pu)yuy,
pr =t r(Gourdt) Pr — 2T prtiy,
2
(pu), = CGBD () 9 (pu)

SEy

Projection of the (unphysical) delta wave gives from (1.7)-(1.13) exactly the same results as in
the first case obtained above in the case 0 < u; < u,..

Identification of the two sets of formulas gives
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piu; = N,
prui = uf3,
—priy = PIC+ A — prC,
=(pu)rur = (pu)ic + pr 8 = (pu)rc.

Thus one obtains the formulas for the left-hand-side and right-hand-side contributions of the
delta wave

— . — 2 - 2 s
A = pirug A, = Priy + C(p, p1) = piug iy = Priy + c(prur — prug) ) (1.15)
a a B B

e Case u; < 0 < u, and ¢ < 0. Similar calculations give

_ prwte(pr—p1) _ —Pprur _ pruitc(prur—piu) _ —pru;
N = peleeme) 3 Zpene ,  pndbelpsp) ) pd

In summary, the rule of splitting of the unphysical delta wave observed in the case u; < u,..
The splitting of the unphysical delta wave into a left-hand-side contribution and a right-hand-
side contribution depends on the (left or right-hand-side) positions of the three waves under
concern : the discontinuities of velocities wu;, u, and the delta wave of velocity c. Looking at the
above four cases in which u; < wu, one arrives at the conclusion that the following rule always
hold to evaluate the A; and A, factors in the contribution of the delta wave in p :

e \-contribution to the side where the physical discontinuity of velocity u; is located : 2% ;

e \-contribution to the side where the physical discontinuity of velocity w, is located : - 2= ;
e \-contribution to the side where the delta wave of velocity c is located : ¢2=—£L,

Note that the respective contributions are null if w, = 0, u; = 0 or ¢ = 0 : there is no
ambiguity when a wave lies at the interface.

For example, in the case u; < 0 < u,- and ¢ > 0,
e the wave of velocity u, contributes to the right-hand-side, i.e. to A, by —2=%=;
the wave of velocity u; contributes to the left-hand-side, i.e. to A;, by 2 ;
the wave of velocity c contributes to A, by c2=—£t.
To summarize all contributions : \; = 4% and A\, = —£2%= 4 ¢22—=LL One recovers (1.15).

For the p; and p,. factors in the contribution of the delta wave in pu the rule is :

2
e p-contribution to the side where the wave of velocity wu; is located : ng, ,
2
e u-contribution to the side where the wave of velocity w,. is located : —pT; o

e u-contribution to the side where the delta wave of velocity ¢ is located : CW.

The method in this chapter consists in adopting this rule (obtained in the classical case u; <
u,) in the (unknown) case u; > u, for the splitting of delta waves. How can it be justified 7 One
could think that the proper formulas for the projection of delta waves are the same whether they
are physical or unphysical. This rule will be validated by the physical interpretation (Theorem
1.5.1), the numerical tests (section 1.8) and the convergence proof of the scheme (Theorem 1.8.1).
Then this modified Godunov method can be exploited in physics (section 1.9) and applied to
other systems (end of section 1.7). For some of them the splitting formulas are different from
those obtained with the system of pressureless fluids (figure 1.9.4).
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1.5 Interpretation of the splitting rule.

In the case u, > w;, in which the formulas were obtained, the solution displays a void region
separated by two discontinuities of velocities u; and w,. In the case u, < wu; one has instead
some phenomenon looking intuitively like a collision of two volumes of fluid. Does the adopted
splitting rule allow an intuitive interpretation in the collision case ?

Theorem 1.5.1. The Godunov type scheme with delta wave splitting defined above amounts
to the following method in the variables p and pu : a free streaming step followed by an averaging
step.

The free streaming step consists in letting matter from any cell cross freely the interfaces
with the neighbor cells and penetrate freely through the matter in these cells. The averaging
step consists in taking an average of the matter present in each cell.

The simplest version of the scheme (CFL : r|ulr~ < 1) consists in letting the matter enter
only in the immediate neighbor cells (on left and right). Then numerical tests showed the rele-
vance of letting the matter cross p successive cells in the first step, thus giving CFL conditions
r||ul|L~ < p. The scheme so obtained gives usually good numerical results for p = 2 and p = 3
(figures 1.9.1 and 1.9.2). The scheme degenerates for larger values of p.

proof. For case 0 < u, < wuy, from (1.11) one has 0 < u, At < cAt < y At < % The projection in
p,u,Aterr(%fuTAt)
h

case of interpenetration of the two fluids gives p; = p; and p, = = pr+2rpu;—

preAt+ A aAt+( % —cAt)pr
I .

2

2rp,u,. The splitting rule gives \, = 254 — %er, and then p, =

2
Same formulas hold for pu. Same results are obtained in the case u, < u; < 0.

For case u, < 0 < u; and ¢ > 0, the splitting rule gives \; = =22 X\, = W, =
2 2 _
_pr;T and g, = pLU] +C(p;ur qul).

Then, from the splitting rule,
— LiNaAt
pp = HzToesy ﬁla = p1 — 2rpriy,

2
_ pr(%cht)+cAtp,+)\raAt
Pr = I

= pr — 2rpruy,

2
R h A
(pu)s = LEERE — (pu), — 2rp,u,

(B —cAt)+eAt ~BAt
(pu), = (pw)r(5—c )+Z (pw)itprBAL _ (pw)r + 2rppcd.

2

The projection in case of interpenetration gives

—  —upAtp+Lip
pl=——p—2— = p|— 21PrUy,
2

h
— 2 pr+uAtp;
pr =" —— = pr +2rpiu,

2
—_— _ h
(pu)l _ UTAt(pu}lrJ’_Q (pu); = pru; — 27’pru%,
h

2
Zprurtu Atprug
(pu)r = 2= I

= pPrur + 27”PlU12~

We proceed the same way in the case u, < 0 < u; and ¢ < 0.0
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1.6 A free streaming numerical scheme.

In this section the general scheme in static background is described. At first it is stated in
one space dimension. The statement of the scheme depends on the parameter p = 1,2, 3, ... that
represents the number of cells crossed before the averaging step. For p = 1 the scheme admits
the CFL condition 7||u|r~ < 1. The scheme stated with the number p, that we will call p-
scheme, amounts to allow free streaming up to the p** neighbor cell (both into the left and into
the right cells) before the averaging step. Then its CFL condition is r|jul|p~ < p. Of course for
|||l < p—1it coincides with the (p-1)-scheme. Hence the title of this section. The motivation
of the introduction of these variants is that it is observed that the 2 and 3-scheme usually give
far better results than the 1-scheme. But a degenerescence has been observed for p > 3 or 4
according to the test.

As usual the space cells in one dimension are the segments [ih — %,ih + %],z € Z. One sets
At = rh and t,, = nAt. The constant values of p and u on the cell [ih — % ih + %] at time ¢, are
denoted by pj* and u] respectively. If a < b one sets

L(a,b) = max(0, min(1,b) — maz(0, a)) (1.16)

which is the length of [0, 1] N [a, b]. The p-scheme is :

Pt = Z Pia LA+ rui oy, A+ 1+ rudyy), (1.17)
—p<A<p
(pwith = > (pw)Ea LA+ rufp, A+ 1+ ruly), (1.18)
—p<A<p
n+1
untt = 7(’”?11 . (1.19)
Pi

The notation L allows a synthetic formulation of the transport, without being forced to
distinguish several cases depending on the signs of the numerical velocities.Take p = 1 for brevity.
Then (1.17) can be rewritten as

Pt i 2 L=+ vy ) + pPLrud L ) 4 2 DL+ rufyy 2 4+ rulyy), (120)

When the CFL condition rjul| < 1 Vi, Vn is satisfied, the first term, when multiplied by

h, represents the quantity p issued from the cell I;_; between times ¢,, and ¢,,4; that lie in the

cell I; at time ¢,,41. Indeed, the cell I;_1 = [(i — 2)h, (i — 3)h] has been transported according to

the vector ru" | h, since u_; is the numerical velocity and the duration time is rh. The overlap
with the fixed cell I; = [(i— $)h, (i+ 1)h] has a length of rul" hif u? | >0, 0if u ; <0, taking
into account the CFL condition r|u} ;| < 1. From (1.16), one finds L(—1+4rul"_,rul" ;) = rul ,

if u? ; >0, 0if u? ; < 0. Division by h is due to the fact that p?™' is a mean value on cells of
length h.

The second term, when multiplied by h, represents the quantity p issued from the cell I; that
remain in /; at time ¢,1. Indeed the cell [(i — 2)h, (i + )R] has been transported by the vector

rul'h. The overlap with the fixed cell [(i — 1)k, (i+ 3)h] is h—rulh if u > 0, h+rulh if uf < 0.
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From (1.16) one finds L(rul, 1+ rul?) =1 —rul if ul? >0, 1 4+ rul if u <O0.

The third term is similar to the first one : it concerns the quantity p issued from the cell I;;;
that lies in the cell I; at time ¢,41, with the same verification as above.

One observes void regions so that in numerical practice the denominator in (1.19) is replaced
by max(p?t!,1071%0). The CFL condition is

rmax(|ul]) < p. (1.21)

From the proposition below u} is undefinite in the vacuum points and this undefinite value
enters only into factors of the value 0 in (1.17) and (1.18).

Proposition 1.6.1. p?" = 0 implies (pu)} = 0.

proof. From the fact the initial condition is a pair (p°,u°) then p? = 0 implies (pu)? := pu? = 0.
Note from (1.16) that all L} := L(A+ru, \, A+ 1+7uf, ) are positive or null and from (1.17)
that all p?, , are positive or null (immediate induction from the initial condition which is a posi-
tive Radon measure). From the positiveness of p?, y and Lj ,, (1.17) and the assumption, pj =0
imply that p?+)\ =0 or Lg/\ = 0 for —p < XA < p. From the above remark that p? = 0 implies
(pu)] = 0 this implies that (pu)],, = 0 or L, =0, for —p < X\ < p. From formula (1.18) this
implies that (pu)} = 0. The lemma is proved for n=1. The result is immediate by induction on n.0J

The two dimensional space (x,y) is divided into square cells C;; of side h and centers
(ih,jh)icz : C;j is the set of all (z,y) such that ih — % <z <ih+ % and jh — % <y <jh+ %
We set

A(a,b) = L(a,1+a).L(b,1+b) (1.22)

which is the area of the intersection of the square of vertices (0,0), (0,1),(1,0),(1,1) with the
square of vertices (a,b), (1 + a,b), (a,1+b),(1 + a,1 4+ b). The p-scheme permits free streaming
through p successive cells and it has the CFL condition rmaz(|uf,l, [vf;|) < p. The formulas of
the p-scheme are

/’?jl = Z p?+>\,j+uA(>‘ + TU?Jr)\,jer W+ T'U?Jr)\,j+#), (1.23)
—p<Au<p
(pu)?jl - Z (pu)?-‘r/\,j-&-uA()‘ + Tu?+>\,j+w H+ T’U;L+/\7j+”)7 (1.24)
—p<A,u<p
(pv)?jl = Z (pv)?+>\,j+u‘4()‘ + U o TU;L+}\’j+M)7 (1.25)
—p<A,u<p
1 1
n+1 (pu):tj n+1 (Pv)ﬁ
i = a1 0 Y T T gl (1.26)
Pij Pij

The undefinedness of u,v in vacuum points is no problem (same proof as in the one dimensional
case). The scheme in three space dimension is similar. Let C; ;, be the cube of all (z,y, z) such
that (i —Lh <z <(i+Hh(—2h<y<(+3)h,(k—L1)h<z<(k+3)h. Let

V(a,b,c) = L(a,1+ a).L(b,1+b).L(c,1+c) (1.27)
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be the volume of the intersection of the cube of vertices (i,7,%), 4,7,k = 0 or 1, with the cube
of vertices (a + 4,0+ j,c+ k), i,j,k =0 or 1. For the p-scheme, if w = p, pu, pv, pw one sets

n+1l __
4k T

n n n n
§ WA gty VA F TW N s s B TOR N Gk Y TOR S G ptn)- (1.28)
—p<A,u,v<p

Stability for the p-scheme (for any p) and consistency for the 1-scheme (i.e. the p-scheme in
the case r||t||~ < 1) can be proved in three space dimension as an immediate adaptation of the
proof of Theorem 1.7.1 for stability, and in section 1.11 for consistency.

1.7 Stability of the p-scheme.

The aim of this section is to give the proof of stability. To simplify the exposition the proof
is given in the case p = 1. It is identical for any p. For convenience let us recall the 1-scheme

Pt = pi L(=1 4 rul g, rup ) + pf Lru, 1+ rul) + pi LU+ rully g, 2+ ruyy), (1.29)

(pu)i = (pu)P  L(—1 + rul_y, rul )+

(pu) L(rui', 1+ rui) + (pu)i L1 4 ruiy q, 2 4+ ruily ), (1.30)
n (pu);
wptt = Y (1.31)
Pi
if pt' # 0. In case pI"** = 0 it has been proved in the proposition of section 1.5 that any

arbitrary value u?'H fits. For convenience in statement of results one chooses a value between
min; (u]') and max; (ul).

The CFL condition is
rmaz(|ul]) < 1. (1.32)

lemma 1.7.1. The maximum principle in u holds
min(ug) < u < max(ug) Vi. (1.33)
proof. If a <wuf <b Vi, one proves that
a<ultt <bVi (1.34)

If p™! = 0 this is the above choice. If p?** > 0 one has to prove from (1.28-1.30) that

Vi L(=1+4rul_ ,rui 1)+ (pu)i Lru , 1+rul’)+(pu)i  L(I+rull ;24 ruly ;)
pz’;lL(—1+ru?71,Tu,f’;l)-i-p?L(ru?,1+ru”)+p?+1L(1+ru,f"+1,2+ru?+1)

i

a< <b.

Indeed since pI > 0 Vi (from (1.28)) and since (pu)? = plul (from (1.30) if p? > 0 and
from the proposition of section 1.5 for vacuum points) the assumption implies

apl < (pu)l" < bp} Vi, (1.35)
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Since the coefficients L’s are positive and the same in the numerator and in the denominator,
inequalities (1.34) with ¢ — 1,¢ and ¢+ 1 prove (1.33). It suffices to consider an induction on n to
conclude. J

Theorem 1.7.1 : stability. Assume that 7||ug|z~ < 1. Then on R, p is positive and L*
stable, u is L™ stable and satisfies the mazimum principle, pu and pu?® are L' stable.

proof. The L' stability of p follows from (1.28) which is merely a transport. The L stability of
u follows from the lemma. The stabilities of p and u imply the stabilities of pu and pu?.0]
1.8 Consistency of the 1-scheme in one space dimension.

For w = p,u, pu and pu? we denote by wj, the step function on R x [0, +oc[ whose values
on the rectangles [ih — & ih + 2[x[nrh, (n + 1)rh[ are w]'. We skip the indices & to shorten the
notation.

Theorem 1.8.1 : consistency. For Vi) € C°(Rx]0,+00)) the following limits hold when h — 0
/ (e + puypy)dxdt = O(h), (1.36)

/ (pu)s + puepy)dadt = O(h), (1.37)

i.e. the scheme provides a weak asymptotic method of order one.

proof. First step. If w = p or pu a direct calculation gives that Vi) € C°(Rx]0, +00))

/ (@i + wutho)dadt = —h Y[ =™ ()~ = (@u)lZHlE +hOW), (139

where ¥ = 1(ih,nrh). Indeed (1.37) is easily obtained using the stability results in Theorem
1.1.7 and Taylor’s formula for . The intermediate steps are

n

ntl_ no_mn
J(wihy + wunpy)dadt = rh? Y, (P 4 (wu)p PN 4 hO(1).

T

Then
S +wupy)dedt = b3S, | [wr —wi ™+ r((wa)} — (Wu)f )P+ hO(1).
Then, one uses that

S nllww)? = (wu)i)Jof = 30, [(wa) i ™ = (W) 5107 + 32, (wu)P (9 — ¢fy — 97 +
7,/1;:__11), where the last factor is O(h?).
Remark : positive signs of velocities. If u]~' > 0 Vi then (1.28)-(1.29) give
wi = w5 e w1 =) = w0 = r((ww)] T = (W) ). (1.39)

Therefore the first term in the sum in (37) is null, which proves (35)-(36).
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Second step : arbitrary signs of velocities. For given index iy the value uﬁ;l can be > 0 or < 0.

o If uzj_l < 0 then the "matter w* in the cell [(ig — )k, (io + 3)h] at time t,_1 goes to the
left between t,,_; and %,.

Therefore, after division by A, the amount of matter in the cell ip—11is wf! | = w;'~ Y-

rqul)—i—terms
not involving wg)_l, and the amount of matter in the cell ig is wj, = wZ) Y+ ru%‘l)—kterms
not involving wal, where the wal terms concern respectively received and remaining matter.

Therefore, for fixed n, in the sum )}, wi*9}* the term w;' ™ ! occurs in (and only in) w('~ 1( )@Z)ZO 1+

1 1
wi (L rug)Yr.

1 —1

Consequently, in the sum Y, [w! —w!" ™" +7((wu)? ™" — (wu)?~")]¥? the term involving wiT s

Wi (—r )wm 1w 1(1+ru” 1) —w! ”+r(wu)” !

20 ) 20

o T ¥ —%ﬂ) = rw g LO(r?)

n—1 n—1, n—1 n
’LO r(wu) 20+1_Tw10 uzo ( 10— 1+

from Taylor’s formula applied to .

e Similarly, if u;g_l > 0 one checks that one has again O(h?) (O(h?) is the value 0 in this
n—1

case) in factor of wfo_luio . This is done as follows. Now the matter goes to the right. Therefore

n _ ,,n—1 n—1
Wit =W, TU ~! tterms not involving w; =",

Wl = w1 - rum D) +terms not 1nv01v1ng w%_l.

Therefore in the sum ), w1} the term w;;_l occurs in (and only in) wg‘lru“‘%;@“ FwH1—
n—1 n

gy )P,

As a consequence in the sum Y, (w? —w? " +r((wu)? ! — (wu)?"))? the term involving wi s

)n 1 n—1 n—1

Wi, TR g (g YR~ T g (wu) T R —r (wa for1 = Twip Uiy (V11—

+77[} 1/)104»1)

20

Finally from these two cases the second member of (1.37) appears as
—hY 0 nwit tul " O(h?) + hO(1) = hO(1) from the L' stability in wu.0

This proof extends to three space dimension in which case it becomes rather technical : sec-
tion 1.11.00

The initial condition. The initial values (o9, u?);cz are obtained as mean values of the data
p°, 10 on the cells in z-space. Since u € L> and since p° is a positive Radon measure of finite
mass, i.e. a positive continuous linear map on the Banach space of continuous bounded functions
on R, there is a difficulty to interpret the product p°u® (think at a Dirac mass located on a
discontinuity of u"). The physically significant quantities are the mass (of density p°) and the
momentum (of density p°u®); of course the velocity of a concentration of matter is physically
well deﬁned which eliminates the above ambiguity and permits a well defined discretization of p°
and p°u® on the cells. When a concentration of p° is located on an 1nterface of cells it is shared
arbitrarily into left and right, sharing in the same way p®u°. Then u° is well defined on the non
void cells. In the void cells the values u® do not matter (from the scheme). One can choose them
in between the min and the max of u° in nonvoid cells for a more precise formulation of the
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maximum principle.
Let p9(x),u))(z) denote the step functions on R which are the discretizations of the initial
condition on the cells and let pp(z,t),un(z,t) be the step functions solution from the scheme.

The initial condition is satisfied in the following natural sense :

Proposition 1.8.1. Vi) € C°(R) one has the following :

/ (o 1) — ()16 )z = tO(1) + hO(L), (1.40)

[ orun)@ ) = (prn @l = 101) + hO(1) (1.41)

proof. For simplicity in notation we drop again the indices h. Let w = pp or ppup. If t €
J(n = 3)rh, (n+ 3)rh[ let

I= [fwle,t) - oO@)l(e)de.

Then I = 37 i 1y i1y WF —wi)d(z)de = 35, (wi — wi)sh + hO(1) using the L' sta-
2 ? 2
bility in w. Then

I=30 Yi(wf = Wl ih + hO(1).

From the following bound of the second member of (1.37) with only >_, instead of >_,  ob-
tained in the third step in the above proof of convergence with ¢ (z) in place of ¥(z,t) :

Sl = e =3, —rlwa)f T = ()5 + 3 r(ww) T O(R?),
one has
=303, —rllww)! ™ = ()= [k + 30, 3, r(ww)f " O(h%) + hO(1).
Then from the L' stability in wu
I= 22:1 i T(MU)f_l(wiH —¥i)h+ hO(1) = 22:1 hO(1) + hO(1).
Since for fixed ¢ one has n = the integer part of -, I = tO(1) 4+ hO(1), which ends the proof. O

Remark 1. The method of projection of delta waves can be applied to systems of conservation
laws of the form

ug + () =0, ve + (f(u))e + (uv), = 0. (1.42)

The case f = 0 has been studied in [24], [38] and [44] as a system whose solution of the Riemann
problem contains delta waves. Plugging

u(z,t) = w + AuH (x — ct), v(z,t) = v + AvH (2 — ct) + atd(z — ct) (1.43)
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into (1.41) one obtains a solution of the Riemann problem in the form (1.42) where the formulas

of c and « are :
c=u+ U, a=cAv—Af — A(uv). (1.44)

The projection method described in section 1.1 can be used because when u; < u, the stable
solution in u for equation u; + (u?), = 0 is a rarefaction wave therefore there is no longer a
delta wave in v. To simplify the calculation this rarefaction wave is replaced by a suitable pair
of nonentropic waves having the usual form of discontinuities with constant speed. In this case
u; < u, one considers (unstable) solutions of the Riemann problem of the form :

u(x,t) = w + (@ —w)H(x — at) + (u, — 0)H(z — ¢,t),

v(z,t) =v + (0—v)H(x — ct) + (v, — D) H(x — ¢rt). (1.45)

The jump formulas are obtained as usual :
ag=w+uc =t +0ua—ud+ f(@) = flu),nt—wo+ (@) = flw). (1.46)

In the case f(u) = u one obtains & = 0 and o = —1. Then the formulas for the contributions

are respectively :
wwi+1)  u(v,+1) (v, — ) (1.47)

o « [0}

The projection gives a scheme different from the one described in Theorem 1.5.1. It is compared
with the exact solution in figure 1.9.4.

1.9 Numerical tests.

The scheme in this chapter is compared with other schemes. We also propose a test showing
the applicability of the method to other systems.

In figure 1.9.1 the left figures show comparisons with the exact solution for three different
large CFL conditions when this solution is a piecewise continuous curve. In the right figures the
exact solution is a delta wave at ¢ = 250. One first observes that it is perfectly located. From top
to bottom the CFL conditions are r||u||f~ = 1.035,2.07,3.57 (relevant of values p = 2, 3,4). The
support of the delta wave encompasses 10, 3,10 cells respectively. In this test the sticky particle
method of [7] gives a support located on one mesh only (figure 6 in [7]). The isolated points that
are observed in the left figures are parasite values due to some unphysical numerical inconsisten-
cies at sonic points, i.e. points in which the wave speed equals 0 and usually changes sign. These
isolated points have been observed in figure 1 of [4], figure 1 in [3], figure 1.9.3 in this chapter
from the scheme in [2] and are mentioned in section 5 of [27] when the velocity changes sign in
regions where the density is smoothly varying. The method in [4] makes them disappear in an
order 2 scheme (figure 2 in [4]). They are absent in the sticky particle method of [7]. For p < 1
there is only one of them (indeed the numerical result from the scheme in this chapter is identical
to the one in figure 1.9.3 top-left). Best results are obtained for r||ul|pL~ between 2 and 2.5 as
it is observed in the middle figures. A beginning of degenerescence is observed on the bottom
figures for r||ul|f = 3.57. The computations are very fast : from 0.05 second to 0.08 second on
a standard PC. The initial conditions are [7] : if -7 <z <7, p%(z) = 2 — sinz,u(z) = 1 — .
Elsewhere the initial values are p® = 0 = u°. The values z = 0 and = = 7 correspond respectively
to i = 200 and ¢ = 357. On the left figures the product Nr is chosen equal to 25 where N is the
number of time steps. On the right figures Nr=>50.
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Figure 1.9.1. Comparaison of p-versions of the scheme.
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Figure 1.9.2. Comparison of p-versions of the scheme. Delta wave from collision of two finite
dust clouds.

In figue 1.9.2 one observes the collapse at ¢ = 110, corresponding to N = 351, in form
of a single delta wave of the kind ”double-rarefaction adjacent to vacuum states” [27] section
6. One first observes it is perfectly located. From top left to bottom right r||u|-~ = 1,2,3,4.
The support of the delta wave encompasses 20, 15, 2, 15 cells respectively, showing that the CFL
condition r|lullp = 3 gives the best result. The initial conditions are [27] : for ¢ = 50 to
100, p(i) = 2,u(i) = 1 and for ¢ = 200 to 400, p(i) = 1,u(i) = 1. Elsewhere p =0 and u = 0.
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Figure 1.9.3. Comparaison with the original Godunov scheme.

In figure 1.9.3 the top figure, which reproduces the test in figure 1.9.1 with the scheme in [2],
gives the correct result, but only under the CFL condition r||ul|p~ < 1. With the same value of
r the scheme in this chapter gives identical results. The same observation holds for the test in
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figure 1.9.2. On the bottom figures the initial conditions are chosen at random, as in figure 1.9.5
below and 7||u||L~ < 1. On the bottom left figure the scheme in [2] (bullets) and the scheme in
this chapter (continuous line) are compared after 100 iterations : one observes that the results are
practically identical . The differences observed after a few iterations (bottom right : 10 iterations)
disappear soon when matter coalesces in peaks. As observed numerically the Godunov scheme
[2] forbids interpenetration (case of fluids) while the scheme in this chapter corresponds rather to
rarefied gases and cosmology where some significative interpenetration takes place. The scheme
[2] differs from the scheme in this chapter at interfaces i + 3 when u? > 0 and ul’,; < 0 which
are rare events in classical tests such as those in figure 1.9.1 and in figure 1.9.2. In figure 1.9.3
these events are not rare but a difference that appears in the first iterations disappears after a
significative number of iterations.

The scheme with sharing of delta waves according to (1.46) is used in figure 1.9.4 with 300
time steps and r = 0.5. The left figure shows the numerical solution of the Riemann problem
when u; = 2,9, = 1,u, = 1 and v, = 12. One observes two discontinuities corresponding to
sets of values (¢, uy, v, ur,v,) = (2,2,1,2,25) for the left discontinuity and (3,2,25,1,12) for the
right discontinuity. For both discontinuities one checks at once that the jump condition (1.42)
with o = 0 is satisfied. The right figure shows the numerical solution of the Riemann problem
u; = 2,v; = 1l,u, = 1 and v, = 1. The numerical solution is a delta wave located at i = 750
and ¢ = 751, of heights 300 and 600 respectively. One observes that ¢t = 150, i.e. £ = 150 since
¢ =1; at =600+ 300 = 900 then gives o = 6; one checks that (1.42) is satisfied. In these two
tests the scheme from the sharing formulas (1.46) gives exactly a solution of the equations.

Conclusion. Degenerescence of the results for a large enough number of time steps has been
observed for a CFL r||lu||p~ = 2.6 (in the test of figure 1.9.1), or more, depending on the test.
The programs in this chapter are typed with p = 3 or 4 and one avoids to have r||u|/ L~ > 2.5
without careful tests that this is possible. In the performed numerical tests the original Godunov
scheme [2] and the scheme in this chapter always give the same final result when h — 0 despite
the fact that no convergence has been proved for the original Godunov scheme. It does not work
as soon as r|ju||p~ > 1 while the p-schemes in this chapter allow far larger values of r and adapt
without splitting to any space dimension.
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° ° 500
15 400
— 300 b
10 200
100
5
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..... oo @
—— e
0 100

800 850 900 950 1000 1050 1100 e/ 746 748 750 752 754 756

Figure 1.9.4. A numerical scheme for the system in Remark 1 in the case f(u)=u with the
projections from the sharing formulas in Remark 1.



34 CHAPITRE 1. PRESSURELESS FLUID DYNAMICS

118 20

09
300 320 340 360 380 400 420 440 460 480 500 00 320 340 360 380 400 420 440 460 480 600

a2 "

0 0
300 320 340 360 380 400 420 440 460 480 500 300 320 340 360 380 400 420 440 460 480 500

Figure 1.9. 5. Structure formation at same time according to the expansion rate

1.10 Numerical simulations.

In this section two numerical simulations are presented. The consideration of expanding back-
ground is justified from the fact one can reproduce steps of the theory of large structure forma-
tion in cosmology for matter dominated universes [8], [30] and [31], with a numerical scheme
whose consistency (and from chapter 5 convergence to a solution of the equations) has been pro-
ved (Theorem 1.8.3). The fully nonlinear but numerical results presented below are replaced in
books of cosmology by perturbation theory, i.e. linearization of the equations around a suitable
solution, transformation of the linear PDEs into linear ODEs by Fourier transform, and explicit
solutions of these ODEs. The need to develop fully nonlinear techniques by solving numerically
the nonlinear equations considered in this chapter is pointed out in [8] pp. 287-322.

The expansion of the background is described by the scale factor a(t) which is a smooth
strictly positive given function of the time t : a physical distance unity at time 0 becomes a(t)
at time t. The equations are given in comoving coordinates, i.e. spatial coordinates whose unit
of length follows the expansion of the background : the spatial physical coordinates at time t are
obtained by multiplying the comoving coordinates by the scale factor a(t). In one space dimen-
sion the equations are (see [8] p. 294 and [30] p. 233) :

P+ 338;) + (17:) (pu)s =0, (1.48)
(pu)e + 42&2 pu + a(lt) (pu?), = 0. (1.49)
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This system is equivalent to the one in static background :

Proposition 1.10.1. Let p(x,t),u(x,t) be solution of the static background system (1,2).
Let ¢(t) = fot (151%)2' Then p(z,t) = a(t) 3p(z,0(t)), u(z,t) = a(t) ‘u(x,$(t)) is solution of the
system in expanding background (1.47)-(1.48).

proof. It is a direct verification.[]

Therefore the scheme in expanding background is an easy extension of the scheme in static
background, with same stability and convergence properties.

The simulation in figure 1.10.1 shows how structure formation depends on the expansion. The
top-left figure represents initial matter whose density and velocity are randomly distributed on
each cell : 0.9 < p <1.1, 0.5 <wu <0.5. The background expansion is of the form a(t) =1+ ct
with various coefficients c¢. There are 100 time steps in the 3 other figures. The top-right figure
in static background shows an efficient structure formation : randomly distributed matter is ag-
glomerated into peaks. In the bottom-left figure the scale factor has been multiplied by 6, then
structure formation is far less efficient. In the bottom-right figure the scale factor has been mul-
tiplied by 41, one observes a near absence of structure formation. One notices that the maximum
values of density peaks change very much mainly because the physical sizes of the cells have been
multiplied by a3. The conclusion is that structure formation is very sensitive to the expansion
rate, and made impossible by too fast expansion.

matter density

—
50 an 100 110 120 130 140 150

Figure 1.10. 1. Typical patchwork of voids, clusters and filaments of matter in two dimension.

In figure 1.10.2 he initial conditions are at random around the value 1 for density and the
value O for velocities as in figure 1.9.5. The background has expanded by a factor 1.1 in 50
iterations with the large CFL r|ju||f~ = 2. Calculations have been done on a standard PC in
a 200 x 200 window in 3 minutes. One observes the typical structure of filament-cluster-void
network observed in [8] p. 308 and p. 333, [30] cover and [31] cover, p. 490, p. 458. The time
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evolution one observes is exactly similar to the one depicted in [8] p.308. The 2D tests can be
done on any standard PC.

1.11 End of the proof of consistency in 2-D and 3-D.

For brevity we set w := p, pu, pv, pw. Following the 1-D proof in 2-D and 3-D the respective
extension of (1.37) is

L= =0 Y [t — w4 (@) — (wu)iy ) + r((wo)f; — (o) )ler,  (1.50)
%7,
and
I3 = 7h3 Z znj_li - ij k + T((wu)z] k (wu)z 1,7, k) + T(((.O’U)z gk (wv)Z]’—l,k) (151)
i,5,k,n

+r ((ww)”k (Ww)zj,kﬂ)]i/’gj,k-

We will prove that Iy and I3 equal O(h) which will prove that the scheme is a weak asymp-
totic method of order one in 2-D and 3-D.

First step : two dimension and positive velocities. In this first step let us assume that
Vi,j,n (u)f; > 0 and (v)7'; > 0. The induction formulas (1.28)-(1.29) are an evaluation of
the transports that take place between times ¢, and t,4; : the cell C;; looses part of its
contents (wich has been transported at velocity (uf';,v]';)) and has received matter from the
cells Ci_1,5,Cj j—1,Ci—1,;—1 only since we assume positiveness of velocities. The following contri-
butions are obvious from pictures of the overlapping transported cells with the fixed cell C; ; in

the four cases given in the Appendix.
From figure 1.11.1 we obtain

2 n+l1
hwiiy =T+ Ticj+Tij1 +Ticrj

where

o Tij = w';(h—rhu?;)(h — rhv};) denotes the matter that remains at time ¢, in the fixed
cell C; ;, from an evaluation of the area of the intersection of the transported cell C; ; with the
fixed cell C; ] ;

o Ti1,j = =wiq ;rhuiq ;(h—rhv ;) denotes the matter that comes from the cell Cj_1 ; from
an evaluation of the area of the 1ntersect10n of the transported cell C;_; ; with the fixed cell C; ; ;
o T j1:=w;_y(h—rhu};_;)rhv};_; denotes the matter that comes from the cell C; ;_; from
an evaluation of the area of the intersection of the transported cell C; ;_; with the fixed cell C; ; ;
oI 1j-1:=w"y j_yrhuiy ;_yrhvl, ;_; denotes the matter that comes from the cell C;_1 ;1
from an evaluation of the area of the intersection of the transported cell C;_; ;_; with the fixed
cell Ci,j'

Developping and dividing by h? one obtains the formula,

w;l’j-l - wﬁj + r[(wu)z J + (wv)z J (wu)z 1,5 (wv)l] 1]

P () — (@un)y  — ()l @)y ). (1.52)

»J
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Therefore, from (1.49)

I, = —r?h? Z[(wuv)?] — (wuv)i g — (wuv)f ;g + (wuv)iy ; 4]P7 (1.53)

YRL
A change in indices gives

I = —r*h? ) (wuv)f; (0 — fry — O + Ul g)- (1.54)

4,4,m

From the L! stability of wuv and Taylor’s formula in 1, which gives a O(h?) bound depending
only on ¢, I = O(h).00

Second step : three dimension and positive velocities. From the transport formula (1.27) with
p = 1 and since all velocities are > 0 one has to take into account the cell C; ;. itself, the
three cells Ciflyj’k, Ci’jfl’k, Ci’jykfl, the three cells Cifl,jfl’k, Ci’jfl’kfl, Cl',l’jykfl and ﬁnally
the cell C;_1 j—1,k—1. This gives 27 terms in the second member below. Using the similarity with
the 2-D case, one obtains

hgw;f;:é =Up+ U +Us +Us

where

—_ n n
Uy = wz’,j,k<h —rhuf;

)(h — rhv&-,k)(h — rhw}fmk);
Up = wznfl,j,krhu?fl,j,k(h - Th”;zl,j,k)(h - rhw;ll,j,k)

+w;’,j71,k(h — rhuzjil)k)rhvzjil,k(h — rhw:.fjil)k)

+w§fj7k_1(h — rhuﬁj,k_l)(h — rhvﬁj7k_1)rhw2j7k_1;

_,.n n n _ n
Uy = wi—1,j—1,krhui—1,j—1,krh’vi—1,j—1,k(h Th’wi—l,j—l,k)
n n n n
+wi,j71,k71(h - rhui,jfl,kfl)rhvi,jfl,kf1rhwi,j71,k71
n n n n .
Fwit o poarhul g g (h—rhol oy sy rhwl g

— n n n n
Us = wi—1,j—l,k—lrhui—l,j—l,k—1Thvi—l,j—l,k—lrhwi—l,j—l,k—l'

Developping, dividing by A% and setting A = wuv, B = wuw, C = wvw, D = wuvw, E = —wuvw
(it is convenient to consider D and FE separately), one obtains

n+1 _

n
Wik = Wi kT

r(—(wu)i; p — (o), — (Ww)i; o+ (Wu)iy j, + (W) g + (Ww) 1) (1.55)
+r3( tie = Al gk — Al g T A g T Bl — Bl e — Biljo1e T Bty o1 (1.56)

n n n mn
+Ci,j,k - Ci—l,j,k - Ci,j—l,k + Ci—l,j—l,k)

3 n n n n n n n n
-r ( i,j,k_Difl,j,k_Di,jfl,k+Di717j71,k+Ei,j,k71_Eifl,j,kfl _Ei,jfl,kfl+Ei71,j71,k71)'
(1.57)
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The sum (1.54) enters into the sum in the second member of (1.50). Each of the five blocks of
four terms in A, B,C, D, E gives a O(h?) bound after transfer of the lower indices to the smooth
function v : for instance

2 _ 2
i,5,k,n ?‘k - A?—l ik _Azn'—lk +A?—1 '—1k:)¢zn'k - Zz ik T A?‘k(¢?‘k _1/}?+1 ik
Z Gk " (A NE 2Js J—1, J—1, NE 235k, NE 3Js 2Js

Vijrrke T Vi k)

The conclusion I3 = O(h) follows from the L! stability of A, B,C, D, E and Taylor’s formula in
.0

Third step : recall of the one dimensional proof with arbitrary signs of velocities. We need to
recall the one dimensional proof of Theorem 1.8.3, as a preparation to help for the understanding
of the two and three dimensional proofs. Indeed it provides a description of the proof for the first
order terms in 7 in the two and three dimensional cases.

From (1.17)-(1.18), for given index io, the quantity w, w = p, pu, which lies in the cell
[ioh — %,ioh + %] at time t, is in part transported from time ¢, to time t,.1 at a velocity
uj to one of the two neighbor cells : a quantity wf uj (t,+1 — t,) = Wi uf rh leaves the cell

[ioh — %,ioh + %] It contributes to the cell on the left if ul! < 0, or to the cell on the right if
uj > 0. Therefore, after division by h,

if uj’ > 0, then (loss of the cell ig and gain of the cell ig + 1) :

wZ)H —wpt = —r(wu); (and terms not involving (wu)7 ) ,
w:f)fl —wi vy =7r(wu)? (and terms not involving (wu)7 ).

if ul < 0, then (loss of the cell 7o and gain of the cell ig — 1) :

wZ)H —wj =r(wu)f (and terms not involving (wu)} ),
with —w? | = —r(wu)? (and terms not involving (wu)?).

In both cases, from the CFL condition (1.20) with p = 1, there are no more terms (wu)j in
the sum Y, (w"™ — w}). Therefore in the sum Y. (@; — w?)y? there are only two occurences of

(wu)f , namely those in the two above cases : (wu);! appears in this sum as

r(wu)ﬁ)(q{)%_ﬂ - w%) if up >0, r(wu)Z)( o — Z)—l) if up <O0.

(1.58)

Applying this result for all 7 in place of iy, one obtains

S (WP — WMl Y (wu) P — v Y (W) R =Y (wu) QY
where QF = P — Y + ¢ — ¢ = 0if ul >0
or

Qp = = + 9P — P = O(R?) if uf <0.

One obtains
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L= —hYy Wit —wf +r(ww)f — (u)f )l = ~h ) (wu)?O(h*) = O(h) (1.59)

i,n i,n
from the L' stability of wu.[]

Fourth step : two dimensional case and arbitrary signs of velocities. In the two dimensional
case the one dimensional argument applies without any change in the terms r(wu)};, r(wv)f; in
I, (1.49). If, for instance u; ; > 0, then the matter wj; ; in the cell Cy, j, at time t,, goes to the
right Therefore, at time t,,11 it covers in the cell Cy, 11,5, a region of area ruj ; h(h—rhlv} ; |) =

(N h? (and term in r2). Therefore the terms in factor of r are exactly the same in each z,y
directlon as in the one dimensional case, except that the factor h? replaces the factor h. The

difference with the one dimensional case is the occurence of terms in r2 that we now consider.

n+1 (see

In the (unknown since it depends on the field of velocity at time ¢,,) formula giving w}
(1.51) in the case all velocities are positive) there appear terms r*(wuv); that were proved in
(1.52)-(1.53) to be unefficient in the case all velocities are positive. Here one has to prove again
that these terms are unefficient. For given (ig,jo) one can distinguish four cases, depending on
the signs in (u ;. v} ;). Let us first consider the case (uj; ; >0, v} ; > 0) : one cannot a
priori use (1.51)-(1.53) because the signs of all the velocities for (4, j) # (io, jo) are unknown here.

In (1.51) the quantity (w; "“ w;';) has been evaluated in the case all velocities are positive.
This is no longer the case here smce we only know that uj; . > 0,0} ; >0 (with any possible
signs for the other velocities). In the present case, formula (1.51) is no longer valid. The second
members of the unknown formulas which here replace the formulas (1.51) depend on the unk-
nown signs of the velocities for all (4, j), but, when considered for all (¢, 7), they contain the same
terms r?(wuw) jo as the set of all formulas (1.51) since these terms follow from the transport
of the cell Cj, ;, according to the positive velocities uj ;> 0,v5 ;> 0 . Therefore it suffices

to search the terms (wwv)? . in formulas (1.61) written for all ( J). Therefore from formulas
(1.51) the terms (wuv)?

%0, jO
in the series >, (w]'f! —wp;)yr; are

10 .70
2 n n+1 n .
o + 7 (wuv)y ;P lo Jjo from (51) with first member w;'" —wl .+ .. .5
2 n+1 n .
o —ri(wuv)i . Y it 1o from (51) with first member w; ™"} S —wit g o+
2 n+1 n .
o —ri(wuv)i L Y lo jo+1 from (51) with first member w;'" | —wi o+
n+1 wn
o + 72 (wuv) s PR g 41 from (51) with first member wih S L —wl o+
Their sum gives
2 n n n
r [(wuv)iodo 0,70 (wuv)lo Jowi(ﬂrldo (wuv)lo ]0¢207J0+1 + (wuv)lo Jowio+17jo+1}' (1'60)
We have obtained : if uf! ;> 0and v} ; > 0 the factor (wuv)f , occursin the sum ) j(w?jl -
wit;)p; as the term
2 n n n n
i (wu)io o (Vi o = Viodot1t ~ Vit 1o T Viot1o41)- (1.61)

The ¢'s give the O(h?) bound already noticed in the one dimensional case.
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Now it suffices to notice that for each of the three other cases concerning the signs of
(uf i,» VR ) the O(h?) bound occurs as above by changing the sense of some z,y axis so as to
be in the above positiveness case (the scheme is clearly unsensitive to a change in sense of the x,y
axis). Finally, in the sum }_, (wf;rl —w;;)p;, the sum of all terms in r?is D r2(wuv)?’j0(h2).

Therefore the sum of all r? terms gives O(h) in (1.49). O

Fifth step : Three dimension and arbitrary signs of velocities. In the three dimensional case
(1.50), the occurences in the sum Zijk(w?j',i —wi)p; ) of the terms of order 1 in r are
similar to those considered in the one dimensional case and the occurences of the terms of or-
der 2 are similar to those considered in the two dimensional case. It remains to evaluate the terms
r?i (wuvw)%db,kW We distingyish eight cases, depending on t1‘r1e signs of (u.;‘w-mkp7 VR ks Wie o ko )-
First, consider the case all signs are positive. As explained in the two dimensional case the terms
in r3(wuvw)§‘0’j0’k0 contained in the sum Z”k(wl”j,i — w1 )Y ), can be extracted from all
formulas (1.56) written for all (¢, j, k) by searching the terms emanating from the cell C;; j, ko
because the three velocities v . . o ., Jw! . are positive. Considering only the D terms
- i0,J0.k0? “ig,jo0,ko? ~i0,j0,ko0 > .
(the proof is the same for the E terms) we recall for convenience the formula (1.56) (only valid

in the case all velocities in all cells are positive) under the form

+1
2k (Wi =it )L,

_ 3
gk = 1 2k (Dig i =Dy ki k= Dy o w0l et Dy 1 Vi)
(and terms not involving D).

The terms we seek emanating from the cell Cj, j, .k, are the terms in D} . ,
»J0O 0,J0,K0

31n n n n n
=T Di ok Wity o ko ~ Vi 1goko — Voot 1ko T Pint 1o,k )

The four 1’s give the requested O(h?) bound. The seven other cases of signs of velocities are
treated by changing the senses of the coordinate axis as in the two dimensional case.[]

1.12 Conclusion.

In the case of pressureless fluids the method of splitting of delta waves presented in this chap-
ter has permitted to obtain a numerical scheme which is stable (Theorem 1.7.1) and convergent
Theorem 1.8.3. In particular, the p-schemes described in this chapter improve significantly the
original Godunov scheme, taking into account they are fast and with a large CFL condition.
They extend at once, without dimensional splitting, into 2 and 3 space dimension. This method
of projection of delta waves applies to different systems of conservation laws from physics and
mathematics, whether they are connected or not with the system of pressureless flows. These
results will be transformed, from chapter 5, into a result of convergence to a solution of the
equations.



1.13. APPENDIX.

1.13 Appendix.
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Figure 1.11.1. The four successive evaluations below from overlapping squares
are represented by hatched regions.
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Chapitre 2

Self-gravitating fluids

In this chapter we present a numerical scheme for the 3-D system of self-gravitating fluid
dynamics in the collisional case as well as in the non-collisional case. Consistency of order one
in the sense of distributions is proved in 1-D and in absence of pressure. In the other cases
consistency is proved under the numerical assumptions of boundedness of the velocity field in
the CFL condition and of boundedness of the gradient of the gravitation potential. In 2-D and
3-D, concentrations of matter in strings and points can cause a theoretical difficulty although
one observes that the scheme still works. The initial data are L functions in velocity and L'
functions in density. Applications are given to situations in cosmology and astrophysics such
as the role of dark matter at decoupling time, the formation and repartition of galaxies, the
formation of solar systems and Jeans theory which explains the formation of stars.

2.1 Introduction.

We consider the equations governing a self-gravitating fluid [8] p. 207, [30] p. 460, [31] p. 231,
[5] p- 49

o =, .
— . = 2.1
0 49 (pi) = (2.)
8 e — N R - - —
E(pu) + V.(pi ® @) + Vp + pV® = 0, (2.2)
AP = 4nGp, (2.3)

p=Kp, (2.4)

where p, 4@ = (u,v,w), p, ® denote respectively the density, the velocity vector, the pressure and
the gravitation potential ; G is the gravitation constant and K > 0 a constant from the state law.
These equations are the continuity equation (2.1), the Euler equation (2.2), the Poisson equation
(2.3) and an isothermal state law (2.4). These equations are extended to expanding background
by a change of variable [8] p. 294, [31] p. 233, for their use in cosmology.

This system is classically treated in cosmology by perturbation theory which consists in li-
nearization of the equations around a known solution, see [8] p. 207, [30] pp. 460-461, [31] pp.

43
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231-232, [5] p. 50. The linearized equations of motion provide an excellent description of gravita-
tional instability when density fluctuations are small. However, the linear regime breaks down as
soon as the density fluctuations are not small, which makes a numerical approximate solution of
(2.1)-(2.4) indispensible, see [8] pp. 304-332. In the absence of an exact solution to validate the
scheme, one needs to prove at least its consistency, i.e. that the step functions from the scheme
tend to satisfy the equations when the space step tends to 0. As far as the author is aware this
is the first time that a mathematical proof of consistency has been obtained for this system,
even in one space dimension and absence of pressure. It is also the first time that the full system
(2.1)-(2.4) is studied numerically even in 1-D.

We propose an original 3-D numerical scheme for (2.1)-(2.4) which is consistent in the sense
of distributions under natural assumptions whose numerical verification is immediate for a given
value of the space step h : a CFL condition ||u||Loo§—fc < 1, supplemented by an assumption of
boundedness of the gravitation potential. Then, in order to apply the consistency theorem, this
property has to be extrapolated when h — 0. If one does not accept this extrapolation, the proof
in this chapter shows that whenever these properties hold for a small value of h, then the step
functions from the scheme satisfy the equations with a small deviation of order one in the space
step (for given test functions 1, with bounds depending on the size of the support and the sup.
of the first and second derivatives). In absence of exact solutions or physical experiments this
mathematical result allows us to put faith in the numerical solutions obtained from the scheme,
which is interesting since faith in numerical results is a serious problem in cosmology while the

equations (2.1)-(2.4) are fully accepted.

In the case of absence of pressure, i.e. K = 0 in (2.4), the scheme is simplified. It concerns
the system of self-gravitating pressureless fluids. This system has already been considered in [13]
and [29] from a theoretical viewpoint. These authors have obtained results of existence of solu-
tions under various assumptions. In [13] the authors consider in particular the case of random
initial data needed to explain large structure formation in cosmology (see [8] and [30]). The ini-
tial density is either discrete or absolutely continuous with respect to the Lebesgue measure. In
[29] the authors use the theory of mass transportation. The initial velocity has to be continuous
and square integrable and the initial density has to be a Borel probability on R with finite two
order moment. From the numerical viewpoint cosmologists have developped N-body simulations
representing a sample of the universe as a box with periodic boundary conditions containing
a large number of point masses interacting through their mutual gravity [8] pp. 304-310, [30]
pp- 482-494. There exists a number of numerical codes done by cosmologists. They represent
a cosmological fluid as a discrete set of a large number of particles and calculate the gravita-
tional forces between them. They differ mainly in the way gravitation forces on each particle
are calculated, [8] pp. 305-310. In absence of exact solutions for their validation, and impos-
sibility of physical experiments, faith in these methods comes only from the fact they mimick
the real physical process and reproduce qualitatively the aspect of the universe as it is observed,
[8] p- 308. This is the reason which makes a mathematical proof of consistency particularly useful.

As applications we propose four simulations in the pressureless case : gravitational collapse
to a point in absence of fast expansion, then impossibility of collapse in presence of fast expan-
sion of the background (Meszaros effect), formation of structures looking like solar systems from
gravitational collapse of a rotating disk, agglomeration of baryonic matter on the existing struc-
tures of dark matter at decoupling. Then, in presence of pressure we present two simulations of
Jeans theory [8] p. 206, [5] p. 44 : Jeans theory asserts that a gas of collisional particles collapses
gravitationally besides pressure if its size is large enough (> Jeans length), which explains the
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formation of stars.

The scheme is obtained from a convection-pressure correction method which was introduced
in Le Roux et al. [2]. The authors of [2] used a splitting technique consisting of separation of the
convection terms from the pressure terms and showed the good numerical quality of the schemes
thus obtained, with a less restrictive CFL condition than the original schemes without splitting.

2.2 Statement of the scheme.

The real line is divided into intervals I; =]ih — 1h,ih + 1h[,;i € Z. We set 7 := {L and
t, = nrh for r small enough. We will construct step functions p(x,t), u(x,t), p(x,t), ... de-
pending on h, which are constant on the rectangles I; x|t t,+1[, whose step values are denoted
pir,ul, pl, ..., respectively. The indices h are skipped to simplify the notation : p stands for pp, ....
From these step functions p and u, we define the step functions pu, pu?, ... by (pu)? = pltu? and
(pu?)? = p(u?)?,.... The initial condition (p° u°) is discretized on the intervals I; by taking
mean values on these intervals. We always assume that u” is a L> function and that p°,e? are
positive L' functions.

Statement of the scheme for self-gravitating fluids in one dimension. In one space
dimension the equations (2.1)-(2.4) reduce to

pt + (pu)z =0, (2.5)

(pu)t + (pu2)x + Pz + P‘I’x = 07 (26)
&, = 4dnGp, (2.7)

p= Kp. (2.8)

n+1 n—i—l}

We assume the set {pl*, u?,p} }icz is given. The set {pI'™, u?™! pi*t1},c ;7 is defined as follows.

If a < b, one sets
L(a,b) :=length of [0,1] N [a,b], (2.9)

ie.
L(a,b) = max(0, min(1,b) — maz(0,a)). (2.10)

e Transport step. See section 1.5,
pi = i L(=1+rui_y ruiy) + pf L(rui’, 1+ ruf) + pif (L4 rudyy, 2+ rudlyy). (2.11)

When the CFL condition (2.37) is satisfied, the first term represents the matter issued from
the cell I;_; between times ¢, and t,; that lies in the cell I; at time ¢,,;. The second term
represents the matter from the cell I; that remains in I; at time ¢,,1. The third term is similar
to the first one : it concerns matter issued from the cell I;; that lies in the cell I; at time t,1.
Note that p; depends on n, which is not explicitely stated to shorten the notation. The same
discretization as the one in chapter 1 gives

(pu); = (pu)i L(=1 + rul_q,mul y)+
(pu)P L(rui, 1+ rui’) + (pu)i L1 4+ ruily 1, 2 4+ ruily ) (2.12)

where (pu)!’ = pIul. The state law is set in the form
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pitt = Kp,. (2.13)
e Averaging step. For some value 0 < a < 0.5 chosen in the scheme

pitt = apiy + (1= 20)p; + apiy, (2.14)

(pu)i = O‘(Pu)i_1 + (1 - 20‘)(:0“)1‘ + oz(pu)i_H. (2.15)

The averaging step serves to avoid oscillations caused by the centered discretization in pressure
in the next step. In absence of pressure one chooses o = 0.

e Pressure correction step. One can compute ® from (2.7), considered as a Dirichlet problem
with values 0 on the boundary, or as a periodic problem, which gives

(@)1 1 =47G > pi T h+ B (2.16)

Jj=1

for some fixed value 5. Then a centered discretization of the pressure term gives

n Y T s n s n
(pu)i = (pu)i - i(pirll - pijll) - Thpi +1((I)z)i L (2'17)
If pP* £ 0, we set )
urtl = (p;)il , (2.18)

if pf“ = 0 then u?“ can be given any value from Proposition 2.2.1 below.
Proposition 2.2.1. pI' = 0 implies (pu)? =0 and p} = 0.

proof. The proof is an induction on n. We first give the proof in presence of pressure. For n = 0 it
holds by construction. Assume the property holds for n. Then, if p?“ = 0, since a > 0, formula
(2.14) implies

ﬁi—h ﬁia pi-}-l = 0. (219)

From (2.11)-(2.12) it follows that p; = 0 implies (pu); = 0 : indeed from (2.11) p}L(...) = 0 for
j =i—1,4,i+1 since each term in (2.11) is > 0. Either p7 = 0 or L(...) = 0. From the induction
assumption, p} = 0 implies (pu)? = 0, therefore one has always (pu)} L(...) =0,j =i—1,i,i+1,
i.e. each term in (2.12) is null. Therefore, (2.19) implies

(pu);_y =0, (pu); =0, (pu);, =0.
Then, from (2.15), we obtain @i = 0. From (2.19), formula (2.13) implies p/' = 0,p'* =

O,p?jll = 0. Finally, all terms in (2.17) are null. In the pressureless case one can take a = 0.

Then, from (2.14) p; = 0; from the above implication (pu), = 0 and from (2.15) with o = 0
(pu); = 0. It suffices to use (2.17) without pressure to conclude.[]

It follows from (2.11)-(2.14) that p is positive. Since the coefficients L in (2.11) represent
transport i.e. a new repartition of matter at time t,7, Theorem 1.5.1. and section 1.5, one has
> pth =", p?h. From the positiveness of p one has the L! stability in p. The L' stability in pu
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follows from the L' stability in p and the boundedness of u from assumption (2.37). From (2.16)
and L!-stability in p, ®, is L° bounded : [(®,)?| < 47G(||p°|| 11 +|3])- In one space dimension,
assumption (2.38) is always satisfied since |®,| < const : the gradient of the gravitation potential
is bounded, even on a point concentration of matter.

Statement of the scheme for self-gravitating fluids in two and three dimensions.
The equations in the two dimensional case are

pr + (pu)s + (pv)y = 0, (2.20)

(pu) + (pu?)y + (puv)y + pr + p®s = 0, (2.21)
(p0): + (puv)y + (pv®)y + py + p®y = 0, (2.22)
p= Kp, (2.23)

AP = 4nGp. (2.24)

The two dimensional space (z,y) is divided into square cells C;; of side h and centers
(ih, jh) jez : Cij is the set of all (z,y) such that ih—% < x < ih+2% and jh—2 <y < jh+%. We
assume the set {p}';, ul;, v';, P} ; }i jez is given. The set {p?jl,uZ;rlijl,pﬁjl}i,jeZ is defined
as follows. We set

A(a,b) := L(a,1 4+ a).L(b,1 +b) (2.25)

which is the area of the intersection of the square of vertices (0,0), (0,1),(1,0),(1,1) with the
square of vertices (a,b), (1 + a,b),(a,1+b),(1 + a,1+b). Then we set

e Transport step. As in the 1D case let

Pij = D Ploaaen AN+ TU s s BTV ) (2:26)
—1<A,u<

(m)i,j = Z (pu)?+)\7j+uA()‘ + Tu?+)\,j+;u Mt TU?+>\,j+u)’ (2'27)
—1<A,u<1

(W)w = Z (PU)?+>\,j+uA(>\ + Tu?+>\,j+p,v ©+ 7’”?+>\,j+u)v (2.28)
—1<A, 1<

Pt = Kp; ;. (2.29)

Interpretation of (2.26)-(2.29) is a transport in 2-D, see section 1.6, similarly to (2.11)-(2.12) in
1-D.

1

o Averaging step. Let o, 0 < o < 55,

be given in the scheme. Set

1 _ _ _ _ _
P?j = 020,19 ;-1 + 20141 T 2Pit1. -1 + 2Pip1 11 T 3Pi_1 it

3P j—1+ 30 j11 + 301 ;) + (1 —20a)p; 5, (2.30)

(pu)i,j = a(2(p“)¢71,j71 + 2(PU)¢71,j+1 + 2(:0“)1'+1,j71 + 2<Pu)i+1,j+1 + 3(/)“)1714"‘

S(pu)m»_l + 3(pu)i7j+1 + 3(pu)i+l7j) +(1- QOa)(pu)i)j. (2.31)

We set the same formula for (pv); ;» replacing u by v.
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e Pressure correction step. The values @Z;rl of the potential are obtained from a numerical
solution of the Poisson equation (for instance the Dirichlet problem with null values on the
boundary, or the periodic problem) on the mesh of cells C; ; with second member the function

4wGp, where p here is the step function equal to p”T* on C; ;. Then a centered discretization

]
gives
((I)E)i,;rl = ﬁ(‘bi;ﬁ{j - (I)ijll,j)7 (‘I’y)zjl = ﬁ(‘bz;ﬁh - (I)i,;r—ll)7 (2.32)
n _— T T n n n
(pu)if o= Py — 5 (P =PI ) = rholl (@) (2.33)
A similar formula is given for (pv)?jl, using y-derivatives. If pZ}Ll # 0, then
n+1 n+1
7,“!'1 — (pu)i,j TL',H — (pv)i,j (234)
R

if p?jl = 0, then ufjl can be given any value as in 1-D as it is proved in Proposition 2.2.1 in 1-D.

The scheme in three space dimension is very similar to the scheme in two space dimension
(2.25)-(2.34). Let C; ;1 be the cube of all (z,y,z) such that (i — 2)h <z < (i+ 1)h,(j — 3)h <
y < (j+3)h,(k—3)h <z<(k+ 3)h. Let

V(a,b,¢) = L(a,1 4+ a).L(b,1 +b).L(c,1 + ¢) (2.35)

be the volume of the intersection of the cube of vertices (i,7,%), 4,7,k = 0 or 1, with the cube
of vertices (a + 4,0+ j,c+ k), i,j,k =0 or 1. If w = p, pu, pv, pw successively, one sets

Wi gk =

n n n n
E Wi+)\,j+p,k+uv()‘ T TUL N gkt BT TV kg VT Twi+)\,j+p,,k+u)' (2.36)
—1<Ap,v<1

We extend (2.30)-(2.31) by taking an average over the cell C; ;; and its 26 neighbors in order
that Taylor’s formula in ¢ annihilates the first order terms.

2.3 Statement of the consistency theorem.

The constant values on C; ; 5, of the approximate solutions wy(x,y, z,t) (usually denoted by
w to simplify the notation) are denoted wi'p for ¢, <t < tpy1, where w = p,u,v,w,p,.... We
assume that the initial density p° is a positive L' function and the initial velocities u°, v°, w® are
L functions. We note V& = (&, ®,,®.) and |V®| = /(8,)2 + (®,)% + (¥,)2. For simplifica-
tion, boundary problems are eliminated by assuming that the physical variables we are interested
in tend to 0 at infinity.

Theorem 2.3.1. consistency of the scheme. Assume that during some time interval [0, T
(i.e. ¥(i,j,k) € Z* and n / t, <T) one has

n At n g At o At
|u”k|A7x <1, |Ui,j,k|A7$ <1, ‘wzgk|ﬂ <1, (2.37)
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and the following condition (that always holds in 1-D)
IM >0 / Vij.kn |[(VO)I, | <M (2.38)
for all h > 0. Then the scheme is consistent in the sense of distributions when h — 0.

More precisely we obtain : Vi € C>(R3x]0,T)
/(Ph¢t + pruntbs + pronty + prwnt))drdydzdt = O(h), (2.39)

/{Phum/)t + o1 (un) 2z + prunvity + prunwps + ppts — pr- () n tdadydzdt = O(h), (2.40)

and similar limits for the two other components of the Euler equation in (pnvp), (phwn),

/ (o — K pn)pdadydzdt = O(h), (2.41)

/{@hAw — dnGppyp ydedydzdt = O(h), (2.42)
when h — 0.

e Presence of pressure. System (2.1)-(2.4) models Jeans’ gravitational collapse : when a me-
dium has pressure, a perturbation bigger than a critical length can collapse under its own gravity,
see figures 2.5.5 and 2.5.6 below. The presence of pressure does not allow the perturbation to
collapse to a mathematical point, as shown in figure 2.5.6 below, and |V_'<I>| remains bounded.
Assumptions (2.37)-(2.38) cover gravitational collapse in the presence of pressure.

e Absence of pressure. In the absence of pressure in 2-D, assumption (2.38) can no longer
hold in the case of gravitational collapse to one single cell : figure 2.5.1; it is well known that
the gradient of the gravitation potential can be unbounded in 2-D in the presence of point ac-
cumulation of matter and in 3-D in the presence of accumulation of matter on submanifolds of
dimension 0 or 1 (points or strings). Nevertheless, it has been observed that the scheme works :
figure 2.5.1. In the absence of pressure (i.e. K = 0) and if V@ is bounded, then, for all values
T > 0, the proof of Theorem 2.3.2 below proves that assumption (2.37) is satisfied as soon as

At
Az is small enough.

Theorem 2.3.2. In the absence of pressure and in one space dimension one can choose %
small enough such that the scheme applies and is consistent.

Proof. The proof is given in 1-D to shorten the formulation. In the absence of pressure the
scheme is simplified by dropping the averaging step (choice o = 0) due to the absence of cente-

red discretization in pressure. First, notice that if a,, < u} < b, Vi, then if p?“ # 0 one has

Jica L(=1+4rul g ,rul )+ (pw)] Llru, 1+rud ) +(pu) iy LO4ruil 2+ rully

=S
Pi

a, < & ) <b,.

(2.43)

since, from (2.11) and (2.14) with a = 0, numerator and denominator are same convex
combinations. If p?”™! = 0 it follows from the proof of Proposition 2.3.1 in the pressureless case

%
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that the quotient is undeterminate and its value is useless for the next step. Set
K = 4nG(| 12 + 18)). (2.44)
Now, let us prove that Vn such that ¢,, < T one has

min(ug) — TK <u) <max(ug)+TK VYi. (2.45)

To this end, let a,, < u? < b,, Vi. Formulas (2.18), (2.17) without pressure, (2.15) with o = 0,
and (2.12) imply that

u?“ — (pu)?flL(—Hru?flJ’uﬁll)+(pu)?L(;ﬁyll+ru?)+(pu)2’+1L(1+m?+1»2+T“?+1) _ rh@r)?ﬂ.
Therefore, from (2.43), (2.16) and (2.44)
an —ThEK <l < b, +rhK. (2.46)

We obtain (2.45) by induction on n since t, = nrh < T.

Now fix a value r such that
r(|luollp~ + TK) < 1. (2.47)

Then, as long as t,, = nrh < T the scheme satisfies r||ul|L~ < 1. When the CFL condition (2.47)
is satisfied time T can be attained. One has the stability results : p is positive and L! stable
on R x [0,T] since it is ruled by a transport, v and ®, are L*> stable from (2.45) and (2.16)
respectively, pu and pu? are L' stable, since p is L' stable and u is L> stable.[]

2.4 Proof of Theorem 2.3.1.

We first give the proof in one space dimension.

e Set
I:= /(Pwt + putb,)dxdt. (2.48)

Using repeatedly the L'-stability in p and pu one has : T = 37, 7h*[p}(¢¢)} + (pu)i(v2)}] +
n+1l n LA )
O(h) = i, rh2 o0 i (pu)? 55220 4 O(h). Then

I==h) [pi*" = pi +r((pu)i = (pu)i )l + O(h) (2.49)

from a change in indices.
From (2.14), p/™" =5, + a(p;_1 — 2p; + Py11)- Therefore I = I; + I + O(h), where

I =—h Z[ﬁi =i+ r((pu)i = (pu)i_ )7 (2.50)

Iy = —hay (pioy = 2p; + P )V} = —ha ) p(fy — 207 +471) = O(h) (2.51)

in in
since, from (2.11), the L! stability in p implies L!-stablility in 5, and from Taylor’s formula in ).
Distinguishing two cases in the signs of velocities it has been proved in chapter 1 that I; = O(h)
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(with a change in notation : here p; replaces p?™' in formula (1.37)). Then I = O(h) which
proves (2.39) in one space dimension.[]

e Set
J = / [(pu) e + (pu? Yoo+ pios — pPy ) drdt. (2.52)

Since pu, pu?,p, p are L' stable, the proof of formula (1.7) with w = pu (and in presence of p)
gives, as (2.48)-(2.49),

/ [(pu) e + (pu? )y + piosdadt =
—h Z[(P“)?H — (pu)} + r((pu®)} = (pu?)i=y) + r(pf = i)Y} + O(h). (2.53)

A direct evaluation gives

/ pOopdadt = p (@)} / Wt =

(i—3)h<ax<(i+3)h,nrh<t<(n+1)rh
Z (@) rh2T 4+ O(h Z PP (@) 2 + O(h) (2.54)
from the L' stability of p®,. Therefore, from (2.52)-(2.54)
J=—h Z[(PU)?+1 = (pu)i +r((pu®)7 = (pu?)f_y) +1(p; = Piy) +rhpy ™ (@2)7 Y] + O(h).
(2.55)

Developping (pu)?*! from (2.15)-(2.17), one obtains the simplification of the terms in ®, and
the decomposition J = J; + Jo + J3 + O(h) where

==Y [(pw), = (pu)i + r((pu®); = (pu)i )Y (2:56)

Jo = —ha Y (P_y — 270; + Pl ¥ haZpu YR — 207 +UR), (2.57)

ZTL

J3 = ) Z(Pﬁi? —Pi—1 o —2(pi —pi )i = o5 Zpi (1/%‘—11 - 1/)z+1 2 + 2¢1+1)- (2.58)

As for I; above it has been proved in chapter 1 that J; = O(h); as (2.51) Jo = O(h), and
Js = O(h) from Taylor’s formula in ¢ and L' stability in p from (2.13)-(2.11). Therefore
J = O(h). This proves (2.40) in one space dimension.[]

e Similarly, as (2.54),

I''= [(p— Kp) =rh? Y, (0} — KpP ) + O(h) = rh2 Y, (0! — Kpi Ty + O(h)
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from the L' stability in p and p. From (2.13)

I'=Krh® Y (p; = pi )Y} + O(h).

Then, from (2.14)

Il = —Krh20( Z(ﬁi_l - Zﬁz +ﬁz+1)¢;n + O(h') = O(h’)7

i,n
which proves (2.41) in one space dimension.[]

e Now we check the consistency (2.42) for the Poisson equation. Using the boundedness of
|®,| and the L'-stability of p, one obtains

J(—(@0) o —AnGpy)dudt = 32, [~(R2)Prh* (o)} —4nGpPrh*YP1+0(h) = 32, [—(®2)7rh? 1 ($F 1 —
o) — AnGpprh®yP] + O(h) = 3, rhP[5 (82)F — (®2)iy) — 4nGpPlYf + O(h) = O(h) from
(2.16). O

Proofs of Theorem 2.3.1 in two and three space dimensions. They are direct adaptations of
the 1-D proof concerning the above calculations. The extension of the 1-D results stating that
I = O(h),J; = O(h) is difficult since we must consider all neighboring cells in the transport
step. A full proof is given in section 1.11.01

2.5 Numerical simulations.

All numerical calculations below were done on a standard PC in a few minutes. We first give
four simulations in the pressureless case (K = 0).

Velocity increases in a gravitational collapse. With a fixed value of r given a priori it is
difficult to produce a simulation, which is explained by the theorem : in a gravitational collapse,
r depends very much on time, see ||u||o in the bottom left panel. If at each iteration one adapts
the value of r at the maximum value to respect the CFL condition 7||@||~ = 1, then one easily
observes a gravitational collapse to a point. In figure 2.5.1 one has a cloud of cosmic fluid in the
form of a disk surrounded by a void (top left panel). The values of p and (u,v) inside the disk are
at random between 0.9 and 1.1 and between -0.1 and 0.1 respectively. One performs 80 iterations
in a 200 x 200 window, G = ﬁ, in the absence of expansion. One observes collapse to a point
located in the center of the window (top right panel). We show the evolution of the sup. of velocity
(max(|ul, |v]), bottom left panel) and the sup. of density (bottom right panel). The maximum
of |®,|,|®,| follows the growth of max(p) in the bottom right panel and reaches a value 150
but only on the cells close to the point concentration of matter. In two dimensions, the gradient
of the gravitation potential is unbounded in a point concentration of matter. Nevertheless the
scheme works very well provided one follows the above described adaptation of the value of r that
enables to ensure the CFL condition in the most efficient way. This suggests that consistency of
the scheme still holds even in 2-D point concentrations of matter.
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Figure 2.5.1. Simulation of a gravitational collapse in two dimensions in static background.
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Figure 2.5.2. Gravitational collapse is frozen by fast expansion.

In figure 2.5.2, one considers the same cloud as in figure 2.5.1 but the background expands
by a scale factor a(t) = 1 + 10t. After 100 iterations which raised the scale factor to the value
158 one observes that the cloud has not significantly changed (left panel). This shows that, even
in the presence of gravitation, structures are frozen by fast expansion (Meszaros effect, [8] pp.
225-226), as observed in the absence of gravitation in figure 1.9.5. The presence of oscillations in
sup. of velocity (right panel) shows that nevertheless the cloud is submitted to some stress due
to the conflict between gravitation and expansion.

In figure 2.5.3 the cloud is rotating. Instead of a simple gravitational collapse to a central
point as in figure 2.5.1, one observes creation of a "simili solar system". There is accumulation of
the larger amount of matter in the center. First one observes formation of an irregular ring (top
figure, 50 iterations). Sometimes a perfectly circular ring has been obtained, such as pictures in
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[13], or some matter is ejected from the window. After 100 iterations (bottom figure) the ring
has split into a few local accumulations of matter that reminds us of planets before accretion and
a few dilute clouds of gas. This set is bound by gravitation and evolves slowly. Usually the "pla-
nets" rotate endlessly around the "sun" with slight modifications of the general configuration.
The consistency of the scheme has been proved outside the central point as long as the "planets"
are not pointlike, which gives confidence in the results. One observes the results are very sensitive
to the initial data and that they evolve slowly with time as we could expect. The initial values of
p are at random between 0 and 4, the initial velocities are all directed in a direction tangential to
circles centered in the center of the window, with values (O.l.rand.m,o.l.rand.m)
where each rand denotes a random value between 0 and 1; the velocity chosen is equal to 0 in
a neighborhood of the center; as in figures 2.9.1 and 2.9.2 the values of r are adapted at each
iteration so as to have r||ul|L~ = 1, absence of expansion, 100 x 100 window, G=0.0004. This
problem is being intensively studied in computational physics by heuristic algorithms using a
large number of pointmasses bound by gravitation, see [37] and references therein.

160
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20 40 60 80 100 120 40 160 100 120 140 180
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Figure 2.5.3. Formation of a $imili solar system from the gravitational collapse of a 2-D
rotating dust cloud.

The 1-D simulation in figure 2.5.4 shows agglomeration of baryonic matter on the previously
existing structures of dark matter when baryonic matter became decoupled with radiation. The
top figure shows the initial conditions : dark matter (80 per cent, black continuous line) has
formed structures when the universe was radiation dominated, while baryonic matter (20 per
cent, red continuous line, scale multiplied by 10 for visualization, coupled to radiation before
decoupling), is at random around the value 0.4 in density and between —0.1 and 0.1 in velocity.
In the bottom figure, after a few iterations, one observes agglomeration of baryonic matter on
the structures of dark matter, as expected : the baryonic material follows the behavior of dark
matter [8] p. 260, [30] p. 473. This is modelled (with change of variable to take into account



2.5. NUMERICAL SIMULATIONS. 55

the expansion) by two continuity equations (2.1) and two Euler equations (2.2) (dark matter
and baryonic matter) with the same potential ® ruled by the Poisson equation (2.3) where p is
replaced by the sum of the two densities. For this bifluid system of five equations, stability and
consistency hold exactly as in this chapter. 2-D simulations have given similar results.

initial structures: Baryons=red DM=black final structures: Baryons=red. DM=black
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Figure 2.5.2. Potential wells of dark matter at decoupling : a system of five equations.

Now let us give simulations taking into account the role of pressure. Gravity tends to make
small density perturbations in a static pressureless medium grow with time. In case the medium
has pressure, pressure opposes this collapse. The classical theory of Jeans [8] (chapter 10) shows
that only perturbations on a scale larger than the Jeans length can grow and shrink under
their own gravity, thus producing structure formation. If the perturbation has a size smaller
than the Jeans length the overdensity is smeared and dissipated by pressure. We numerically
reproduce these facts from the fully nonlinear equations (2.1)-(2.4). We give the results in the
one dimensional case since it allows a clearer visualization.
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Figure 2.5.3. The basics of Jeans theory : a large enough cloud of gas reaches an equilibrium
between the opposite actions of pressure and gravitation.

In figure 2.5.5 the initial conditions are two clouds of gas at rest centered at x = 200, of
density=10, surrounded by a void : a large cloud of size 200 in the top panels, located on the
interval [100, 300], a small cloud of size 40 in the bottom panels, located on [180, 220]). The value
of G is equal to 0.48, K—0.5 in the left panels and K—0 (i.e. absence of pressure) in the right
panels. One performs 900 iterations with » = 0.1 and o = 0.1. In the right panels one observes a
gravitational collapse in the absence of pressure. In the top-left panel one observes a gravitational
collapse of the large gas cloud even in the presence of pressure. In the bottom-left panel there
is no gravitational collapse of the small gas cloud : one observes that the sup. of density passes
from 10 to 2 : the overdensity is dissipated by pressure.

In figure 2.5.6 the data are the same as those of the top panels in figure 2.5.5 (large gas cloud).
The initial size of the gas cloud is 200 on the interval [100,300], and its density is taken equal to
10. In the top-left panel the gas cloud has started a gravitational collapse : after 900 iterations,
the sup. value of density has reached 75 with a support of size < 100 : gravitation has dominated
pressure. Then after 2000 iterations (top-right panel) the top value has decreased to 30 and the
size of the support has increased to 200. This is due to the velocity (created by gravitation in the
previous step) and to the pressure, whose influences have dominated the influence of gravitation
in these iterations. Then, in the bottom-left panel, the size of the support diminishes again untill
100 while the top value reaches 45 : in these iterations gravitation has dominated pressure. Af-
ter some small oscillations the cloud reaches an equilibrium (bottom-right panel) obtained after
18000 iterations.

45 45

40 40
35 35
30 30
25 25

20 20

Figure 2.5.4. A cloud reaches an equilibrium between the opposite actions of pressure and
gravitation.
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2.6 Conclusion.

We have presented a numerical scheme for the system of collisional as well as non-collisional
self-gravitating fluid dynamics. In 1-D and absence of pressure consistency of order one has been
proved. In the other cases consistency holds under the assumptions of boundedness of the velocity
field in the CFL condition and boundedness of the gradient of the gravitation potential. These
two numerical properties have been checked in all numerical tests up to very small values of h
in the presence of pressure (K # 0). In the absence of pressure (K = 0) and in three space
dimension they have been rigorously proved whenever there is no point or string accumulation
of matter. Even in these cases it has been observed that the scheme works well. If one does not
accept the extrapolations of these properties for values of h smaller than those tested, the proof
of the theorem shows that the approximate solutions from the scheme satisfy the equations up to
a deviation of order one in h. As an application we have numerically reproduced various events
in cosmology and astrophysics.
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Chapitre 3

The system of Ideal Gas dynamics

In this chapter we present a 3-D numerical scheme for the approximation of the system
of gas dynamics. Consistency in the sense of distributions is studied. We prove that, as long
as the boundedness of the velocity field (in the CFL condition) and the positiveness of the
energy are numerically verified when the space step tends to 0, the scheme provides a numerical
solution which satisfies the equations in the sense of distributions with an approximation of order
one in the space step. Numerical verifications of convergence are done from classical 1-D tests
(Sod, Woodward-Colella, Toro). These verifications provide numerical evidence that the scheme
produces the exact solution with arbitrary precision. This scheme gives back the numerical results
on the six 2-D Riemann problems presented by P. D. Lax in [25] and [26], up to the smallest
details. This simple order one low-cost 3-D scheme is obtained from the convection-pressure
correction method proposed by Le Roux et al [2].

3.1 Introduction.

The system of ideal gases has been studied by many authors, see for instance [17], [28§]
and [34]. In [25] and [26] the author points out the need of a mathematical justification of the
numerical solutions of the 2-D Riemann problems presented in these articles. In this chapter we
introduce a simple numerical scheme which permits to provide a 3-D consistency proof in the
sense of distributions under the numerical assumptions of boundedness of the velocity field (in
the CFL condition) and positiveness of the energy when the space step h — 0. Of course, from
a theoretical point of view one cannot be sure that these numerical assumptions always hold
for every h when h — 0, however we point out that, for the scheme presented in this chapter,
these assumptions have always been satisfied in the 1-D Sod, Woodward-Colella, Toro tests and
the 2-D Riemann problems in [17], [25], [26], [28] and [34] for all tested values of h, some of
them very small. The proof in this chapter shows that, for any given family of test functions
with uniformly bounded support and uniformly bounded first and second derivatives, then the
numerical solution satisfies the equations in the sense of distributions within a small deviation
of order one in h, whenever the numerical velocity remains bounded (in the CFL condition) and
the energy density remains positive, which is presumably verified in physical cases for all h when
h — 0 and can easily be checked numerically up to very small values of h. As far as the author
knows the proof is new and relies on the specific form of the scheme. This proof is an extension to
the system of ideal gases in 3-D of the consistency proof given in [2] for the far simpler system of
pressureless fluid dynamics in 1-D. In addition to the consistency proof, numerical convergence
and low-cost efficiency of the scheme are checked by classical 1-D tests (Sod, Woodward-Colella,

99
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Toro). The numerical results in [17], [25], [26], [28] and [34] on 2-D Riemann problems are also
obtained, even up to the smallest details, which suggests that the numerical schemes in [17], [28],
[34] could be convergent, as this is conjectured by P. D. Lax in [25] and [26]. Now let us recall
the system of ideal gases :

% 49y =0, (31)
%(pﬂ) +V.(pi® @)+ Vp =0, (3.2)
%(pe) + V.[(pe +p)id] = 0, (3.3)
p=(v- 1)(pe—p%), (3-4)

where p, @ = (u,v,w), p, e denote respectively the density, the velocity vector, the pressure and
the density of total energy ; v is a constant.

The scheme and its consistency proof adapt easily to systems of fluid dynamics involving the
continuity equation (3.1), such as the Saint-Venant equations or the compressible Navier-Stokes
equations.

3.2 Statement of the scheme.

The real line is divided into intervals I; =]ih— h,ih+ 1h[,i € Z. We set t, = nrh for r small
enough. We will construct step functions p(x,t), u(z,t), p(z,t), ... depending on h, which are

constant on the rectangles I; X|t,, t,,11], whose step values are denoted pl', ul", p7, . . ., respectively.
The indices h are skipped to simplify the notation : p stands for py, .... From these step functions
p and u, we define the step functions pu, pu?,... by (pu)? = pPul and (pu®)? = pl'(ul)?,....

The initial condition (p",u") is discretized on the intervals I; by taking mean values on these
intervals. We always assume that u® is a L> function and that p°,e° are positive L' functions
null at infinity.

Statement of the scheme in one dimension. In one space dimension the equations (3.1)-(3.4)
reduce to

pi+ (pu)s =0, (3:5)
(pu)e + (pu)s + pr = 0, (3.6)
(pe)t + (pew)s + (pu)r = 0, (3.7)
p=(y - 1pe—50). (3.8)

We assume the set {pl, (pu)?, (pe)?, ul, pl'}icz is given. The set
{p?t (pu) 1, (pe) ittt pPt1Y,c 7 is defined as follows.
If a < b one sets
L(a,b) :=length of [0,1] N [a, b], (3.9)
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ie.
L(a,b) = max(0,min(1,b) — maz(0,a)). (3.10)

e Transport step. In order to use the convergence proof in [2] we set
pi = pia L(=1+rui g rui ) + pf L(rud, T+ rui’) + piy LU+ ruglyy, 2+ ruityy ). (3.11)

When the CFL condition r||u|l <1 is satisfied the first term represents the matter issued from
the cell I;_; between times ¢, and t,; that lies in the cell I; at time ¢,,;. The second term
represents the matter from the cell I; that remains in I; at time ¢,,41. The third term is similar
to the first one : it concerns matter issued from the cell I;; that lies in the cell I; at time ¢,1.
Note that p; depends on n, which is not explicitely stated to shorten the notation. The same
discretization as the one in (3.11) gives

(pu); == (pu)? L(=1 4+ rul |, rul )+

(pu)i L(rui, 1+ ruj') + (PU)Z—lL(l + Tu?+17 2+ 7'“?4—1), (3.12)

(pe); := (pe)i  L(=1 + ruj'y, rui )+
(pe)i L(rui', L+ rui’) + (pe)i 1 L1+ ruly 1,2 + ruy ). (3.13)

The state law is set in the form

- (ow).)?
Pt = (v = Dlpe); — ((”2;1)} (3.14)

if pi 7& 0 )
Pttt =0 (3.15)

e Awveraging step. The averaging step is needed to avoid oscillations caused by the centered
discretization in the next step. From numerical tests we choose a value « €]0, %[ and we set

Pt = apiy 4 (1= 2a)p; + Py, (3.16)
(/P\/“)i = a@i—l +(1- 20‘)@1‘ + a@iﬂv (3.17)
@i = O‘@i—l +(1- 20&)@1‘ + O‘@H-l' (3.18)

e Pressure correction step. We set

(pu)i ™t o= (pu); = 3 S - o, (3.19)
n (pu)it
uptt = T (3.20)

if p?* £ 0, and any value if p! ™! = 0. We set
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n+1: ( n+1, n+1 n+1 n+1) (3.21)

(pe) (pe)z p7,+1 uz+1 D1 U

2
Proposition 3.2.1. pf = 0 implies (pu)] =0, (pe)? =0 and p} = 0.

proof. The proof is an induction on n. For n = 0 it holds by construction. Assume the pro-
perty holds for n. Then, if p ™' = 0, (3.16) implies

ﬁi—h pia pi-}-l =0. (322)

From (3.11)-(3.13), p; = 0 implies (pu), = 0 and (pe); = 0, see proposition 1.6.1 in chapter 1 for
details, the induction assumption is used here. Therefore, (3.22) implies

(pu)i_1 =0, (,DU)Z =0, (pu)iH =0, (pe)i_1 =0, (pe)i =0, (pe)i+1 =0.

Then, from (3.17)-(3.18), one obtains (pNu)z =0 and (fpve)i = 0. Formula (3.15) implies p/'*}' =
0, p”Jrl = O,p?jll = 0. Finally all terms in (3.19), (3.21) are null.O]

It follows from (3.11), (3.16) that p is positive. Since the coefficients L in (3.10) represent
transport i.e. a new repartition of matter at time ¢,1, as in Theorem 1.5.1 and section 1.5, one
has >, ph = >", p{h. From the positiveness of p one has the L' stability in p.

Statement of the scheme in two and three dimensions. The equations in the two
dimensional case are

pt + (pu)s + (pv)y =0, (3.23)

(pu)i + (pu?)e + (puv)y + ps = 0, (3.24)
()¢ + (puv)z + (pv®)y +py =0, (3.25)

(pe)i + (peu)s + (pev)y + (pu)s + (pv)y =0, (3.26)
p=(y—1)(pe—p- ;U )- (3:27)

The two dimensional space (x,y) is divided into square cells C;; of side h and centers
(th, jh)ijez : C;; is the set of all (z,y) such that ih — % < x < ith+ % and jh — g <
y < jh+ ﬁ We assume the set {p}';, (pu);’;, (pv)7;, (pe)i;, ui s vi' pfj bijez is given. The set

+1 +1 +1 1,01 4l ntl
{7 ,(pu)fj (V)i s (pe)iy Tl vl Pl ijez is defined as follows. We set

A(a,b) := L(a, 1+ a).L(b,1+b) (3.28)

which is the area of the intersection of the square of vertices (0,0), (0,1),(1,0),(1,1) with the
square of vertices (a,b), (1 + a,b),(a,1+b),(1+ a,1+b). Then we set

e Transport step. As in the 1D case, when the CFL condition r||u||« holds, we set

Pij = Z P n AN+ U G B TUR ) (3:29)
—1<Ap<1
(pu)i,; = Z ()i x AN+ TU s e B TOR N ) (3.30)

—1<A,p<1
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(PV)ij = Z (pv)?-i-)\,jﬂLA()‘ + ru?+/\)j+u, M+ T”?-i-/\,j-&-u)’ (3.31)
—1<au<1

(pe)ij = Z (Pe)in jan AN+ U s B TOR ) (3.32)
—1<Ap<1

((P)iz)* + ((P)i5)?
2p;
Interpretation of (3.29)-(3.32) is a transport in 2-D, see section 1.6, similarly to (3.11), (3.13) in

1-D.

Pt = (v = )((pe)i; — ). (3.33)

€1

55> be given in the scheme. Set

o Averaging step. Let o, 0 < a <
P?jl = 020,21 j—1 + 20141 T 2Pit1, -1 + 2Pip1 41+ 3Pio1 it
3Pij—1 1 3Pi j+1+ 3Pit1;) + (1 —20a)p; 5, (3.34)

(pu)i,j = a(Q(pu)ifl,jfl + 2(PU)¢71,j+1 + 2(P“)i+1,j71 + 2<Pu)i+1,j+1 + 3(/)“)1714"‘

3@i,j—1 + 3@““ + S@i-s-u) + (1 = 20a)(pu); ;- (3.35)

We set the same formula for (pv), o (pe); ;» replacing u by v, e respectively.

Remark. The scheme adapts to the shallow water equations. Then, it has been noticed in the
cylindrical dam break test of Toro [41], pp. 245-260, that the averaging step does not work in
some regions thus producing strong oscillations and an uncorrect result. To make the averaging
efficient in these regions it suffices to change (u,v) into (u + rand,v — rand) in each iteration,
where rand is a random value between 0 and 4. Then one obtains the correct solution. There-
fore, in certain geometrical situations the averaging (3.34)-(3.35) should be modified to make it
efficient.

e Pressure correction step. A centered discretization gives

n - T n 3
(PU)J1 = PUG 5(1%4:31,]‘ _pijll,j)' (3.36)

IR L +1
i1, using y-derivatives. If p;'7" # 0, then

A similar formula is given for (pv) e

n+1l ,__ (p“)?jl n+l . __ (pv)?jl

12 p;ri.j-l v Ya,g o T pzjl ) (337)
if p?jl = (0 then uf;rl can be given any value as in 1-D (Proposition 3.2.1 holds with the same
proof).

n+l . ~ T n+l  ntl n+l , n+l T ntl  n+l n+l  n+l
(Pe)i,j =P — §(pi+1,j i+1,5 — Pi—15 ifl,j) ( i,i+1Y 5 +1 _pi,jflvi,jfl)' (3.38)

2
The scheme in 2-D has the same properties as those in 1-D.
The scheme in three space dimension is very similar to the scheme in two space dimension

(29)-(38). Let C; j 1, be the cube of all (z,y, z) such that (i — $)h <z < (i+ )k, (j — $)h <y <
G+ 3)h, (k—3)h <z < (k+ 3)h. Let
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V(a,b,c) = L(a,1+a).L(b,1 +b).L(c,1+c) (3.39)

be the volume of the intersection of the cube of vertices (i,7,k), 4,7,k = 0 or 1, with the cube
of vertices (a 4+ 4,0+ j,c+ k), ¢,5,k =0 or 1. If w = p, pu, pv, pw, pe successively, one sets

Wik =

n n n n
E Wit g pkr VN UL G ks B TORN ks VTSN k) (3:40)
— 1< <l

We extend (3.34)-(3.35) by taking an average over the cell C; ;; and its 26 neighbors in order
that Taylor’s formula in ¢ annihilates the first order terms.

3.3 Statement of the consistency theorem.

The approximate solutions wy (x, y, z,t) (denoted here w to simplify the notation) are constant
equal to w;'; (depending on h) on C; ;  for nrh <t < (n+ 1)rh where w = p,u, v, w,p, .... We
assume p° and e are positive L' functions and u°,v°, w® are L> functions. For simplification,
boundary problems are eliminated by assuming that the physical variables under concern tend

to 0 at infinity.

Theorem 3.3.1. Consistency under numerical assumptions. Assume that on some
time interval [0,T] (i.e. ¥(i,j, k) € Z* and ¥n < L) one has Vh > 0 small enough the CFL
condition

r\uﬁj’k| <1, r|v;fj,k| <1, r|wfjk| <1, (3.41)

and the positiveness of the energy
e ik > 0. (3.42)

Then concerning the conservation laws (3.1)-(3.3) the scheme is consistent in the sense of distri-
butions. The consistency in the sense of distributions of the state law (3.4) takes place in regions
in which p is strictly positive and in which the approximate solution has the familiar aspect of
piecewise C' functions having limits on both sides of the surfaces of discontinuity : shock waves,
contact discontinuities, rarefaction waves, for instance.

This means that Vi) € C°(R*x]0,T7),
/ (Pt + prtintbe + prontdy + prwnts,)dadydzdt — 0, (3.43)

/{phuhwt + pr(un)*Pu + prunvitdy + prunwpt. + ppi, fdrdydzdt — 0, (3.44)

and similar limits for the two other components of the Euler equation in (ppv), (prwp), and the
energy equation. Further

/ n — (v — 1)((pe)n — W%”’L)]wdxdydzdt o, (3.45)
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when the support of ¢ is contained in one of the regions mentioned above.

In all numerical tests one has observed for all considered values of h, some of them extremely
small, that (3.41) holds provided r > 0 small enough and « chosen not too small, and that (3.42)
holds. One has no physically relevant example in which (3.42) would not be satisfied as soon as
(3.41) holds. The state law is obtained from experiments in space-time regions in which the flow
is not too irregular, therefore the above limitation on the validity of the state law together with
assumptions (3.41)-(3.42) cover the domain of physical relevance of the system of perfect gases.

In practice it is impossible to verify (3.41)-(3.42) for an infinite set of values of h : the proof
of the theorem gives an approximation result.

Remark : the theorem as a Tigorous approximation result with computer aided proof. One can
notice from the proof that the bounds that prove the consistency are of order one in h and do
not depend on the test function 1 itself, but on the size of its support and on L°° bounds of
its first and second derivatives. Therefore, for small kA and for a family of test functions with
uniformly bounded size of support as well as first and second derivatives, the theorem can be
transformed into an approximation result on the smallness of the left members of (3.43)-(3.45),
which has the advantage to be for sure if one considers only values of h for which one has checked
the properties (3.41) and (3.42).

First, we show the numerical evidence of convergence on six 1-D standard tests [40], [43].
Section 6 provides six 2-D tests from [17], [28] and [34].

3.4 Numerical evidence of convergence of the scheme.

o o1 02 03 04 05 06 07 o8 09 1

S . . . "  — L . . s
0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
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Figure 8.4.1. Evolution of the final result in the lwoodward-Colella test and comparison with the
ezact solution.

The initial conditions are : if 0 < x < 0.1 then p = 1000, if 0.1 < x < 0.9 then p = 0.01,
if 09 < x <1 then p =100; p = 1 and u = 0 everywhere, v = 1.4. Reflecting boundary
conditions are used (strictly speaking this test does not enter into the theorem where boundary
influence is eliminated). The value of « has been fixed = 0.10. From the top-left panel to the
bottom-right panel the values of h are 200 ',1200 ', 4000 ', 10000 ',40000 !,160000 ' and
the numbers of iterations are 196, 1196, 3996, 9995, 52400, 217000 respectively. The CFL number
r was chosen as large as possible, according to the value of o and to the number of iterations
(r = 0.038,0.035,0.032,0.032,0.029, 0.028). One observes the numerical convergence to the exact
solution which is nearly obtained in the middle-right panel. In the two top panels the results are
roughly identical to the results from the Godunov scheme reported in [43] p. 144 with the same
values of h (although the scheme in this chapter is considerably simpler). The exact solution is
attained rather quickly and there is no degeneracy at all after a very large number of iterations
that were stopped at 217 000 in the right-bottom panel : the averaging step has no undesirable
smoothing effect.

In the Sod test the exact solution is reached after a small number of iterations with a very
good accuracy. The Sod test was also continued during several hundred thousand iterations
without any indication of degeneracy. Now we present the results of the four Toro tests for ideal
gases [40] pp. 214-220.

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09
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Figure 3.4.4. Toro test 3 :robustness and accuracy:
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Figure 3.4.5. Toro test 4 : Tobustness:

Figures 3.4.2 to 3.4.5 present results of the scheme on the four Toro tests [40] pp. 214-220
in the conditions of these tests : 100 cells and same output time in order to permit comparison
with the Godunov, Lax-Friedrichs and Richtmyer schemes presented in [40]. The scheme in this
chapter gives numerical results comparable with those of the Godunov scheme for the same value
of h (sometimes better results : see the internal energy in figure 3.4.3). From left-top to right-
bottom panel, one represents the density, the velocity, the pressure and the internal energy. In
all tests the elapsed time was about 0.03 seconds on a standard PC. The solution represented
by the continuous line is the solution from the scheme in this chapter for small enough values
of h. We observed it coincides with the exact solution given in Toro [40]. Therefore these four
figures provide four numerical verifications of the theoretical proof of consistence. We notice the
presence of a spike in internal energy in figure 3.4.3 : it was already observed in chapter 1 (figure
1.9.1 and numerous papers quoted there), where the scheme is limited to its first step. It shows
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that convergence cannot be obtained in sup norm even in regions where the exact solution is
continuous. Now we give the details of the tests in the following array. The Riemann problem
(p1, u, pi, pry Ur, pr) of figure 3.4.5 is (5.99924, 19.5975, 460.894, 5.99242, —6.19633, 46.0950). On
the left we give the values r,« and the number of iterations used in the conditions of the Toro
tests (h = 0.01) ; on the right we give the values of h, r, a used to superpose exactly the numerical
solution on the exact solution given in [40].

fig. DLy ULy DUy Pry Uy y P r « iter h T «
2 1,0.75,1,0.125,0,0.1 | 0.5 | 0.05 | 40 6102 0.5 0.1
3 1,-2,0.4,1,2,0.4 0.48 | 0.03 | 31 7107° | 0.45 | 0.05
4 1,0,1000,1,0,0.01 0.02 | 0.01 | 60 510~° ] 0.012 [ 0.1
5 see above 008 | 0.1 | 37 10=% ] 0.08 | 0.1

3.5 Consistency proofs : first part.
Proof of the theorem in one dimension.
e Set
I:= /(m/)t + pup, )dxdt. (3.46)

Since p and pu are Ll-stable, it is proved, formula (1.37), that
I T A ()} = (ol + O (3.47)

(in [2] one has 1/1”“ in place of #[; it does not matter : hzm( ntl )(zb”+1 Yy =
hin pz (1/)" — Pt )y = YD, p » PPO(R?) = O(h), same for the term in pu). From

(3.16), pi ™t =p; + a(p;_1 — 2P; + Piy1)- Therefore I = I; + Ir + O(h), where

- 7hz p7. + 7“ ) - (PU)?—l)]T/Jfa (348)

I = —ha Z(ﬁi—l = 20; + Py )V = _ho‘zpi(w?ﬁ-l = 2¢7" + i) = O(h) (3.49)

,n

since, from (3.11), the L' stability in p implies the L!-stablility in 5. It has been proved in
the end of the proof of Theorem1.8.1 that Iy = O(h) (with a change in notation : here 5, re-
places pI' ™! in formula (37) in [2]). Then I = O(h), which proves (3.43) in one space dimension.[]

e Set
7= [lpwn+ (o) + psdt. (3.50)

Since pu, pu?,p,p are L' stable the proof in chapter 1, (formula (1.37) with w = pu and in
presence of p), gives, as (3.47),

T = =Y l(pu) = (pu)? + r((pu)} = (o)) + (o] = P IT + O(). (351)

Developping (pu)?** from (3.17)-(3.19) one obtains the decomposition J = J; +Jo+.J3+O(h)
where
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= —hZ pu); )P+ r((pu®)i = (pu?)i)]ef = O(h) (3.52)

as I, from the end of proof of Theorem 1.8.1,

Jo = —ha'y (P — 200, + Pl )Y haZpu WGP — 207 +,) = O(h)  (3.53)

ln

as (3.49),

Jy == (i = et =200 —p )l = > Pl =gt = 207 4+ 297 ) = O(h)
2 2

R i,n

(3.54)

from Taylor’s formula in v and the L' stability in p (from (3.14) the L' stability in p follows
from the L' stability in pe, implied from (3.13) by the L! stability in pe, and from the bound
|% 7|, from (3.11), (3.12) using the proof of (1.32). Therefore J = O(h). This proves

(3.44) in one space dimension.[]

e Assuming p null at infinity, the formula Y, pl'el’h = >, p%e9h holds from (3.21), (3.18),
(3.13). Then the assumed positiveness of e, (3.42), implies the L' stability in pe. The energy
equation is treated similarly as J since pu is L' stable.

e Concerning the state law, let

K = /[p — (v —=1)(pe — %)]wdxdt. (3.55)

n, n

Since K = Y, {pi' — (v — D[(pe)in — (ow)ui | Jeenn(imy Ydadt}, Taylor’s formula in 4 and
the L' stability in p, pe, pu? imply K = rh? Yindpi — (v = Dl(pe)} — ’Ou)2’ L] + O(h) =

nn

rh? Y, Aot = (v = D(pe)y — e ful 11yn 1 O(h) (the change of upper index in p enters into
O(h) as after (47)). From (14), (20)

(pu),)? uw)?)?
K =iy = 1) Yl(pe, — (o) - ({2 - ()

i,n

Nbit + O(h). (3.56)

If p, e, u are continuously differentiable functions on the support of ¥, except possibly on a finite
number of curves in the (z,t) space, in which they have limits on both sides (shock waves, contact
discontinuities, . ..) and if p is strictly positive, then from (3.11)-(3.13) the quantity [...] in (3.56)
tends to 0 "almost everywhere" on the support of ¢, therefore K — 0 when h — 0. O

Proofs of the theorem in two and three space dimensions. They are practically iden-
tical to the proof in the one dimensional case except the proofs of lemmas 3.5.1, 3.5.2 below,
which are given in section 1.11.

e Set
I:= / (pr + purpy + pviby)dadydt. (3.57)
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Since p, pu and pv are L'-stable, an immediate 2-D extension of the one dimensional proof of
formula (1.37), gives the 2-D analog of (3.47) :

T= =123 (ot = oy + (o)l — ()i ;) +r((po)is — (o) Il + O(h).  (3.58)

2,7,1

From (34), p?jl =p;;+ta(2p;1 ;1 +...+3p;_1;+...—20p; ;). Therefore I = I + I+ O(h),
where

I = —h? Z[ﬁi,j =i tr((pu)i; — (pu)iy ;) +r((pv)7; — (pv)i;—)IYi, (3.59)
4,4,m
I = —h*a Z[Qﬁzelgq o3Py = 20 5107 = —hPa Z Pi i (20 jat
1,5,m i,7,m

20t g o1 200 200 g 33U 3 30 —209),) = O(h) (3.60)
from Taylor’s formula in ¢ and the L' stability of p.

lemma 8.5.1. I, = O(h).

The lemma, is proved in section 1.11.
Therefore I = O(h), which proves (3.43) in two space dimension.[
e Set

Ts= [+ (pub+ () + pi)dndydr (3.61)

Since pu, pu?, puv,p are L' stable one can prove as formula (1.37), see (3.58), that

T == Y[t — (o)l + r((pu?)7
1,7,m
(PUQ);LLJ‘) +r((puwv)i; — (puv)l 1) +r(pit; — pis )Y5; + O(h). (3.62)
Therefore, from (3.35), (3.36), J = J; + Jo + J3 + O(h) where

Jii= =0 [(pw); s — (pu)iy + r((pu®)}y = (pu?)isy ;) + r((puo); — (puv) )]y, (3.63)

%,7,m
Jyi=—=h2a > (20—t -1+ -+ 301, + ... — 20(p0); ;)7 = O(h), (3.64)
1,7,m
as (3.60),
J*ﬁ n+1in+172nin n*Oh
37 79 Z i+1,5 — Pi-1,5 (pi,j pi—l,j)] i (h), (3.65)
1,7,m

as (3.54).
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lemma 8.5.2. J1 = O(h).
The lemma is proved in section 1.11.

Therefore J = O(h).O
e The proofs for the energy equation and for the state law are similar to those in 1-D. [

e In the three dimensional case the scheme and proofs are similar. The difficulty in the proofs
lies in the 3-D extension of Lemma 3.5.1 and Lemma 3.5.2. This extension is done in section
1.11.0

3.6 2-D Riemann problems in gas dynamics.

In figures 3.6.1, 3.6.2 we give the numerical results from the scheme in this paper on the six
2-D Riemann problems considered by P. D. Lax in [25], [26], and calculated in [17], [28] and [34].
The initial data are not recalled for brevity ; they can be found in [28], configurations 6, 7, 13,
12, 19, 11, from top-left to bottom-right. The respective values of T are 0.25, 0.25, 0.30, 0.25,
0.30, 0.365 as in [25] and [26].

In figure 3.6.1 one has chosen h = ﬁ as in [28]. The computation times are extremely short
at the price of a poor quality : they range from 1.5 minutes to 3 minutes on a standard PC
with an average of 2 minutes. One recognizes the results in [17], [25], [26], [28] and [34] even if
they are far less accurate. The respective values of r are 0.65, 0.65, 0.575, 0.425, 0.5, 0.375, and
the respective values of « are 0.02, 0.02, 0.02, 0.03, 0.02, 0.02. The convergence result asserts
that these figures represent an approximate solution of these 2-D Riemann problems in the sense
of distributions. This shows that very short calculations on a standard PC with the convergent
scheme in this chapter can put faith on numerical results obtained by far more elaborate schemes

from computational fluid dynamics.

Pp oy
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Figure 3.6.1. The numerical simulations of the 2-D Riemann problems after 2 minutes
calculations on a standard PC.
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Figure 3.6.3. Two details from long calculations with the same PC.

In figure 3.6.2 one has chosen h = 161%, with a duration time from 1.5 to 3 hours for each

problem on a standard PC. The respective values of r are 0.625,0.550,0.550, 0.400,0.475, 0.350
and the respective values of « are 0.02, 0.03, 0.03, 0.02, 0.02. One observes numerous details from
[17], [25], [26], [28] and [34], where the discontinuities are much thinner. In figure 3.6.3 two details
from the center of the two middle-panels are computed : since they are located in the center of the
window one has increased the number of iterations untill the details appear as large as possible.
One observes details that can be guessed from [17], [25], [26], [28] and [34]. The consistence proof
in this chapter ensures that these details approximate a solution of the equations, which gives a
strong presumption that the schemes in [17], [28] and [34] could be convergent. One checks again
that the scheme in this chapter can give arbitrary precision provided h small enough.

3.7 Conclusion.

In this chapter we have presented a simple numerical scheme for the system of ideal gases in
3-D. We have studied its consistence in the sense of distributions and shown, under the numeri-
cal assumptions of boundedness of the velocity field (so as to satisfy the CFL condition (3.41))
and positiveness of the energy, that the numerical solution from the scheme tends to satisfy the
equations in the sense of distributions. In concrete terms, for any given bounded family of test
functions (concerning supports and values of first and second derivatives), the proof provides
a bound of order one in the space step for the left members of the equations, as long as these
numerical assumptions are verified. Accuracy and low-cost efficiency have been checked nume-
rically from the 1-D Woodward-Colella and Toro tests in [43] and [40], as well as from the 2-D
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Riemann problems in [25] and [26]. All calculations have been done on a standard PC. Since it is
immediate to check the CFL condition (3.41) and positiveness of the energy, the simplicity and
efficiency of the scheme in several space dimension could make it useful in scientific computing
where one is often confronted with the problem of confidence in the validity of numerical calcu-
lations. Indeed comparisons with the numerical solutions of the 2-D Riemann problems from the
schemes presented in [17], [28] and [34] show that we have obtained again the same figures up
to the smallest details, which could contribute to be confident in far more efficient schemes from
computational fluid dynamics for which consistence proofs are lacking. Our consistency study
suggests that the schemes in [17], [28] and [34] could actually be convergent in some suitable
weak sense, as this will be considered mathematically in chapter 5 where a suitable functional
space will be introduced for this purpose.
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Deuxiéme partie

Weak limits of the approximate
solutions as boundary values of
holomorphic functions.
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Chapitre 4

Introduction of the holomorphic tool

For some nonlinear equations of hydrodynamics used in cosmology to model radiation do-
minated universes we propose a method which permits transformations of the equations and
calculations of discontinuous solutions. These formulas permit to select numerical schemes for
these equations. As an application, we present a numerical simulation for the coupled system
modeling evolution of densities of a mixture of a Newtonian fluid and a relativistic fluid.

4.1 Introduction.

Nonlinear calculations are usually unavoidable in derivation of the equations from physical
postulates. In case of nonsmooth solutions, “formal“ nonlinear calculations on equations of fluid
dynamics can lead to wrong results : indeed these calculations can strongly modify the nonsmooth
solutions. Therefore it is important to know the calculations that are permitted and those that
are forbidden. This chapter focusses on two systems modeling radiation dominated universes, [8]
p- 221, [30] pp. 35-38 and p. 465, when the linear regime breaks down. In particular we study
discontinuous solutions of these equations in the fully nonlinear regime in order to obtain explicit
formulas for the jump conditions.

The linearized equations of motion provide an excellent description of gravitational instability
when density fluctuations are small. But the linear regime breaks down as soon as the density
fluctuations cease to be small, which makes perturbation theory no longer valid. Therefore it is
indispensible to solve the equations in the fully nonlinear regime [8] pp. 304-332, [30] pp. 482-493.
To this end, in case of discontinuous solutions, we propose a method of calculation that consists
in the introduction of a “small” parameter to regularize the problem so as to permit calcula-
tions. After the calculations the regularization is removed by letting the parameter tend to 0.
This method uses (implicitely or explicitely) functions of complex variables to perform explicit
calculations and obtain solutions.

In [8] p. 221 the motion of a relativistic fluid in cosmology is modelled by the system (conti-
nuity equation, Euler equation, Poisson equation)

dp P
a"‘v((P‘FCﬁ)U)—Oa (4.1)
p., 00 e - R
(p+62)(a+(v V)U) +Vp+ (p+ 5)Ve =0, (4.2)
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A® = 47G(p + 3%), (4.3)

where c is the velocity of light, p the energy density, ¥ the velocity vector, p the pressure and
® the gravitation potential. These equations are completed by a state law of the form p = P(p)
where P is a function. A usual equation of state is

p=Kpc, (4.4)

where K is a constant value, [8] p. 222, with K = % in the case of a radiation dominated fluid

[8] p. 221, [30] p. 37, p. 465. A more complete system is given in [30] p. 465 (7 lines after for-
mula 15.25 to take into account the omitted term in formula 15.24) : equation (4.2) is replaced by

v = Vp+2§ L
a+(v.V)v+p+7g;+vq>:o, (4.5)

which differs from (4.2) by division by p + % and the presence of the supplementary term Py

at U
This equation is a simplification of the equations in [30] p. 36, [42] p. 49.

Since the fields are considered as relatively weak, there is no need to use general relativity :
these equations of special-relativistic hydrodynamics are formally derived from special-relativity
fluid mechanics and Newtonian gravity with a relativistic source term, see [42] pp. 47-51, [30]
pp- 18-25, pp. 35-37, pp 464-465. They can be considered as issued from the general expression
of the energy-momentum tensor of a perfect fluid [30] p. 19 at a limit for small velocities and
weak fields. Equation 4.1 is a generalization of the conservation of energy. Equations 4.2 and 4.5
are relativistic generalizations of Euler’s equation for momentum conservation in fluid dynamics.
Since one cannot assume p << pc?, gravitation is modelled by equation (4.3), see [8] p. 221, [30]
pp- 24-25. pp. 35-37, pp. 50-51.

We show in section 4.2 that formal calculations on discontinuous solutions of system (4.1)-
(4.4) lead to inconsistencies. Further, the first term in (4.2) and the third term in (4.5) do not
make sense in case of discontinuous solutions since they appear in form of a product of a dis-
continuous function and a Dirac delta function. This last fact is at the origin of specific trouble
in numerical schemes since, for these nonconservative equations, one does not have a priori well
defined Rankine-Hugoniot jump conditions.

In the third section of this chapter, one states precisely a mathematical context for this
method, so as to use it in the study of Cauchy problems for these equations of special-relativistic
fluid dynamics. Then, one calculates explicit solutions for these two systems in the case of a
solution made of two constant states separated by a discontinuity. Existence of solutions from
this method is shown below from explicit calculations in physically significant cases. A numerical
scheme is presented and tested in section 6 relatively to the explicit jump conditions obtained in
sections 4.4 and 4.5.

4.2 Inconsistencies from formal calculations.

Formal calculations consist in using the classical rules of mathematical calculations (valid
on smooth functions) even on nonsmooth functions without a mathematical justification of the
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validity of these calculations. In this section we show that formal calculations on system (4.1)-
(4.4) lead to inconsistencies, i.e. contradictory results. In one space dimension and absence of
gravitation, immediate formal calculations transform system (4.1), (4.2), (4.4) into

o+ (K +1)(pu)a =0, (46)
1, K
up + [iu +1 K log pl.. = 0. (4.7)
Setti
etting 2 e
q:= (1+K)371+K10gp7 (4.8)

system (4.6)-(4.7) is transformed into

K+2
ug + (Tuz)x = Qa, (4.9)
u3
qt+[(1+K)?]z = KcPu,. (4.10)

The proof is a mere formal verification from formulas (4.6)-(4.8) : insert (4.8) into (4.9)-(4.10) and

use (4.6)-(4.7). We seek shock wave solutions in the form of two constant states separated by a

discontinuity moving with constant speed denoted V. According to the usual formula V' = %&j‘))

that gives the velocity of shock waves of the equation u; + f(u), = 0, the jump conditions of the
conservative equations (4.9)-(4.10) are

fPAW) A (Kt DAY — K Au

V= Au ’ Aq

Elimination of Ag gives that the velocity V of the shock wave is solution of the second degree

equation

2+ K 1+ K
VR S (b w) Y o+ {

An algebraic inconsistency is put in evidence as follows. Formula (4.23) below has been
calculated inside the proof of Theorem 4.1.1. This formula follows from suitably chosen formal
calculations on physical ground, for which it has been checked in the proof of Theorem 4.1.1
that this choice ensures existence of shock wave solutions with well defined jump conditions.
Formula (4.23) and the state law (4.4) imply 2= =1+ LK Vou (exp Viw-Zw) 1), Since it is

c2

(u2 +upuy +ui) — Kc®} = 0. (4.11)

in conservative form, equation (4.6) gives the classical jump condition V = (1 + K) AX):), which
V—(1+K)u

gives Z—; = V(11 %), - Finally, we obtain
V-01+K)y 1+ KV -y V(ur —wp)
A S A —1). 4.12
V—(1+K)u O e ) (4.12)

Given u,.,u;, K, c?, one can compute two values V;, Vs from (4.11). Then insertion of these
values into both members of (4.12) shows that (4.12) does not hold in general (take for instance
K =c¢=wu, =1,u; = 0). This is an algebraic contradiction.

How to avoid the inconsistencies ? Let us consider the way these equations are obtained.
Equations (4.1)-(4.2) are issued from special-relativistic hydrodynamics since the fields are still
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weak. They are an extension of the classical laws of mass and momentum conservation. They
have already been subject to formal nonlinear calculations [42] pp.47-49, [30] pp.35-36. The state
law (4.4) is directly obtained from a physical reasoning or observation. One should be allowed
to perform nonlinear calculations on the equations (4.1)-(4.2) and (4.1), (4.5), since nonlinear
calculations have already been done to obtain them, but not necessarily on the state law (4.4).
Since the inconsistencies in section 4.2 are obtained from formal calculations involving both (4.1),
(4.2) and (4.4), does the idea to calculate freely on (4.1)-(4.2) or (4.1), (4.5) only permit to avoid
inconsistencies in presence of shock waves calculations for systems (4.1)-(4.4) and (4.1), (4.5),
(4.3), (4.4)7

Another problem under concern here is the presence of the product of a discontinuous function
and a Dirac delta function in the first term of equation 4.2 as well as in the third term of
equation 4.5. Such a product does not make sense classically. To remedy for these problems
(the inconsistencies and the above undefined products) we introduce a method of regularization
directly inspired from classical calculations of physics and mathematics, using a small regularizing
parameter, that will permit to give a positive answer : in the space of the regularized objects
one can compute freely on (4.1)-(4.2) and (4.1), (4.5) concerning shock waves, and (4.4) (on
which nonlinear calculations are forbidden to avoid inconsistencies) gives a needed supplementary
piece of information. These explicit calculations permit to put in evidence numerical schemes in
agreement with the jump conditions obtained from them.

4.3 Mathematical context.

It is usual in physics and mathematics to regularize an irregular function f, denoted here
f(x),x € R™, by introducing a small parameter € > 0, so as to replace the irregular function f(x)
by smooth functions f(x) denoted here f(x,€), such that f(x,€) tend weakly to f(z) when e — 0.

The method we use consists in transfering the physical problem under consideration to a
larger space made of the regularized objects f(z,€). One considers in this new space functions
that play the role of representatives of the Heaviside function and of the Dirac delta function.
In order to benefit from the property of uniqueness of analytic continuation, so as to identify
a function and its restriction to a smaller strip, the functions f(z,€) are analytic functions in
the variables x and e, which amounts to consider holomorphic functions of complex variables
f(z,0),z=x+1iy,( =e+in,z,y € R" e,n € R, defined in complex neighborhoods of the real
space. Convenient neighborhoods are defined as follows.

The letters r, 6, u will always denote real numbers such that

1
0<r<170<9<%,0<,u<§. (4.13)

The values 7,8, ;1 can be as small as needed. One considers the open strip in R?"*2 parallel to
the real space R™ of variable = defined by

S(r,0, 1) ={(z,¢) € C™ x C such that

zeR™ 0<|[¢|<r, =0 <argC <0,|y;| <peV¥i=1,..,n} (4.14)

The real space R™ lies on the boundary of S(r,8, 1) by letting ¢ tend to 0 (and therefore, since
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€< % from (4.13), y — 0). Let F be the set of all strips S(r, 8, ). The set F is a net for the
inclusion :

VSl,SQG‘FHSgE.F/S:;CSlﬂSQ.

We denote by const a positive real number which may not be the same from an expression to
the following. If S € F, one defines

Hg := {holomorphic functions F : S+—C, (z,()— F(z,()}.
Note that a%iHS C Hg. If S’ C S, with S, 5" € F, the restriction map
Hgv+—— Hgr,

F'—>F|S/,

is injective from the uniqueness of analytic continuation since F|gr = 0 = F = 0 in the connec-
ted strip S. For convenience we note Hg C Hg:. Now we identify a function and its analytic
continuation.

Definition. In the reunion of the sets Hg one considers the equivalence relation
(F1,51) = (F2, S2)

=4
S35 € 51 NS, / F1|S3:F2|S3~

The set of all equivalence classes is by definition a space of germs of holomorphic functions on
R™ in the x-variable. Since this space is also classically refered to as an inductive limit we denote
it by lim Hg.

These "germs" can also be refered to as "functions" provided one retains that a function and
any of its analytic extensions on a connected open set are identified.

In other words this means that one considers the reunion of the sets Hg, and then that
F € Hg,,G € Hg, are identified iff there is S3 € F such that S5 C S; NSy and Fls, = Gls,.
This definition consists precisely in defining on the reunion of the sets Hg, S € F, the above
equivalence relation. LimHg is stable by differentiation and multiplication

86 (LimHs) C LimHg Vi,
Ty

LimHg x LimHg C LimHg.
Now let us check that Lim Hg contains objects that we shall need in the sequel, more precisely
Heaviside and Dirac functions. To this end notice that to any function f € L*°(R"™), we can

associate several elements F' € LimHg that "give back" f on R" considered on the boundary of
S(r,0, ) as the following weak limit

W e R lm [ Pl () = / Fa)(z)dz (4.15)
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where C°(R™) is the space of infinitely differentiable functions on R™ with compact support. We
say that f is the real interpretation of F. This can be done by convolution : set for instance the
mollifier

1
()2 +1)%...((20)2+ 1)’

seN, s>1 (4.16)

p(z) = const

with [ p(z)dz = 1 in order that the function A — e%p(%) provides an approximation of the
identity by convolution when ¢ — 0. Then, we set

F(z,¢) = f(A)CinmA =

R

)dA. (4.17)

Lemma 4.3.1. Vf € L>®(R™) the function F defined in (4.17) is in LimHg and has f as real
interpretation. Further, if [ is continuous at a point g, then F(x,e¢) — f(x¢) when ¢ — 0 and
T — Zg.

Proof. For simplicity the proof is given in the case n = 1. Then

A)
F = t.¢xt / Ld)\. 4.18
(2,¢) = const.C =22+ (4.18)

Augiliary calculation : |(A — 2)? + (2| > |Real(A—2)2 + A = (A —2)> + & —y? —n* >
e2(1—p2—tan®0) > % from (4.13). Therefore the denominator in (4.18) does not take the value 0

when (z,¢) € S(r,0, ). In the sequel we will use that [(A—2)2+¢?| > (A—z)?+a?e? with a = %

If f e L™, (4.18) gives |F(z,Q)] < const|§|25_1||f\\oof# < const|| f||oo, since

2+O¢262]S
d\ _ d\ _ —2s d
I omotramar = J ortarar = (007 [ gt

The last assertion follows from the formula F(z,¢) = [ f(z + ke)p(k)dk.O

As a consequence, if f is the classical Heaviside function, when ¢ — 0 one has F(z,¢) — 0 if
x < 0 and F(z,e) — 1if > 0. Since the space LimHg is stable by differentiation, %—5 has the
Dirac ¢ function as real interpretation.

These results can be easily extended to R™x]0, T'[, considering f null out of R”x]0,T[. A Hea-
viside function in H is an element of LimHgs whose real interpretation is the Heaviside function.
A Dirac function is an element of Lim Hg whose real interpretation is the Dirac delta distribution.

Besides the concept of solution of equations in the sense of equality in the space LimHg, we
are forced to consider also solutions in a weak sense, for which a natural definition is as follows.

Definition of a concept of weak solution. The "function" U = (U’);=1, » € (LimHg)™
relative to R"*! is a weak solution of the system

ou
a.’Ei

Ui+ > A(U)7—“="0 (4.19)
=1
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of m scalar equations iff each component of U; + "1 | A;(U)2Y has the null function as real
interpretation, i.e.

Vi=1,..,m, Yo € CX(R" ), / (U7, + Z(Ai(U)%U)j(x,t,e)]zp(x,t)dxdt — 0 (4.20)
Rn+1 p— 1
when € — 0%. This is denoted by Uy + Y7, A;(U) 2% =" 0.

As the usual concept of a weak solution this concept of weak solution suffers from nonuni-
queness and classical examples show that free manipulation of equations can change the solution
in the case of discontinuous solutions.

4.4 Calculation of a jump condition I.

In section 4.2 it was shown that formal calculations can be wrong in case of nonsmooth so-
lutions. In this section we test in absence of gravitation the idea presented in section 4.2 in case
of nonsmooth solutions and we explicit the jump formulas so obtained. We shall calculate on
discontinuous solutions in one space dimension because this is simple and representative of the
general situation in the case of shock waves. We recall that the equations stated with the strong
equality in our context can be manipulated freely and that the weak equality in our context does
not allow free manipulation of the equations in the case nonsmooth solutions are concerned.

The small parameter ( is not apparent in the calculations : since they need the context of this
chapter in order to make sense this small parameter is implicit. For the solutions under concern
the equations are reduced to algebraic equations (4.22), (4.23), (4.25), (4.28) that can be satisfied
at once, thus proving the existence of strong solutions of the first two equations in (4.21) from
explicit calculations.

Theorem 4.4.1. The system (4.1)-(4.4) of special-relativistic fluids, with G=0 in one space
dimension admits step functions solutions when stated in the context of this chapter in the fol-
lowing form, where the symbol = in the first two equations means one has strong solutions while
the third equation (state law) is satisfied only in the weak sense

p p wea
pet((p+ Z)w)a =0, (p+ Z5)(ue +uue) +ps =0, p <* P(p) (4.21)

with P an algebraic function, (4.4) for instance.
The jump conditions are

Alpu) + 25

= c? 4.22
Vv A , (4.22)

which is the classical jump condition of the conservative first equation in (4.21), and, further,
the nonclassical jump condition

VAu
VAp = E(p + %)(V —w)(exp—g- — 1) (4.23)

which follows from the nonconservative second equation. As a consequence the second equation

in (4.21) can equivalently be stated in the form u; + uu, + pf””% =0 (these two formulations are
Y
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found in texts of cosmology).

The statement (4.21) is physically sound since the state law has a far weaker meaning than
the equations of special relativity from which the first two equations in (4.21) follow : these equa-
tions correspond to conservation of mass and momentum in the Newtonian version, as relativistic

extensions in the domain of weak fields [8] p. 221, [30] pp. 18-19, 24-25, 35-38, 50-51, 464-465.

Role of the state law. In the proof one considers solutions of the form
w(z,t) = w + (wr —wr)Hy(x — Vi), (4.24)

w = u,p,p and H, a Heaviside function depending on the physical variable w. The role of the
weak

state law p “=" P(p) is simply to state p; = P(p;) and p, = P(p,), without any information on
the Heaviside functions of p and p involved in the jump. From the definition of Y = p + % one

ap wH,
has AYHy = ApH, + %Hp and (4.25) gives the relation ApH, = —%Hp + %

Formula (4.28) gives H), as a function of H, and (4.25) gives Hpas a function of H,, H,. The-
refore both H, and H,, are well defined functions of H,. The statement of the state law in the
strong form would impose another relation between H,, and H,, for instance H, = H, in case of
the state law p = const.p, thus giving a contradiction which is at the origin of the absurd result
shown in section 4.2 from formal calculations.

proof. The proof consists in plugging (4.24) with w = u, p, p and respective Heaviside functions
H,,H, and H, into the left members of the first two equations in (4.21), and seek under what
conditions the results are null. One finds that this amounts to formulas between Vandtheleft —
rightvaluesuy, u,., p, pr, p1, pr (= the jump conditions (4.22)-(4.23)), plus explicit relations bet-
ween H,, H, and H, that amount to express two of them in function of the third one (4.25)-(4.28).
We give the calculations in full detail although they are a reproduction in this context of ele-
mentary calculations. For convenience one sets Y = p + % and Y (z,t) = Y + AY Hy (x — V).
From the formulas p =Y — % and (p + &)u = Yiu + YViAuH, + wAY Hy + AuAY H,Hy, the
first equation gives

A
—VAY Hy + V=L H, + ViAuH, + wAY Hy + AuAY (H, Hy)' =0,
c
By a mere integration, using H, (—o0) = Hy (—o00) = H,(—00) = 0 to fix the integration constant,
one obtains the formula

_ VERH, +Y,AuH,
TAY(V —w — AuHy)
Since H,(+00) = Hy (+00) = H,(+00) = 1 one obtains the formula

Hy

(4.25)

Ap

V— +YAu=AY(V —u — Au)
c

from which easy calculations give the jump condition (4.22) (which classically follows from the
first equation in (4.21) which is in conservative form : this is the reason why a mere integration
has so easily given the result, as done classically to obtain jump conditions for systems in conser-
vative form).
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The second equation in (4.21) is in nonconservative form. It will be more difficult to obtain
the jump condition. Plugging (4.24) into it with w = Y, u, p gives

(Y; + AY Hy )(—V AuH], + wAuH,, + (Au)*H,H), + ApH], = 0

ie.
ApH, = AuH, (Y, + AY Hy )(V — u — AuH,). (4.26)

Note that H|, is a Dirac delta function and Hy a Heaviside function, therefore one observes
classically undefined products H| Hy, H| Hy H, which make sense here as elements of LimHg.
From (4.25) one obtains

VELH, +YiAuH, Yi(V—w)+VELH,
V—w—AuH,  V—w—AuH,

Yi+AYHy =Y, + (4.27)

Therefore, from (4.26)
A
ApH), = AuH.(Yi(V — w) + V—Cf H,)

that can be written in the form

Au Au

H, — (VCTH;)Hp - A—pYz(V —w)H,, = 0.

Explicit integration is done by considering that this is an ODE in the unknown function H,
following the classical method for the linear ODEs a(z)y’ + b(x)y + ¢(z) = 0. It makes sense
since the coefficients a,b, ¢ are classical functions defined in some strip S(r,8, 1) (one chooses
Heaviside functions defined and bounded in this strip like those exposed in section 4.3).

First step : homogeneous equation.
H) = (V2% H/)H,, which implies H, = const.exp(V £+ H,,).
Second step : variation of the constant. The full equation becomes

const’.exp(VE£ H,)+const.V AL H/ exp(VE2£H,)—V &2 H/,const. exp(V £ H,,) = ﬁ—;Yl(V—

Therefore
const’ = ﬁ—ZYl(V —w)exp(—VEEH,)H,, ie.

const = ﬁ—ng(V - ul)vf—iu exp(—V &£ H,) + other const.
Finally the formula for the solutions of the ODE is

1 —c A
H, = A7le(V — ul)TC + const. exp(VTQUHu)

Using H,(—o0) = H,(—00) = 0 to fix the integration constant, one obtains
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2

A
Hy = ViV~ w)rp (1= eap(V 5 H)) (4.28)

The nonclassical jump condition (4.23) follows from setting H,(+o0) = 1 = H,(+00) as boun-
dary conditions. Formulas (4.28), (4.25) amount to state Hy and H, as functions of H, and
(4.22)-(4.23) ensure that Hy and H, from these formulas are Heaviside functions provided H,
is. Therefore these formulas (4.22), (4.23), (4.25), (4.28) are equivalent to the existence of a
strong solution in the requested form (4.24) of a shock wave. O

Comments. Theorem 4.4.1 amounts to a choice of “formal* calculations that are proved to be
permitted even in case of step function solutions (those on expressions stated with = in (4.21))
and “formal“ calculations that are (unless exception such as linear calculations) forbidden (those

stated with ” <" “), such as the third equation in (4.21).

Consistency with Newtonian mechanics. At the limit ¢ — +00 one obtains easily from (4.23)
the jump condition in the Newtonian case : indeed (4.23) gives Ap = p;(V — w;)Au. Inserting

V= %”;) (from (4.22) with ¢ — 400) one obtains the formula
ApAp = prpi(Au)’. (4.29)
The Newtonian system classically stated (weak classical solutions)
pe + (pu)e =0, (pu); + (pu®)e +pe =0 (4.30)

has the classical jump conditions V' = %”;‘) and V = %. Elimination of V gives (4.29).0

4.5 Calculation of a jump condition II.

Theorem 4.5.1. The system (4.1), (4.5), (4.3), (4.4) of special-relativistic fluids in one space
dimension in absence of gravitation admits step function solutions when stated in the context of
this chapter as

Dz + upt

weak
0. P (), (431)

pu+ ((p+ S)u)a =0, up +uuy +
As a consequence, formal nonlinear calculations on the first two equations are justified. The jump
condition for the second equation is
pT’ (32 ‘2 pl 2 2
(pr +3)° (V=) (1= Vur) = (o + 35)° (V= w)® (1= V). (4.32)

proof. The calculations given below are similar to those in the proof of Theorem 4.4.1. The first
equation has been studied in the proof of Theorem 4.4.1. It gives (4.25) for Hy and the jump
condition (4.22). With the above notations the second equation in (4.31) can be stated

Y (ut +uug) + po +upe =0, (4.33)

Inserting (4.24) with w = Y, u, p into equation (4.33) gives
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(Y, + AY Hy)[(=V +w)AuH., + (Au)*H, H!] + ApH), 4 (u + AuH,)(—=V ApH,) = 0,

i.e.
ApH}(1 =V (u + AuH,)) = (Y, + AY Hy )(V — u; — AuH,) AuH]},.

From (4.27) (which follows from (4.25) i.e. from the first equation in (4.31))
ApH/(1 = V(w + AuH,)) = (Yi{(V — w)AuH,, + V2L H,)AuH]},.

Then, the differential equation satisfied by the Heaviside function H, is :
Ap(1 =V (u + AuH,))H), — VEE AuH | H), — Yi(V — w) AuH,, = 0.

First step in solution of this ODE. Homogeneous equation

(1= V(w+ AuH,))H), = % AuH] H,,
whose solution is

H, = const(—VAuH, + (1 - Vul))_c%.
Second step : Variation of the constant. One finds

Ap(l —Vuy, — VAuHu)lfc%const’ =Y(V —w)AuH],

Yz(V—ul)AuH,L
_ 1
Ap(1—Vuy —VAuH“,)1 c2

const = %AEWCZ(—VAUHH +1- Vul)c% + const.

const' = , i.e. by integration

Finally one finds the solution

H, = —Y’(“//;Ai;’)cz + const.(—VAuH, + 1 — Vul)fc%.

Using H, (—o0) = H,(—00) = 0 to fix the integration constant, one obtains

2
const = %(1 — Vul)c%. The solution is

Y (V—u))c? | Yi(V—u)c? 1-Vay <
H + VAp (—VAuHu—i-l—Vul)c

= VAp

Setting H,(+00) =1 = H,(+00) gives the jump condition

1

VA —Vu L
71’1(\/—51)& :—1+(11_Vui)c ,i.e.
Ap+ Y (V — 2 1—
VAp+Y(V —w)c iy Vul)%z, (4.34)
Yi(V —wy)c? 1—Vu,

The formula following (4.25), i.e. V% + Y Au =AY (V — u,), can be stated as
VAp+ Yiu.c? — Yiue? =Y (V —u )2 = Yi(V —u,)c?ie. VAp+ Y (V —wp)c? = Yo (V —u,)c.
Inserting this formula into the formula (4.34) gives
Y, (V—upn)c® (1 — Vuy
Yi(V —u)c2  '1—Vu,

Finally, the jump condition for the second equation is

L
)<

(V) (V= u) (1= V) = (V) (V —w) (1 — V). ie. (4.32).0
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4.6 Numerical approximations of relativistic fluid models.

In this section, we propose a numerical scheme for the solution of the two systems presen-
ted in introduction. It extends at once to two and three space dimension without dimensional
splitting. The systems (4.1)-(4.4) and (4.1), (4.5), (4.3), (4.4) of relativistic fluid dynamics are
in nonconservative form : close numerical schemes can give different discontinuous solutions, so
one cannot be confident in the results given by the schemes unless they are validated. Schemes
are given in the genuine physical situation : presence of gravitation, expanding background, two
and three space dimension, in which they give the qualitatively expected results. But there are
no very precise observational data that could validate them from a quantitative viewpoint. The-
refore validation of the schemes is a problematic task. We will use formula (4.22)-(4.23), (4.22)
and (4.32) to validate the respective schemes. Then we will compare them and evaluate their
domain of validity.

In one dimension the space-time cells are rectangles [(i — 2)h, (i + 3 )h] x [nrh, (n+1)rh], h=
the space step, ¢ € Z,n € N,r > 0 small enough.

Numerical scheme for system (4.1)-(4.4). Multiply by u equation (4.1), multiply by pf%

equation (4.2) and add the two equations thus obtained :
Pyo _ P P
(pu)e + [(p + g)u Jo = 2 Ut = @pm — pP;. (4.35)
This transformation is mathematically allowed from Theorem 4.4.1. Then the state law is
inserted into the equations : this insertion is not permitted since it leads to the inconsistencies
found in section 4.2, but we will test a posteriori from the formulas (4.22)-(4.23) the validity of
the scheme. If one suppresses gravitation as in section 4.4, insertion of the state law (4.4) gives
the system

prt [(L+ K)pul, = 0, (4.36)
K
1+ K/

We apply a splitting of equations to this system. Let pj', (pu)7, uj,c, be given. If a,b € R we
set, formula (1.16),

(pu)t + [(1 + K)pUQ]m = Kpuu, — (437)

L(a,b) = length of [0,1] N [a,b] = maxz(0, min(1,b) — maxz(0,a)). (4.38)
o Convection step with the field of velocity w}

wi = (1+ K)uj, (4.39)

pi = i L(=1+rwi g, rwi ) + pi L(rwi, 1+ rw) + pi L1+ rwiq, 2 + rwdy ). (4.40)

When the CFL condition r|w]| <1 Vi,n is satisfied the first term multiplied by h represents
the quantity p issued from the cell I;_; between times t,, and t,,41 that lies in the cell I; at time
tnt1- Indeed the cell [(i — 2)h, (i — §)h] has been transported according to the vector rw?_h,
since w}* ; is the numerical velocity and the duration time is rh. The overlap with the fixed cell
[(i — $)h, (i + 1)Ah] has length rw!" ;h if w? ; >0, 0 if w! ; < 0 (taking into account the CFL
condition |w} ;] < 1). From (4.38) one finds L(—1 + rw} ,,rw} ;) = rw}] , if w}{ > 0, 0 if
w} ; < 0. Division by h is due to the fact u;, u? are mean values on cells of length h.

The second term in (4.40) multiplied by h represents the quantity p issued from the cell I; that
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remains in I; at time ¢,,41. Indeed the cell [(i — 1)h, (i + 3)h] has been transported by the vector
rwih. The overlap with the fixed cell [(i — )h,( + %)h] is h — rwlh if w? > 0, h 4+ rwlh if
wf < 0. From (4.38) one finds L(rw},1 4+ rw}') =1 —rw} if w} >0, 1 4+ rw] if w} <0.

The third term in (4.40) is similar to the ﬁrst one : it concerns the quantity p issued from the
cell ;11 that lies in the cell I; at time ¢,11. Note that p; depend on n, which is not explicitely

stated to shorten the notation. The same discretization as the one in (4.40) gives

3[\')\»—!

(pu); = (pu)i_  L(=1 + rwi_y, rwi' )+

(pu)i L(rwi’, 1+ rwi') 4+ (pu)iy L(1 +rwily 1, 2 4 rwilyy), (4.41)
_ Py
Pi
o Averaging step. This step is needed in general to avoid oscillations that can occur in its
absence due to the centered discretization in the third step. Let a € [0, 3[. We set
Pt = APy 4 (1= 20)p; + APy, (4.43)
(pu), := alpw),_, + (1 = 20)(pu), + alpw) .- (4.44)

The case a = 0 corresponds to the absence of averaging. The presence of « # 0 is often needed
to compensate possible oscillations due to the centered discretization in the correction step.

e Correction step (dropping provisionally the gravitation potential).

" Kr _ AKr _
(pu)i™ = pu; + — B (pu); (Wis1 — W) — m(ﬂiﬂ —Pi-1), (4.45)
n+1
urtl = (mfl) e (4.46)
Pi
The CFL condition is
r(1+ K)|luls < 1. (4.47)

If p? > 0 Vi then the middle L in (4.40) is nonzero and, by induction on n, one can easily
verify that p;, > 0 and p/*' > 0 Vn. From formulas (4.40) and (4.43), 3. pP'h = >, p%h V¥n,
which is the L' stability in p.

Numerical scheme for system (4.1), (4.5), (4.3), (4-4)- One mutiplies equations (4.1) by u
and equation (4.5) by p, and add the equations so obtained. This gives

2

T K + K2 (pu),u — p®,. (4.48)

(pu)e + (1 + K)(pu?)y = K puug —

The system thus obtained is the same as the one obtained from (4.1)-(4.4) with the additional
term Kc?(pu),u in the Euler equation. We adopt an identical numerical scheme except that
formula (4.45) is replaced by

AKr 7 )+ AEKr
72(14_[{) Pi+1—Pi—1

— Kr—— _ _
(pu)i*t = Pui‘i‘T(PU)i(uiH—ui—ﬂ— Ui (P —pu;_q1), (4.49)

in which this additional term is treated by a centered discretization. For both systems gravitation
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is treated by a centered discretization.

To validate the schemes one compares their results with the jump formulas (4.22)-(4.23),
(4.22) and (4.32) respectively. One chooses ¢ = 1. Then for each shock in an interval Ja,b[, a < b
with constant values on both sides one computes the quantities

(pu)(b) — (pu)(a)

V:i=01+K) o) —pla) (4.50)
1= VE(p(b) - p(a)), (4.51)
= (1+ K)pla)(V — u(a))fesp(V (u(b) — u(a)) — 1], (4.52)
for system(4.1)-(4.4). For system (4.1), (4.5), (4.3), (4.4) one replaces r, and ry by
=1+ K)p(a)(V —u(a))(1 — Vu(a)), (4.53)
=1+ K)pd)(V —u(d)1 —Vu(b)). (4.54)

From the jump formulas (4.22)—(4.23) or (4.22) and (4.32) respectively, one should have r; =
ro. For each shock wave one computes the relative errors Ej, E, on the left, right discontinuities
respectively, from the formula
2|7"1 — ’I“Ql
1] + [ra|

One chooses K = 3, G=0, h= 2000, r = 0.1, 6000 iterations, o = 0.05. For each Riemann
problem in the array below one has computed the relative error on each shock wave, first on
system (4.1)-(4.4), then on system (4.1), (4.5), (4.3), (4.4) with oo = 0.05.

E = (4.55)

o | ow | opr | ur || Ei,(1,2,3,4) | Er,(1,2,3,4) || Ei,(1,5,3,4) | B, (1,5,3,4)
2106|304 0.002 0.000 0.000 0.000
8 105] 6 |03 0.000 0.008 0.000 0.000
5107|3105 0.004 0.013 0.000 0.010
8 1076 |04 0.001 0.012 0.000 0.019
2109 4 ]0.1 0.025 0.011 0.000 0.000
2109|901 0.031 0.000 0.000 0.000
1109|901 0.031 no jump 0.000 0.000
5109 2 0.1 0.002 0.058 0.000 0.000
9109|101 no jump 0.124 0.000 0.008

The velocity of light has been chosen =1, so jumps from 0.9 to 0.1 represent extremely strong
variations in the initial data which lie outside of the physical domain of validity of the equations
from the factor (1 —v?) (case ¢ = 1) in [42] (2.10.16) p. 49. The conclusion is that the scheme for
system (4.1)-(4.4) works well for relatively moderate jumps such as the first four ones (relative
error no more than 1 per cent), but sometimes works very poorly for large jumps such as the last
two ones. For Riemann problems such as (p; = 9,u; = 0.9, p, = 1,u, = 0.1) the intermediate
value of the velocity step from the scheme for system (4.1)-(4.4) bypasses the velocity of light
which puts in evidence the inadequacy of the model (4.1)-(4.4) in this case : indeed important
simplifications have been done relatively to the Euler equation in [42] p. 49. The scheme for the
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model (4.1), (4.5), (4.3), (4.4) gives better results.

93

Now we compare the two systems and their schemes by means of figures in three situations.
The numerical solution of system (4.1)-(4.4) is represented by a continuous line and the numerical
solution of system (4.1), (4.5), (4.3), (4.4) is represented by o.

energy
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Figure 4.6.1. Comparison of the solutions from the two different systems in three different

velocity
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situations involving velocities < 0.5 c.

In figure 4.6.1 we compare the numerical solutions from the two different systems in three

different situations involving velocities < 5. In the top panels one considers initial conditions at

random between 0.9 and 1.1 in energy density and between -0.1 and 0.1 in velocity. The panels

represent zooms showing that the two systems give exactly the same result. This case is close to

the domain of validity of perturbation theory. In the middle panels (p;, p,, u,, u;) = (2,3,0.2,0.1)

and (4,3,0.2,0.5) in the bottom panels. One observes the two systems give close results.
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The scheme can be extended at once to two and three space dimension. For the first step this
is done in formulas (1.21-1.27). For the second step the averaging is simply done by considering
the 8 neighbors of a cell in 2-D and the 26 neighbors in 3-D. In 2-D the averaging analog to

(4.43)-(4.44) can be as follows. Let a, 0 < o < 55, be given in the scheme. Set

PZ;_I =201 j—1 + 201 541 T 2Pit1, -1 + 2Pip1 441 T 3Pio1 it

3Pij—1+ 301 + 3Pig1y) + (1= 20a)p; ;. (4.56)

Finally the third step is a mere centered discretization. Let us give the formulas in 2-D. Formula
(1.37) is replaced by

K 2
(pu)e + (14 K)(pu?) = Kpuug = pow, — =z, (4.57)
and formula (4.45) is replaced by
" — Kr__ _ r__ _ AKr _
(Pu)ijl = pU; 5+ TPUi,j(UiJrl,j —Wi—1,j) — §p7}i,j(ui,j+1 —Wjj-1)— m(pi+l,j - Piq,j),
(4.58)
and similar formulas for pv. Formulas (4.48) and (4.49) are respectively replaced by
2
(pu)e + (14 K (pu)a = Ky — putey = -+ K, (4.59)
(pu)i Tt = pug j + 5o, (Wi j — Wimn )~
r__ o, _ AKr _ AKr_ _
ipvi,j(ui7j+l —Ujj-1) — m(ﬂiﬂg - Pi71,j) + Tuw (Pui+1,j - puifl,j)' (4.60)

Due to the absence of dimensional splitting, the 2-D and 3-D scheme retain the numerical
accuracy of the 1-D scheme as observed in Part I.

The numerical scheme can include the Poisson equation (4.3) from a direct integration in
1-D and from any classical numerical resolution in 2-D and 3-D. Then the partial derivatives of
the gravitation potential are calculated by a centered discretization and inserted into (4.49) and
(4.60).

The applications to cosmology request expanding background. Since this is classical, see
Proposition 1.10.1 in chapter 1, [8] p. 216, p.294, p. 312, [30] p. 462-463, [31] p. 233, we do not
state it explicitely.

4.7 Coexistence of a Newtonian fluid and a relativistic fluid.

Between the epoch of equivalence of matter and radiation and the epoch of decoupling of
baryons and radiation a classical scenario consists in the coexistence of a Newtonian component
(cold dark matter) and a relativistic component (baryons tightly coupled to radiation). It is
considered dark matter perturbations were growing and therefore were creating a gravitational
attraction of baryons counterbalanced by the huge internal pressure from the coupling of baryons
with photons.
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Figure 4.7.1. A mizture of a Newtonian fluid and a relativistic fluid in a slowly expanding
universe.

The simulation in figure 4.7.1 is a numerical solution from the continuity and Euler equations
for a Newtonian fluid ([8] p. 207, [30] p. 460, [31] p. 233) and the equations (4.1)-(4.3) or (4.1),
(4.5), (4.3), coupled by a Poisson equation A® = 4rGpy +47G(pr + B ), where py and pr, pr
concern respectively the Newtonian and the relativistic fluid. The initial conditions are energy
densities at random between 0.9 and 1.1, and x and y-velocities between between -0.1 and 0.1,
for each fluid; G = 1, = 10, 200 iterations, o = 0.05; K = %,c = 300000. The scale factor
has grown from 1 to 2.36 and the Newtonian fluid is supposed to be collisionless (no pressure).
The Newtonian fluid is treated by the scheme in [C | with further a centered discretization of
the gravitation potential. The relativistic fluid is indifferently treated by the schemes for systems
(4.1), (4.2), (4.4) or (4.1), (4.5, 4.4). We observe creation of structures for the Newtonian fluid
(left panel) and complete absence of structure for the relativistic fluid (right panel). In case of
very fast expansion it has been observed absence of creation of structures (or an initial struc-
ture is frozen) : this is the Meszaros effect or stagnation. After decoupling the baryons are also
treated by the Newtonian system and one has observed agglomeration of baryons on the existing
structures of dark matter.

These facts are well known in perturbation theory. The interest of the method and results in
this chapter lies in that they permit to investigate the fully nonlinear regime as needed [8] pp.
330-334, [30] pp. 485-493, [31] pp.285-288.

4.8 Conclusion.

The method presented in this chapter has permitted to perform calculations on basic nonli-
near systems of equations in the theory of large structure formation in cosmology [8] p. 221, [30]
p- 465 and calculate explicit irregular solutions. We have obtained jump conditions and explicit
solutions for these systems. Finally one has produced a 1-D, 2-D, 3-D numerical scheme corres-
ponding to these formulas in a physically significant fully nonlinear domain.
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Chapitre 5

A holomorphic functional space.

An analysis of singular shock solutions of the Keyfitz-Kranzer system suggests a regularization
of singular shocks in a functional space of classical germs of holomorphic functions. In this
functional space a sequence of approximate solutions can converge to a well defined limit which
can be a singular shock solution of the equations in a natural sense similar to the classical concept
of a weak solution. In this context we obtain compactness and an analog of the classical result
"consistency and stability imply convergence".

5.1 Introduction.

Singular shocks have been put in evidence by Keyfitz-Kranzer in a study of their model system
[22], [21]. M. Sever [36] has shown families of equations that admit singular shock waves as solu-
tions. The singular shocks have been observed from different numerical techniques : Dafermos-Di
Perna viscosity in [22], [21], usual viscosity in [33], [35], and a unique solution to the Riemann
problem has been obtained in [22], [21]. The work in this chapter has been motivated by the
Cauchy problem.

We introduce a functional space in which a L!-stable sequence of approximate step-function
solutions can converge to a solution of the equations, even when such a solution involves singular
shocks or delta shocks. This convergence is obtained from a compactness argument in a functional
space of holomorphic functions having the usual space R x RT on the boundary of their domain.
The singular shocks or delta shocks appear as "boundary values" of holomorphic functions. These
boundary values have properties close to those of the classical weak solutions. Such sequences of
approximate solutions are provided by a numerical scheme in chapter 6, valid in particular for
the Keyfitz-Kranzer system

ug + (u? — ), =0, (5.1)
L 3
vy + (gu —u), =0, (5.2)
and for the system
ug + (u?), =0, (5.3)
ve + (uv), =0, (5.4)

97
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originally considered by Korchinski [24], who put in evidence delta shocks in the solution of
Riemann problems.

The mathematical context in use is a context of holomorphic functions defined on strips
having the real axis on their boundary. The genuine solutions are the germs of holomorphic func-
tions. The numerical results, which are always those already observed by all authors, are their
weak limits on the real axis, called here their "real interpretation". In chapter 4 the same context
and method have permitted to do explicit nonlinear calculations on classical special-relativistic
equations widely used in cosmology, which have classical shock solutions that do not make sense
within the distributions.

Justification and origin of the holomorphic reqularization in this chapter. Here is a depiction
of a typical singular shock (u,v) solution of the Keyfitz-Kranzer equations.
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Figure 5.1..1. A typical singular shock (u, v)

One observes that the function u in the singular shock presents an apparent contradiction
which will be resolved by distinguishing the "genuine solution" from its aspect in the sense of
distributions. The singularity which is observed on the discontinuity of w is insignificant from
the viewpoint of distribution theory when h — 0 since the area under each peak tends to 0 when
h — 0, even not taking into account that the two peaks tend to compensate each other in the
integral [ u(z,t)y(z)dx. Therefore u can be viewed, with the "filter" of distribution theory, as
a simple travelling discontinuity. But the two peaks in u are a basic ingredient in the solution of
the equations. Indeed, if the function w in (5.1) were a mere discontinuity, then u; would be in
the form of a Dirac delta function located on the discontinuity (i.e. a delta wave); from (5.1),
(u?> ), would also be in the form of a delta wave. Therefore u> v would have the form of
a Heaviside function. Then it would be impossible for u? to compensate the delta peak in v.
Therefore u cannot be a mere discontinuity although it is interpreted as a mere discontinuity
in distribution theory. The small peaks in the function w, which are insignificant in the sense of
distributions, do play a basic role in the solution of the equation : they permit that u? could
compensate the delta function in v. The same reasoning holds in (5.2) : v; shows a derivative
0" of the Dirac § function which, if u were a mere discontinuity, could not be compensated by

(“; u), that would be in the form of a Dirac delta function only.
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The explanation proposed in this chapter consists in a distinction between the "genuine solu-
tion", denoted by U, which is not a distribution and carries the "small, but basically important"
singularities observed in figure 5.1.1, and the aspect of U in the sense of distributions : a simple
discontinuity which is not solution and is only the interpretation of the solution in the sense of
distributions.

5.2 Mathematical context.

This context originated in the introduction of a regularizing small parameter in chapter 4
section 4.3 for calculations on equations of cosmology. At first a function f = f(x) was regularized
as a function f(x,&), where £ is a > 0 regularizing parameter, such that f(z,£) — f(z) in the
sense of distributions when £ — 0, i.e.

v € C2(R™) / F(@, E)b()dz — / F@)b(e)de

when ¢ — 0. Then we intended to use the property that the functions (z,£) — f(z,€) are
analytic in (z,¢), which amounts, using their extension to the complex domain, to transform
them into f(z,(),z=a+iy e C",( =&+ in e C.

Since &, 7,y are arbitrarily small our functional space is a kind of space of germs of holomor-
phic functions located on the space R™ (variable z), i.e. these functions are defined in variable
open sets in C" x C (variables z = x + iy, ( = £ +1n) having the real space R™ on their boundary.
Although these holomorphic germs are defined in a slightly original way concerning the domains
of the functions (z,¢) — f(z, (), nevertheless they are very classical mathematical objects. The
classical theory of normal families of holomorphic functions provides the needed compactness
property, even in case of singular shock waves. Now let us give details.

The letters r, 0, 4 will always denote real numbers such that

1
O<r<1,0<9<%,0<,u<§. (5.5)

The values 7,0, i will be as small as needed. One considers the open strip in R?"*2 parallel to
the real space R™ of variable = defined by

S(r,0,p) =
{(7) eC"xC /zeR", 0<[¢|<r, —0<argl<0,|y;| <p&Vi=1,..,n}. (5.6)
The real space R™ lies on the boundary of S(r,6, 1) by letting ¢ = £ + in tend to 0 (therefore

from (5.6) y — 0). Let F be the set of all strips S(r,0, i), when 7,6, — 0. The set F is a net
for the inclusion :

VSl,SQE.FHS;),E.F/SgCSlﬂSQ.

We denote by const a positive real number which may not be the same from an expression
to the following. If S € F,i.e. S = 5(r,0,n) for some r, 0, u, one defines
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Hs := {holomorphic functions F': S — C, (z,¢{) — F(2,{)}.

If S’ C S the restriction map Hg — Hg, F — F|g, is injective from the uniqueness of
analytic continuation. In the reunion of the sets Hg one considers the equivalence relation

(Fl,Sl) = (FQ,SQ) & 453 C ST NS, / F1|53 = F2|53.

The set of all equivalence classes is by definition our space of germs of holomorphic functions
on R™ in the z-variable. Since this space is also classically refered to as an inductive limit we
denote it by LimHg. We introduce normed spaces contained in LimHg.

M08 = {holomorphic germs that have a representative which is a holomorphic function
F:S(r,0, ) — C such that

L

|F(Z,C)|=O(|C|N

) V(z,¢) € S(r,0, 1)}

with the norm
”FHT,G,;L,N = Sup(z,c)es(r,a,u)|C|N|F(Z,C)|' (5'7)

Lemma 5.2.1. (Hy.0,u,N, ||||r,6,u,5) is a Banach space.

Proof. Since a Cauchy sequence (F,,) is bounded it satisfies the inequality |F(z, ()| < Clz.flﬂﬁt

uniformly in n. Let K be a compact subset of S(r, 6, ). Since K is at a strictly positive distance
from the boundary of S(r, 0, 1) there exists € > 0 such that (z,¢) € K = |(] > ¢, since from (5.6)
(2, =0) & S(r,0, u). Therefore a Cauchy sequence is a normal family of holomorphic functions
[32]. Therefore the pointwise limit is a holomorphic function. Then the standard proof works. [J

Lemma 5.2.2. If v <r, 0/ <0, u/ <pu, N' > N, then any partial derivative in the T-variable
is a continuous linear map from H,p ,, N into H, o/ v N7.

Proof. Tt follows at once from Cauchy’s integral formula. Indeed if (29,{) € S(r,0,u—€),e > 0
small enough, then, |z — 20| < €€ = (2,C) € S(r,0, ). Indeed [yo;| < (11 — €)€ and |; — yo.| <

€€ = |y;| < p€. Cauchy’s inequality then gives |a%f(z0,g)| < CloT"f,té = lz‘l’%ﬂ

Lemma 5.2.3. If (F,,), is a bounded sequence in the normed space M, g, N then there is a
subsequence (F(p))p and a germ of holomorphic function F' € H, g, N such that ;) — F
when p — +oo uniformly on the compact subsets of the strip S(r,0,p).

Proof. From the proof of lemma 5.2.1 the family (F),) is a normal family of holomorphic
functions on the open set S(r, 0, 1) [32].0

We denote by #(R™) the inductive limit of the spaces H, ¢ , n directed by inclusions, when
7,0, — 0 and N — oo. Now let us check that H(R™) contains many objects that can represent
the usual irregular functions and distributions. To this end notice that to any function f €
LP(R™), 1 < p < oo, we can associate several elements F' € H(R") that "give back" f on R"
considered on the boundary of S(r,#, ) in the following way

Vo e CERY) i [ Fe v = [ fo)ids (5.8)
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When (5.8) holds we say that f is the real interpretation of F. This can be done by convolution :
set for instance the mollifier

p(z) = const

(N (G E (5.9)

and define \
-z
F(z,() = f( )C" p( R

Lemma 5.2.4. Vf € LP(R™), 1< p < oo, the function F defined in (5.10) is in H(R™) and
it has f as real interpretation. Further, if f is continuous at a point xo then F(x,£) — f(xo)
when £ — 0 and x — x.

)dA. (5.10)

Proof. For simplicity the proof is given in the case n = 1. Let r, 0, u satisfying (5.5) be given.
From (5.10)

_ f)

F(z,¢) = const.(*® 1/ - ——d\. 5.11

= (- 974 CF >4y
Auziliary calculation : (A — 2)2 + (% > |Real(A — 2)2 + ?)| = (A —2)2 + €2 — %2 —n? >

2

A—2)2+£2(1— p? —tan?0) > (/\—x)2—|—% from (5.5)-(5.6). Therefore the denominator in (5.11)

does not take the value 0 when (z,() € S(r,0, 1) ; this is the motivation for the last inequalities

n (5.5)-(5.6). We will use that [(A — 2)2 + (2| > (A — )% + o2€% with @ =272 > 0.0

o If f e L™, (5.11) gives |F(z,()| < const\(|25*1||f||oofw < const|| f]|so, since

| ooy = | ooty = (007 [ it

o If f € L' the auxiliary calculation gives
1
|F(2,¢)] < CONStEHfHLL (5.12)

More generally if f € LP,1 < p < 0o, one obtains

1 _1
|F (2, Q)| < const|CP* M| fllor (| rmaytiameras)® < constlC| ™% || fller, 5+ 5 =1

141
p g

The last assertion is classical from the formula F(z,£) = [ f(z + k&)p(k)dk and the fast de-
crease of p at oco.lJ

These results can be easily extended to R™x]0, T, considering f null out of R"x]0,T[. A
Heaviside function H € H(R) is a germ whose real interpretation is the Heaviside function; it
suffices to take as f in (5.10) the Heaviside function. A Dirac function § in #(R) is a germ whose
real interpretation is the Dirac delta distribution. To obtain a Dirac function it suffices to take
the derivative of a Heaviside function H € H(R).

Besides the concept of solution of equations in the sense of equality in H(Rx]0,T[), we
consider also solutions in a weak sense, for which a natural definition (in the case n = 1 for
simplification) is as follows. Let ® : R™ — R™ be a set of m polynomials in m variables, for
instance Uy + 2 ®(U) = 0 can be (5.1)-(5.2) or (5.3)-(5.4).
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Definition of a concept of weak solution. U = (U7);=1.m, where each U7 € H(Rx]0,T), is
a weak solution of the system U; + 8%(P(U )“ =" 0 of m scalar equations iff each component of
U + Z®(U) has the null function as real interpretation i.e.
0

Vj=1,...,m, Y € C(Rx]0,T]), /R ]OT[[(Uf)t + %(Q(U))j](x,t,f)w(m,t)dmdt —0 (5.13)

when ¢ — 0F. This is denoted by U; + & ((U)) “<* 0.

As the usual concept of a weak solution this concept of weak solution suffers from nonuni-
queness and classical examples show it does not allow free manipulation of equations.
5.3 Consistency and stability imply convergence.

One assumes the existence of sequences (uy,), (v,) of step functions Rx]0, 7[) — R, constant
on rectangles ] (i — 3)hn, (i + $)hn[X](j — 3)kn, (j + 3 )kn[, where b, — 0,k,, < h,, when n — occ.
We assume the sequences (u,,), (vy,) satisfy the following properties :

(i) Consistency in the sense of distributions : Vip € C°(Rx]0,T)

[t 2~ vzt o, (5.14)
(un)®
/[vnwt +( 3 Uy )| dzdt — 0, (5.15)

when n — +o00, in the case (1,2), and similar properties in the case (5.3)-(5.4).

(ii) Stability : there exists a real number const > 0, independent on n and ¢, such that

/ |t (2, t)|de < const,/ |vp (2, t)|dx < const (5.16)
R R

for almost all ¢ €]0, T[. Of course this implies

/ [un (z,t)|dzdt < const,/ |vn(z,t)|dzdt < const (5.17)
Rx]0,T Rx]0,T]
and . .

cons cons

in the interior of the rectangles of sides h,, k, where these functions are constant (consider the
extreme case in which these functions are null except in one rectangle only, and apply (5.16)).

It follows from (5.17) that the sequences (uy),(v,) are bounded in L'(Rx]0, 7). There-
fore by *weak compactness one can extract subsequences that converge * weakly in the space
Myp(Rx]0,T|) of bounded Radon measures to some elements u,v € M;(Rx]0,T[). From now on
we simplify the notation by considering that the whole sequences (uy,), (v,) are convergent.

Theorem 5.3.1. Under the above assumptions (i) and (ii) of consistency and stability the
scheme converges in the sense :
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there exists a subsequence of the sequence (un,vy,), still denoted (un,vy,) to simplify the notation,
two sequences (Uy), (Vy,) of elements of H(Rx]0,T|) and a pair U,V of elements of H(Rx]0,T[)
such that

1)Vn, U,,V, have the real interpretations w,, v, respectively,

it) U,V have the real interpretation u,v respectively,

iii) U, — U, V,, = V uniformly on any compact set of a strip S(r,0, ),

iv) the pair (U, V) is a weak solution in the sense (5.13) of the equations (5.1)-(5.2) (respectively
(5.3)-(5.4) if (5.14)-(5.15) are adapted to (5.8)-(5.4)).

Proof. The letter ¢ can represent a complex number when coupled with z or a real number
when coupled with x. This will not create any confusion. We use a holomorphic mollifier

const
(14 22)5(1 4 12)s’
where z = x+1iy,t = 7+i7’ € C,z,y, 7,7 € R. The real value const is such that f plx, 7)dzdr =

p(z,t) == (5.19)

1, for some s € N, s > 1 to be fixed later. We set p., ,(2,t) := El%ezp(é, é) where €1, €5 € C.
We set
Un(zata C) = [un * pe1752](zat)v €1 = C'(hn)av €2 = C'(kn)av (520)

for some o > 0 to be fixed later. We use the same formula for V,,, replacing w,, by v,.

It follows from (5.17) and lemma 5.2.4, that U,,V,, are defined on the strip S(r, 0, ) in (x,t)
variable in Rx]0, T[ V(r, 6, u) satisfying (5.5), and that they admit u,,v, as real interpretations
respectively. The families {U,},{V,} are bounded in the normed space H,g ,1 from (5.12),
which permits to apply lemma 5.2.3. We denote again by (U,,), (V,,) the convergent sequences
thus obtained and by U,V their respective limits in H(Rx]0,77[). The main part of the proof
consists in proving that for s and « large enough (independent on ) one has

I[Un(I,t7f)1/)t(I,t) + (U721 - Vn)(x,t,f)qpm(x,t)]dxdt -

/[un(x,t)wt(x,t) + (U2 (2, 1) — v (2, ) (2, )] dadt (5.21)
uniformly in n when £ — 0, as well as

1

[ttt + 5

US — U,) (@1, €)ba (a, £)]dadt — / [ty + (%ui )y ]dadt

for (5.2). Similar formulas are proved for the two equations (5.3)-(5.4). This convergence is ob-
tained at once in linear terms such as f (U, — un)y - indeed in one dimension to simplify the

notation, one has | [(un * pe — un)¥| = | [ un(z)p(p)[¥(x + ep) — ¢(z)]dudz| < const.€l|luy|| L.
In the case of nonlinear terms this will be proved in the next section. Assume (5.21) holds. Then
consider the following diagram

[[Unths + (U2 = Vo )hldadt L5 [Tunnpy + (02 — v,)ih,)dadt

n—oo |} fixed & n— ool
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JU¢ + (U2 = V)i, ]ddt =9 0.

From (5.21) the limit in the top horizontal arrow is uniform in n. The left vertical arrow is a
simple limit for fixed £ from the definition of U as limit of the U,,’s uniformly on compact subsets
of S(r, 0, 1). The right vertical arrow is the limit (5.14). Therefore since the top horizontal arrow
is uniform in n then the bottom horizontal arrow holds as a limit when & — 0, the double limit
holds and the diagram is commutative. [

5.4 Proof of the uniform convergence.

In this section we prove the uniform convergence in the top horizontal line of the diagram,
i.e. (5.21). In the proof we intend to use compactness of the support of the mollifier, which is
impossible since the mollifier p is analytic. Therefore the proof is based on a cut-off of the (po-
sitive for real variables) mollifier into a "main part of integral close to 1" which is compactly
supported in [~ Ph71 PR x [—¢ Pk~ 7Pk, B €]0,1] given and a "minor part", of
integral close to 0, supported in the complement of this rectangle.

To simplify the formulation the quantity [ f(un,v,)¢zdadt is replaced by a quantity | f(u,)pdzdt
where f is a function of one variable (f(u) = u?,u? for (5.1)-(5.3), f(u,v) = uv in (5.4) is treated

in the same way) and where we use (5.16)-(5.18) on w,,.

We aim at proving that

/ FUn (., )0, £)dadt — / Flun (@, )z, ) dwdt (5.22)
uniformly in n when £ — 0. We set
const 1 z t
p(Z,t) = (1 +22)s(1 +t2)5, pel,ez(z?t) = 61-€2p(g’ g)a (523)

s € N to be chosen later. For given n we replace h,,k, by h,k respectively to shorten the
notation. We set,

Un(Z,t,C:) = (un * pCh"’,Ck")(zat)v (524)

a > 0 to be chosen later. Then, it follows from (5.12) and (5.16) that U,, € H,.0,,,1 for any r, 6, u
satisfying (5.5). In systems (5.1)-(5.2) and (5.2)-(5.3) there exists N such that

|f(w)] < const.|ul™, |f'(u)] < const.|u|N 71, (5.25)

for |u| large enough. Let 8 €]0, 1] be given. As explained above the function p is cut-off into
P = PXe-Bn-1e-8k1 + (P — PXe-tn-1,e-8r1) (5.26)

where ., denotes the characteristic function of the rectangle | — y, u[x| — v, v[, p > 0,v > 0.
For large p, v we will use the following bound from (5.23) :

f:oo (1+722)de < const f:‘” 4 = const.pu~*1, with const independent on s since s > 1.

Therefore
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o0 1
——dx < const.£PZsTDp2 L 5.27
A £ (5.27)
Proposition 5.4.1. For s > 38 and o > 2+ N then | [[f(Un(2,t,£))— f(un (2, 1)) (z, t)dzdt| —

0 uniformly in n when & — 0.

Proof. First decompose [[f(Uy(z,t,&)) — f(un(z,t)|¢(z, t)dxdt = I + I + I + I5 where

= /{f[un * (pXe-pn-1,6-8k-1,)ehe eka] = ftn) * (PXe-Br-16-81-1)eh ehe } (2, )Y (2, t)dxdt,

(5.28)
I = — /[f(un) * (P — PXe—Bn-1,e-8k1 )ehe ekl (T, 1) (2, )dxdl, (5.29)
= [{flun * (PXe-sn-1,6-81-1)eho gk + Un * (P — PXe-Bn—1 g-8k—1)eho gk ] —
flun * (pXe-on-1 g-s1-1)eno ere ] Ha, )Y (2, t)dadt, (5.30)
= [0 () # pere o)1) = ) o, D), ). (5.31)

Functions f(U,(z,t,£)) and f(u,(z,t)) are respectively the first term in I, see (5.24) and (5.26),
and the second term in I3. Simplifications occur between the first term in I and the second term
in I, the second term in I and the second term from the parenthesis in Iy, the first term inside
the p parenthesis in I3 and the first term in I5. We will give separate bounds for I, I, I and I3.

e Bound of I. The u,’s are step functions constant on the rectangles R; j :=](i — 3)h, (i +
DR[X](j — 2)k, (5 + 1)k[. Let us state

£ PR g PRt
L= [ pXe-sh—1 ¢-sp1dedl = / / p(x, t)dxzdt. (5.32)
e=Ph=1J_g-BL-1

From (27) and [ p(z,t)dzdt =1,
I = (1 — const.£PZDR25=D) (1 — const. P25~V sy = 1 — const.£PZ~Dp2s=1) - (5.33)

Since £ and h are small and since —3+1 > 0,a—1 > 0, the support of (pxg-sp,-1 ¢-p-1)ena che,
namely [—¢AH1pal ¢=BFlpa—1] [ ¢=BFlpa-l c=B+lpa—1] ig small for &, h, k small, so it is

contained in [—2, 2] x [—£ %] In the central parts

1 1
[(ifg)thf*BHha*l,(i+§)h*€75“h“1] (= )k+€ et (J+ Jh—& PR (5.34)
of the rectangles R; ; the functions

fltn * (pXe-n-1,6-85-1)ehe ko] (5.35)
and
f(un) * (PXe—pp-1 g-5K—1)ehe che (5.36)
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are respectively equal to f(lu,) and If(u,), since u, is constant on the rectangles R; ; and from
the small size of the support [—¢ATIpa—1 ¢=AHlpa—1] x [—¢=BAtlga—l ¢=f+1ga—1] of the mol-
lifier in (5.35) and (5.36).

In the vertical strip S; = [(i + )h — ¢ PFLATL (i + H)h + PP X R and in the
horizontal strips R x [(j + $)k — 7Tk (j + $)k + €71k ~1] centered at the interfaces
of the rectangles R; ; the two functions w, * (pX¢-pp-1 ¢-85-1)¢ne cre and (5.36) both present a
mere junction due to the convolution by the positive function (pxg-sp-1 ¢-s-1)ene ere, between
the constant values u,, and [ f(u,) respectively considered above in the central parts of the rec-
tangles. Therefore from (5.18) and (5.25) each of the two functions (5.35) and (5.36) has absolute
values less than const.h ™" (recall h,, = h) on these strips.

Taking into account these two kinds of domains : the union of the rectangles in the centers
of the cells and the union of the strips, formula (5.28) gives

|| < /|f(lun(x,t)) — Uf (up(z,t))||(x, t)|dxdt +/ const.h N |[Y(x, t)|dedt.  (5.37)
U strips
From (5.33) setting € = const.£%(2=Dp25=1 then | = 1 — €. Therefore

Flup(z)) = 1f (un(x)) = fI(1 — un(z)] — (1 —€) f(un(z)) = —€f' (.. Jun(z) + €f (un(x)). From
(5.18) and (5.25)

|f (lun () = 1f (un(2))] < const.e. A= N="Dh=1 4 const.eh™N < const.£F-2s=Dp2s—1p=N,

The number of horizontal strips .S; is less than “"’T”St from the compactness of the support of
1, and each one has width 26 ~#+1h*~1 Therefore the whole area of the domain of integration
of the union of the vertical strips |JS; is less than COT”‘“Q{*BHh"‘*l. The same bound with &
in place of h holds for the union of the horizontal strips. Therefore the second integral in (37) is
less than <oste¢=Atlpa—1p=N gince k < h and since we will choose o > 2 + N.

One obtains

1| < const.ePZs—Dp2s—1=N 4 Lm§—5+lha—lh—N
< - ’

which implies
1] < const.maz(£P5=D 17F) max(h2s—1—N po—2-N), (5.38)

Since 8 has been chosen in ]0,1[,0 < £ < 1,0 < h < 1 the choices

1+ N
32—%—,a22+N. (5.39)

imply that I — 0 uniformly in A when £ — 0.

e Bound of I . From (5.29), Iy = — [(f(un))(x,t).(p — pXe-sn-1,6-5k—1)ehe ke (Y, T) (@ +
y,t + 7)dadydtdr, which, from (5.25) and (5.23), implies

12| < const(1+ [Junlloo) ¥ grategm S 10— pXe-n-s 61 (gl gyl

From (5.18),
11| < const.h™ [(p— pxe-sn-1e-s1-1)(A)dA < const.h=N¢A2s=DR25=1 from (5.33), i.e.



5.5. APPLICATIONS. 107

|I| < const.h?s~1-Ngh2s—1), (5.40)
Therefore in order that I; — 0 uniformly in h, i.e. uniformly in A, when £ — 0 we choose

s> LEN
- 2

e Bound of Iy. From (5.30), the mean value theorem gives

(5.41)

(L] < [1f' (- )l-lun * (p = pXe-on-1 e-sp-1)ene gne (2, )(2, ) |dzdt.
From (5.18) and (5.25),
L] < const.h™N=Y [, (2,8)(p — pXe-sn-1.c-s1-1)eho ko (Y, T)(x + y, t + 7)|dzdydtdr.

Therefore, using the bound obtained above for I; with wu, instead of f(u,), i.e. one line be-
fore (5.40) with a bound h~! instead of h~, we obtain

|Io] < h~ NV ="Veonst.h~LehRs—Dp2s-1 (5.42)

which is same as (5.40). Finally, Is — 0 uniformly in A when & — 0 provided s > %

e Bound of I. We have [[(f(un) * pene.ere) (o, O(a, Odadt = [ f(un)(x, )p(h, u)ib(a +
ROt + Ek* p)daddtdp.
Therefore, since [ p(A, u)dAdp = 1, it follows from (5.31) that

Iy = [ fun(z, 1) p(\, ) [(x + RNt + €k ) — Y (x, )] dzdAdtdp

< const.h_th“/|)\u|p()\7u)d)\d,u

from (5.18)-(5.25) and since k < h. Then I3 < const.£.h®~N . It suffices to have a > N.OJ

5.5 Applications.

The consistency in the sense of distributions of the numerical scheme in Part I and chapter 6
provides examples of sequences of approximate solutions for which one can apply the theorem :
a solution of the equations is exhibited by compactness as limit of a sequence of approximate
solutions. This permits to put in evidence a solution of the Cauchy problems involving singular
shocks if one admits that the properties to be checked to apply the theorem in chapter 6 for the
Keyfitz-Kranzer system go on to hold indefinitely when A — 0. Concerning delta shocks solutions
of system (5.3)-(5.4) a full proof of consistency is given in chapter 6; then one can apply the
theorem : Vu’ € LY(R) N L>®(R),vv® € LY(R) U,V € H(R x R") which are solutions of the
equations in the sense (5.13) and are limits of the numerical scheme in chapter 6. The problem
of finding criteria for uniqueness of these solutions remains open : one can only argue that they
correspond to the limit of the scheme and it has always been observed that this limit is the
correct known solution. The singular shocks show clearly that the classical functional spaces are
inadequate in general to provide solutions of equations. This has justified the introduction of a
new functional space. The results in this chapter as well as the numerical scheme in chapter 6
and its consistency proof extend clearly to 2-D and 3-D. These results show that in the context
of the functional space of holomorphic germs weak asymptotic methods [12] can give rise to a
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solution of the equations by compactness as limit of a subsequence extracted from the family of
approximate solutions and can be applied to the syustems of fluid dynamics in Part I. In order
to get closer to uniqueness the use of a stronger concept of weak solution could be useful : we
could state (5.13) in the stronger form

Vi=1,..,m, Y € C>(Rx]0,T]), /]R Y T[[(Uj)t + %(@(U))j](x,t,C)z/)(x,t)dxdt — 0 (5.43)

when ¢ — 0 in the sector |arg(¢)| < 6. We do not know if the theorem holds with this stronger
formulation.

In the section below we give two examples in which some uniqueness holds at the level of
explicit calculations (from chapter 4). In chapter 7 we give examples of existence-uniqueness of
a different nature.

5.6 Examples from explicit calculations.

These examples are simplified versions of the contents of chapter 4 in order to make clear
that some results of uniqueness could be possible in the context of holomorphic germs presented
in this chapter. We did not succeed to extend them to the Cauchy problem in absence of explicit
calculations.

o First example : shock waves for nonconservative systems. Consider the nonconservative
system

up + (uz)x = Uy, (5.44)

weak

Vi UV = Usg, (5.45)

in which the first equation is stated with the equality in LimHg while the second one is stated
with the weak equality. Let us seek a solution in the form of a discontinuity moving with constant
speed V, i.e. of the form

u(z,t) = u; + AuH,(z — Vi), (5.46)

v(x,t) = v + AvH,(x — Vi), (5.47)
where H,,, H, € LimHg are Heaviside functions. Inserting (5.46)-(5.47) into (5.44) gives

AuH, = (=V + 2u)) AuH, + (Au)?(H,)?,

ie.
Au (Au)?
Hy(z,0) = —(V 4+ 2u)—H,(z,
(5:Q) = ~(V 4 2m) T Hu(, Q) + A5
as well as the classical relation obtained by setting H,(z,£) = 1, H,(z,§) = 1 in the formula
above, which is nothing else than the classical jump condition of the conservative system (5.44).

Equation (5.45) gives

(Hu)?(2,0) (5.48)

—VAvH, + (w + AuH, ) AvH!, “ZY AuH],
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i.e.

Vi € C(R) / (—VAH! (2,€) + (s + AuHy (2, €)) AvH (2, €) — AuH. (2, €)}b(z)dz — 0

(5.49)
when £ — 0. We recall that inserting (5.48) into (5.49), integrating in x and letting £ — 0 gives
the second jump condition for system (5.44)-(5.45) which is in nonconservative form (see chapter
4).

The formula (5.48) and the two jump conditions imply that (5.44)-(5.45) is satisfied in its
mixed strong-weak form. The interesting point is that this mixed strong-weak form fix the jump
conditions which is some kind of existence-uniqueness limited to solutions of the form (5.46)-
(5.47), presumably because of the limitations inherent to explicit calculations.

e Second example : shock waves for the system of isothermal fluid dynamics. Consider the
system of isothermal fluid dynamics stated in the form (see chapter 4 for a justification)

pr + (pu)z =0, (5.50)
(pu)t + (pu?)s 4+ pa = 0, (5.51)
p ek Kp. (5.52)

where K is a constant. We seek shock waves solutions of the usual form

p= i+ DpHy(x — V), (5.53)
pu = (pu); + Apu)Hpu(x — V), (5.54)
p=np + ApHy(z — V). (5.55)

Insertion of (5.53)-(5.54) into the continuity equation (5.50) gives
H,, =H, (5.56)
and the classical jump condition for (5.50). Insertion of into the Euler equation (5.51) gives

(pw)f + 2(pu)iApu) H, (2, Q) (A(pu))* (H, (2, ¢))?
pu+ ApHp(z,C)

H,(z,¢) = VA(pu)H,(z,¢) — + const. (5.57)
Setting that the Heaviside functions are 0 for x < 0 and 1 for = > 0 gives the value of constant
and the classical jump condition for (5.51). The last equation is stated in the weak sense as
explained in chapter 4 since its statement in the strong sense would have led to inconsistencies.
Then one has obtained that the two classical jump formulas, plus the relations (5.56)-(5.57)
between the three Heaviside functions (that fix H, and H,, as a function of H,), plus the two
formulas p; = Kp;,pr = Kp, from (5.52) finally provide a solution of the system (5.50)-(5.52)
where the first two equations are stated in the strong sense similarly as the result obtained in
the first example.

Remark on the elimination of unstable discontinuities. The Heaviside functions H(z, &) are
analytic functions of the real variable x for each £ > 0. Therefore they do not have an "infinite"
slope at « = 0 as usual when H is considered in the space L> (think at the function %arctcm(%)
which can be used to create Heaviside functions). Therefore unstable discontinuities from Hea-
viside functions are automatically eliminated at least concerning solutions in the (strong) sense
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with = in the space of holomorphic germs since their slope is already prepared in the initial
condition with H(z,£), £ # 0. However we have been unable to transfer this remark into a
general uniqueness result, perhaps because of the nonuniqgeness of viscous solutions [1].

5.7 Conclusion.

These two examples give the impression that strong solutions do exist to some extent pro-
vided the system of N equations is well behaved (as this is the case for the equations of fluid
dynamics considered above), with the statement of N — 1 equations with the strong equality.
Therefore results far stronger than the general existence of weak solutions shown in this section
could presumably be obtained in particular cases.



Chapitre 6

Construction of approximate
solutions.

In this chapter we present a numerical scheme for the approximation of singular shock solu-
tions of the Keyfitz-Kranzer model system and many other systems of conservation laws. Consis-
tency in the sense of distributions is studied. As long as some numerical properties are verified
when the space step tends to 0, we prove that the scheme provides a numerical solution that
satisfies the equations in the sense of distributions with an approximation that tends to O when
h — 0. We also show that this scheme adapts to degenerate systems. This is illustrated by two
examples : the system presenting delta wave solutions originally studied by Korchinski and ano-
ther system studied by Keyfitz-Kranzer that models elasticity. Consistence of the scheme in the
sense of distributions is fully proved in the case of the Korchinski model.

6.1 Introduction.

Singular shocks have been discovered and investigated by different authors, see [22], [21],
[33], [36], [35]- They have been observed from various viscosity techniques : Dafermos-Di Perna
viscosity in [22], [21], usual viscosity in [33], [35]. In the case of singular shocks, viscosity solu-
tions converge so weakly that their pointwise limits do not satisfy the classical Rankine-Hugoniot
conditions. Besides this fact a unique entropic solution to the Riemann problem has been obtai-
ned in [22] for arbitrarily large data. In this chapter we propose a numerical scheme based on a
splitting technique that captures the singular shocks. We observe results exactly similar to those
obtained in [22], [33] with their respective viscosity techniques. Studies have shown the relevance
of this scheme for other systems presenting irregular solutions. In our study of irregular shocks
we consider two standard first order model systems of two equations whose solutions of the Rie-
mann problem involve singular shocks and delta shocks. We also notice that this scheme provides
neat results for the Keyfitz-Kranzer system of elasticity [23] for which the intrinsic difficulty is
different from those in the two systems above.

This chapter focusses on the Keyfitz-Kranzer system
Ut + (u2 — )z =0, (6.1)
1
v + (gu3 —u), =0, (6.2)
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which produces singular shocks, and the system
ug + (u?), =0, (6.3)

vy + (wv)z = 0, (6.4)

originally considered by Korchinski [24] who discovered and investigated delta shocks in the so-
lution of the Riemann problem.

Let uy, vy, be the sequence of approximate solutions from the scheme. Under simple numerical
properties to be rigorously proved, or to be admitted from numerical tests, we prove that the
scheme is consistent in the sense of distributions in the following sense : V(¢, ) € (C°(RxR™))2,

[tunn + (@n)? = on)enldodt 0, [lon -+ Gglun)® = w)sldode 0, (05)

respectively [[updr + ((un)?)¢zldadt — 0, [[opty + (upvp)hy]dadt — 0,

when the space step h — 0. This means that the functions uy, v, tend to satisfy the equa-
tions when h — 0.

For system (6.1)-(6.2) we check numerically that the needed assumptions are satisfied for
values of h as small as possible. We rigorously prove that, in the case of system (6.3)-(6.4),
for any initial condition u® € L*(R) N L>°(R) and v° € L*(R), these assumptions are satisfied.
Therefore the scheme is consistent in the above sense. Of course, in the first case, from a rigorous
point of view, one cannot be sure that these numerical assumptions always hold for every h
when A — 0. The proof in this chapter shows that, for any given family of test functions with
uniformly bounded support and uniformly bounded first and second derivatives, then a numerical
solution satisfies the equations in the sense of distributions within a small deviation depending
on h whenever these assumptions remain valid.

6.2 A numerical scheme.

The singular shocks of the Keyfitz-Kranzer equations are unbounded which makes the ela-
boration of numerical schemes difficult : in the scheme below the numerical velocity u in system
(6.1)-(6.2) can be unbounded when the space step h tends to 0 which forces us to accept that the
CFL coefficient r tends to 0 when A — 0 in order to preserve the CFL condition r|ul/f~ < 1.
Therefore r = r, depends on h and also on time so that rp||up||pe < 1.

If 4, tends to O (ie. if ||up|/Le tends to co) slowly enough, then one can nevertheless obtain
a convenient numerical scheme, although of an order less than one, on condition that for each
iteration the assumptions are verified when A — 0. This ensures consistence of the scheme in the
sense of distributions, although the limit is not a distribution in general : it can be a singular
shock in the case of the Keyfitz-Kranzer equations. Numerical results are given to prove that the
set of assumptions is satisfied in representative situations of singular shocks. In the case of the
Keyfitz-Kranzer equations the scheme consists in a splitting of equations into the two subsystems

up + (u?), =0, (6.6)
vy + (vu), =0, (6.7)
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which is treated by transport with velocity u, and

Up = Vg, (6.8)
w3
vy = (vu — 3 +U)g, (6.9)

which is treated by a centered discretization. In between, we introduce an average step in u,v
which is needed in general to avoid oscillations due to the centered discretization. More generally
the method applies to systems

up + [u®(u,v)], = [A(u, v)]s, (6.10)
vy + [v®(u, v)]e = [B(u, v)la, (6.11)
which are split into the two subsystems

up + [u®(u,v)], =0, (6.12)
ve + [P (u,v)], =0, (6.13)

where ®(u,v) plays the role of numerical velocity and
up = [A(u, )]s, (6.14)
vy = [B(u,v)]s- (6.15)

Systems (6.12)-(6.13) is a family of degenerate systems. In particular the scheme in this chap-
ter gives neat results for the system (4) in [23] which models an elastic string problem.

The numerical scheme. The real line is divided into intervals I; =]ih — Lh,ih + $h[,i € Z.
We set t,, = nrh for r small enough. We will construct step functions u(z,t), v(x,t) depending
on h, which are constant on the rectangles I;x]t,,t,+1[, whose step values are denoted ul", v}
respectively. The indices h are often skipped to simplify the notation : u stands for uy,.... If
a < b one sets

L(a,b) :=length of [0,1] N [a, ], (6.16)

ie.
L(a,b) = max(0,min(1,b) — maz(0, a)). (6.17)
The notation L allows a synthetic formulation of the transport, without being forced to distin-

guish several cases depending on the signs of the numerical velocities. By induction we assume
that the set of values {ul, v} };cz is known. We obtain the set of values {u}' ™, v/"" },cz as follows.

i % ’
e First step : transport with velocity ® during time rh

O = D(ul,v}), (6.18)

K2 7 7

Ui = ui  L(=1+7r® |, r®F )+ ui L(r®}, 1+ r®}) +ui  L(1+rd 1,2 +rd}, ), (6.19)

3

Uy = vj  L(=1+r®} |, r® )+ v L(r®, 14+ r®7) + v | L(1 +r®F 1,24+ r® ). (6.20)
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When the CFL condition r|®?| < 1 Vi, Vn is satisfied, the first terms in (6.19)-(6.20), when
multiplied by &, represent the quantities u, v issued from the cell I;_; between times ¢,, and ¢,
that lie in the cell J; at time ¢,1. Indeed, the cell I;_y = [(i — 3)h, (i — 2)h] has been trans-
ported according to the vector r® ;h, since @} ; is the numerical velocity and the duration
time is rh. The overlap with the fixed cell J; = [(i — 2)h, (i + 3)h] has a length of r®} |k if
o | >0, 0if &, <0, taking into account the CFL condition |®? ;| < 1. From (6.16) one
finds L(—1 + r®2 ,,7r®F ;) = r® | if &7 ; >0, 0if ®? ; < 0. Division by h is due to the fact
that u;,u? are mean values on cells of length h.

The second terms in (6.19)-(6.20), when multiplied by h, represent the quantities u,v issued
from the cell I; that remain in I; at time ¢,1. Indeed, the cell [(i — 3)h, (i + 3)h] has been trans-
ported by the vector r®7h. The overlap with the fixed cell [(i—3)h, (i+%)h] is h—r®Ph if O > 0,
h-+r®"h if " < 0. From (6.16) one finds L(r®", 14+7®7) = 1 —rd7 if " > 0, 1+7rd7 if B < 0.

The third terms are similar to the first ones : they concern the quantities u,v issued from
the cell I;;1 that lie in the cell I; at time ¢,, 41, with the same verification as above. Note that
u;,v; depend on n, which is not explicitely stated to shorten the notation.

e Averaging step. For a value o, 0 < o < 0.5, to be chosen, we set

W; = Ql;—1 + (1 — 20&)@1‘ + a4, (6.21)

V; = Qli—1 + (1 - 20()@1' + av;41. (6.22)

In the case A =0, B = 0 the averaging step is useless. Indeed, the idea underlying the elabo-
ration of the scheme is that the first step works well without averaging, and that the numerical
defects of the centered discretization in the last step should be compensated by the averaging
step performed before it. The splitting should be chosen so as to minimize the importance of the
terms involved in the last step.

e Last step : centered discretization

n -~ T n n n n

uftt =+ g[A(uiJrh vitg) — A(ui g, v )], (6.23)
n -~ r n n n n

ot =0+ §[B(ui+1v vitq) — Bui_q, v )] (6.24)

The scheme works well for singular shocks and delta shocks. The theorem below shows that
it gives an approximate solution of the equations.

Statement of the theorem. Let T > 0 be given. Let us seek a solution on R x [0,T].
The initial conditions u°,v° are discretized as usual by mean values in the cells since they are
supposed to be L! functions. Let us apply the scheme under the assumptions (6.25)-(6.29) below :
there exists a sequence of values h, h — 0, a corresponding sequence of values r, r > 0, and real

numbers 3, € [0, 1] such that when h — 0

|
1
(s

(6.25)
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T
Vn < s Vi r|®r <1, (6.26)

which is the CFL condition,
T
Vn < — Vi hP|®%| = O(1), (6.27)
T

which is a constraint on the numerical velocity allowing it to tend to infinity,
vn < — w Z up|h = O(1 Z v lh = O(1 (6.28)
which is the L'-stability in u, v,

¥n < — Vz Z |A(ul, o)A = Z |B(u?, o) R = O(1). (6.29)

Theorem 6.3.1. Consistency of the scheme. As long as (6.25)-(6.29) are satisfied then the
scheme is consistent on Rx]0,T[ in the sense of distributions, i.e. if up, vy, are the step functions
from the scheme, then, Vi € C°(Rx]0,T7),

/ [ tbe + un® (un, vn) s — Alun, vn)ibaldwdt — 0, (6.30)

/ [Vnr + vR®(un, vr)e — Bun, vp)Yz|dzdt — 0, (6.31)
when h — 0. More precisely the integrals in (30,81) are equal to

0(%) + O(h'=P) 4+ O(R}™7). (6.32)

The scheme will be of order one in the usual cases in which r is constant, 8 =« = 0, but of
an order strictly less than one for singular shocks from the fact that the values of the numerical
velocity increase when i — 0, which forces » — 0 and § > 0.

6.3 Proof of the theorem.

One has [ widzdt = ZZ U [ Wrdadt =37, [()7+O(h Wk =Y, . u?w w - ,rhg

2im ?O(M)rh2 + 35 Ui O(h)rh?.
Since |3, ,, uiO(h )rh2| <> rh>>; [ul||O(h)|h < const.T|O(h)| from (6.28), one obtains

udrdt = w; — Uy v . .
Yrdad m Tt + O(h 6.33
Similarly

[ ®(u, v)up dudt = Zzn Dyl celli Yydxdt = ZHL QU (1) rh? + Zln PruO(h)rh? =
i QPP R £ Y @R O(h)rh? 4 B, , @ O(h)rh?.
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From (6.27)-(6.28) | Y=, , ®FuiO(h)rh?| < 35 rh Y, [®F [[u[|O(h)|h < const. Th=Ph < const.h'=5.
Finally

/fl)(u, v)updrdt = —h Z(@?uf —®" u )y + O(hP). (6.34)

Similarly

fA U, v djﬂﬁdwdt Zz n A( Ui vy )fcell wzdl‘dt = Zi,n A( Us's Uy )(% rh2+22 n A( Us'5 U5 )O(h)’l"h2 =
S A, o) T h? 3, Al v )O(R)rh?.

From (6.29) |3, , A(u}',vj")O(h yrh?| < S rh Y |A(ul, v)||O(h)|h < const.T.h™"h <
const.h'~7. Therefore

/AWWWMH#ZEyMM%gwﬁg—A(wZWW+OM1U (6.35)
Setting
I:= /[M/Jt + u®(u, v), — A(u, v),|dzdt, (6.36)

one finally obtains from (6.33)-(6.36)

:—hz Ll 4 (uPOT — BT )~

r(A(uf, o) = Auiy, o ))W7 + O(h) + O(h'™7) + O(h' 7). (6.37)

17

Up to this point the formulas of the scheme have not yet been used. From (6.23) and (6.21)
wp ™ =+ oW1 = 20+ W) + §IA(uR, 0F ) — Ay, of)].

Therefore, from (6.37)

I =141+ Is+ O(h) + O(h* %) + O(h* ™), (6.38)

where
:fhz = ul 4 (Ul eT —ul BT )|Yr, (6.39)
I, = —ha Z(ﬁl;l — 2u; +Ei+1)’l/)ln, (640)

1 n n n n n n n
I3 = D) Z hr{A(uiy 1, v 1) — A(uiy, 0 y) — 2[A(uf, vf') — A(wiq, v )] 7 (6.41)
We are going to prove successively bounds for Iy, Io, I3.

e Bound for I;. In I; fix an index ig and consider successively the two cases @7 < 0 and
oF > 0.

If ®7 < 0 then, from (6.16) and the CFL condition (6.26), L(r®},1 + r®}) = 1+ r®} ,
L(1+7r®7,2+7r®] ) = —rd] and L(—1+r®} ,r®} ) = 0 . Therefore from (6.19)
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Ui, = up (1 + 7@} )+terms not involving uf ,

— . nan . . n
Uip—1 = —uj 7P +terms not involving uj ,

Uj,+1 does not involve uj! .

From the CFL condition the other terms %; do not involve u;! . Therefore, in the sum » _, @;}'
the term w, occurs in (and only in)

n n n n n n
iy (1+r®3 )i — iy r®y ¥j .
Consequently in the sum ) [@; — uf +r(uf @} —ui ®F ;)7 the term involving uj is
n n n n n n n n n n n n n n
wiy (14 r®3 )i — wiy r®i VR ) — ui Uiy + rug Pl — rug, QF Ui (6.42)

where the first two terms come from ;, and @;, 1. The sum (6.42) is equal to ruf, (O3 )7 —

10
PR = ] = rul ®F O(h?) from Taylor’s formula applied to .

If ®7 > 0 then, an analogous reasoning involving ;, and %;, 1 instead of u;, and u;, 1 gives
the value 0. Therefore from (6.39)

1L <h3 ., ul r®2 O(h?) =3, rh Y., ®7ulhO(h), i.e. from (6.27)-(6.28)

I = O(h'=F). (6.43)

e Bound for Iy. From (6.40) Iy = —ha >, wi(f, — 207 +47" 1) = a2, rht 3, w,0(h?) =
aT20(1) since one has Y, [u;|h < 3, [ul'|h = O(1). Indeed, (6.19) implies the formula

(@] < Jui y [L(=14 7@y, r @iy ) + |ugf [ L(r @, 1+ r @) + [uiy [L(1+7®7yy, 24787 ,). (6.44)

The definition (6.16) of L implies L(—1 + a,a) + L(a,1 + a) + L(1 + a,1 + 2a) = 1. Therefore
from (6.44) >, [w;| < >, |uf|. This implies

I, =0(-). (6.45)

e Bound for I3. I3 = —% Do VA v — AU o ) —2A U, o )PP +2A (U], o ) b =

=23 rh Y Al oM)Wl — 24 + 7] = const. Th=YO(h) from Taylor’s formula in ¢ and
. Therefore

Iy =O(h'™). (6.46)
Finally from (6.38), (6.43), (6.45), (6.46)

I=0Mh"P) +0h'"™) + 0(%), (6.47)

which ends the proof.[]
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6.4 Approximation of the Keyfitz-Kranzer system.

We consider successively the three different typical solutions of Riemann problems in figures 8,
7, 6 in [33] : singular shock, intermediate overcompressive shock and usual shocks. The numerical
solutions obtained from the scheme are identical to those shown in [33] even in absence of
additional viscosity. We first consider the Riemann problem in figure 8 in [4], which shows a
singular shock. The initial data is (u, vy, u,, v,) = (1.5,0, —2.065426, 1.410639). We adopt the
values a = 0.2, = 0.5,y = 0.4. One chooses the value of 7 close to the maximum value of r
that satisfies the CFL condition (6.26). For simplicity we denote

7(27) = hﬁmazi7,L|u?|,
7(28)" = mamn(z |ug' |, Z [vi'|h),
i i

7(29)7 = mawn (Y |A(uf, o )[R, |Bug, o) )
i i
for the values in the assumptions of the theorem.
In order to check the consistence theorem, we present the values of % that must tend to 0

from (6.25), and the values "27","28", "29" that must be bounded. Results of a test for T'=5
with the interval [—4, 4] are given in the table below.

h r BT [7(28) [ 7(29)7
0.0400 | 0.300 | 0.1333 | 0.6289 | 14.97 | 3.62
0.0200 | 0.240 | 0.0833 | 0.5830 | 14.97 | 2.84
0.0100 | 0.170 | 0.0588 | 0.5309 | 14.96 | 2.26
0.0050 | 0.132 | 0.0379 | 0.5271 | 1493 | 1.84
0.0025 | 0.095 | 0.0263 | 0.5178 | 14.90 | 1.53
0.00125 | 0.065 | 0.0192 | 0.5021 | 14.87 | 1.29
0.00062 | 0.040 | 0.0156 | 0.4326 | 14.85 | 1.10
0.00031 | 0.025 | 0.0125 | 0.4024 | 1483 | 0.96

Now we choose T' = 1 and the interval [—0.5,0.5] in order to reach smaller values of h. The
values of the parameters are again a = 0.2, = 0.5,y = 0.4

h r 2 7(27)7 | 7(28)7 | 7(29)”
0.0020 | 0.18 | 0.0111 | 0.2444 | 1.9232 | 0.1791
0.0010 | 0.13 | 0.0077 | 0.2337 | 1.9170 | 0.1480
0.0005 | 0.09 | 0.0056 | 0.2225 | 1.9109 | 0.1252
0.00025 | 0.06 | 0.0042 | 0.2090 | 1.9054 | 0.1081

0.000125 | 0.043 | 0.0029 | 0.2070 | 1.8999 | 0.0973
0.0000833 | 0.035 | 0.0024 | 0.2051 | 1.8972 | 0.0926
0.0000625 | 0.030 | 0.0021 | 0.2028 | 1.8955 | 0.0898
0.0000500 | 0.026 | 0.0019 | 0.1979 | 1.8944 | 0.0874
0.0000333 | 0.021 | 0.0016 | 0.1955 | 1.8923 | 0.0848
0.0000250 | 0.019 | 0.0013 | 0.2010 | 1.8907 | 0.0847
0.0000166 | 0.015 | 0.0011 | 0.1957 | 1.8891 | 0.0829
0.0000125 | 0.012 | 0.0010 | 0.1847 | 1.8884 | 0.0803
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In figure 6.4.1 one can observe that the scheme reproduces exactly the aspect of the singular
shock in figure 8, in reference [33].

The values of r are chosen close to the maximum values for which the scheme satisfies the
CFL condition r|jul|« < 1. One observes that the quantity 2 — 0 as v/ and that the three
quantities in the columns "27", "28" "29" are bounded (since quantity "27" is proportional to
the sup. of |u| it is very sensitive to the chosen value of r close to the sup. of values of r that
satisfy the CFL condition). Therefore, since 8 = 0.5, = 0.4, the scheme is of order 0.5 in h from
(6.32). This is not a good result in general from a numerical viewpoint ; however, the presence
of singular shocks gives a numerical velocity which is of the order ih instead of a constant in
the usual situations in which the scheme is always of order 1. We can also see that the bounds
in the proof of the theorem are not optimal since one has used a bound involving the factor
|®7| 0o while @7 = u? is uniformly bounded independently of time except on the singular shock.
Indeed, one can see that the scheme gives acceptable results. On a standard PC top values of
the peak in v in the above tests have reached the value 3700 for the Riemann problem under
consideration while they have reached values 10° in the case of system (6.3)-(6.4). For the system
(6.3)-(6.4) we will rigorously prove in section 6 that the scheme is of order 1. The set of results
in these two tables gives a reasonable presumption that the decrease of % and the boundedness
of the three quantities "27","28""29" continue to hold when A — 0, which would allow the
theorem to be applied with confidence. If we only consider values of h for which (6.25)-(6.29)
have been tested then the proof of the theorem gives a bound (depending on the sup norm of the
derivatives of order two of ¢ and its support) for the integrals in (6.30)-(6.31) according to (6.32).

Then we consider the Riemann problem (u;,v;, u,,v,) = (1.5,0, 1.895644,1.343466) repre-
sented in figure 7 in [33]. In this case we choose « = 0.2, 3 = 0,y = 0. We obtain the following
table

h r 2 7(27)7 | 7(28)” | 7(29)”
0.0050 | 0.45 | 0.0111 | 1.9205 | 1.6913 | 1.2831
0.0010 | 0.45 | 0.0022 | 1.9205 | 1.6965 | 1.2753
0.0005 | 0.45 | 0.0011 | 1.9205 | 1.6972 | 1.2743
0.00025 | 0.45 | 0.0006 | 1.9205 | 1.6975 | 1.2739

0.000125 | 0.45 | 0.0003 | 1.9205 | 1.6977 | 1.2736
0.0000625 | 0.45 | 0.0001 | 1.9205 | 1.6977 | 1.2735

4nl— L . I . . L . L L . L L L L L
137 1318 1319 132 1321 132 133 134 1317 1318 1319 12 1321 132 1323 1324
’l ]

=10 x10

Figure 6.4.1. The numerical solution from the last test in the second table.



120 CHAPITRE 6. CONSTRUCTION OF APPROXIMATE SOLUTIONS.

L L L L L ! ! n ! " L L L L L
950 985 99 995 100 WS 100 1015 1020 970 980 990 100 110 1020

Figure 6.4.2. The numerical solution from the Riemann problem considered in the third table

(h=0.04, 7=0.45).

In figure 6.4.2 one can observe that the scheme in this chapter reproduces exactly the aspect
of the limit overcompressive shock in figure 7 in [33]. An enlargement has been done in the ho-
rizontal direction to observe the detailed structure of the shock.

The results are very clear due to the boundedness of w in this case. There is a very natural
presumption that these results continue to hold when h — 0. One can see that the scheme is of
order one in h as this follows from the theorem.

For the third Riemann problem, (u;,v;, u,,v,) = (1.5,0, 1.725862,1.276293) in figure 6 in
[33], in which there is no singular shock, the results are very clear, exactly the same as those
in the above table. We have always observed results as good in the case of bounded numerical
velocity.

We now present a system for which a full proof of consistency in the sense of distributions
has been obtained.

6.5 Application to the Korchinski system.

e One considers the 2 x 2 system (6.3)-(6.4) which produces delta-waves in the variable v,
see [24]. Here ®(u,v) = u, A = B = 0. In this case one can choose o = 0 in (6.21)-(6.22) since
the last step (6.23)-(6.24) is absent. Then ™' = 7, v = 7;; the choice a > 0 works as well
with the same proofs. It follows from (6.44) that ), [u;| < >, |u}|. Therefore by induction on
n > [ul T < 37, [u?]. The same proof applies for v. Choosing the initial condition «°,v° in L*
this proves (6.28). To prove (6.25)-(6.27) we will prove the maximum principle in the numerical
velocity u.

Lemma 6.5.1. If rmax;|u?| < % then u satisfies the mazimum principle.

Proof. Let the index ¢ be fixed. Consider the various possible combinations of signs in the three

values u;® |, ui, uf, ;. In each case one will check that

n+1
i

n

. n .n — n
min(u; 1, u; »Ui+1) <u;=u

S maw(ui 1» u?v U?Jrl)

which proves the maximum principle by induction on n. By induction up to order n the condition
rmaz;|uf| < 1 implies rmaz;|ul'| < 5. Now we pass to order n + 1.
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e Case (+,+,+). Formula (6.19) with ® = u gives

= uigrugy (L= rug) = uf +r(uiy — ) (uiy + ug). (6.48)

First note that w; > 0 because 1 — rul? > 0 from the property rmaz;|ul| < % We consider

successively the two cases u] > ul* ; and u} < ;. If «f > ] ;| then (6.48) gives w;, < uf. If

wl” < ul'  then @y —ul' { = (u’ —ul )1 — r(ul +ul ;)] < 0 since the last factor is > 0 by
mductlon. We have checked that

0 < <maz(uy_q,ul).

e Case (+,+,-). Formula (6.19) gives
U =iy o (L= rug) +udy (—rudy). (6.49)
First, let us prove that u; > uf, ;. The properties v’ | > 0,u} > 0,ru} < % imply that

Ui > uyq (—rufyg) > ufy g since 0 < —ruyy <3 3 and ujly; < 0.

Now let us check that @; < max(uj ;,u}). Formula (6.49) and wj, , < 0 imply 7; <
ull_jrul 1 +ul(1 —rul). From this inequality the proof is the same as in the case (+,+,+).

e Case (-,+,+). Formula (6.19) gives u; = u!'(1 — ruf) which implies 7; < u} since 0 < ru? < &
and, w; > 0.

e Case (-,+,-). Formula (6.19) gives
i = uit (1= ruf’) +ufyy (—rufyy) = o) +r[=(uf)? = (u)?] < .

Now w; — wjlyy = ui —ujlyy — 7"[(“&-1)2 + (U?)Q] Since uiui g <0, (U?)2 + (u z+1) < (U?)Q +
(ufyy)? = 2ufufyy = (uff — uflyy)?. Therefore @ — ufly; > uf' — uiy —r(uf — ?+1)2 = (uf —
uit )1 —r(uf —ui ;)] > 0 since the second factor is positive, which implies @; > uj, ;.

In the four cases in which u} < 0 the verifications are similar.

Finally, we have proved properties (6.25)-(6.28), with r independent of h, 3 =0 and v =0
since A = B = 0. Therefore from the theorem the scheme converges in the sense of distributions
and is of order one in h. It has been checked numerically that its real interpretation is the well
known solution.

6.6 Conclusion.

We have presented a numerical scheme which captures the singular shock solutions of the
Keyfitz-Kranzer model without recourse to a vanishing viscosity method. We have observed
numerically exactly the same results previously observed by the various authors. The consistency
of the scheme for this system has been checked numerically up to very small values of h. The
theorem states that the approximate solutions from the scheme tend to satisfy the equations
in the sense of distributions. This scheme adapts to degenerate systems such as the Korchinski
model system and the Keyfitz-Kranzer system of elasticity. In the case of the Korchinski system
consistency in the sense of distributions has been fully proved.
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Chapitre 7

Extension of Sobolev spaces.

Motivated by the need to find strong solutions in the setting of holomorphic germs for the
Poisson equations involved in the systems of self-gravitating fluids, we introduce LP spaces and
Sobolev spaces in this setting. In contrast with their classical analogs, they contain very irregular
distributions but as their classical analogs they permit to apply the Lax-Milgram theorem. This
section is only sketched to show that the setting of germs is compatible with the classical linear
results needed for a deeper future study. For simplification the results are given in one space
dimension. It is clear that a large part of the classical theory can extend to the setting of
holomorphic germs even in several space dimension, although this extension is not studied here.

7.1 The Dirichlet problem in the whole space.

The letters r, 0, ;1 will always denote real numbers such that

0<r<1,0<0<g,0<u<1. (7.1)
If(eC,zeC,onesets ( =&+in,z=z+1y, £&,n € R, z,y € R. One sets

S(r,0,m) ={(2,¢) e Cx G0 <[¢] <7, =0 <argC <0, |y| < pRe(()} (7.2)

Lemma 7.1.1. Let 1 < p < oo, N € N and let {F,} be a family of holomorphic functions on an
open set Q C C x C such that

/ IOV Fo (2, ) Pdadydedn < Cy (73)
Q

where Cy is a constant independent on «. Let K be a compact subset of Q). Then there exists a
constant Cs independent on o such that

V(z,0) € K |¢(NFa(2,0)| < Ca. (7.4)

proof. Let us start by proving that (7.3) for some p implies (7.3) for p = 1 when integration
is restricted to a compact set. Let K’ be a compact set in Q containing K in its interior. If
S + ¢ = 1, Holder’s formula gives :

N q NF(z,¢)P)» < const.
[ FGON< ([ i ICPEOP)?E < const

123
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The bound (7.4) will follow from the mean formula

1
m2ed

SIS o [ GOy

for a holomorphic function f in a neighborhood of the polydisc |z — zo| < €, | — (o] < €. We
apply this formula with (zg,{y) € K, ¢ < the distance from K to the complement of K’ and

f(z,¢) = ¢VF(2,¢).0

If S:=8(r,0,u) and if N € N one defines Sg n as the set of all F' : S — C, holomorphic
such that

const 1

VYn € Ndconst >0|V (2,{) €S, |F(z2,)| < — ———.
|V (2,0) [F(2, Q) Y A E

(7.5)

Ss v is an infinite dimensional vector space. Indeed consider functions F'(z) which are in the
2

image of C°(R) through the Fourier transform. One can also consider p(z) = %\;{) and

F(z,¢) = %p(%) : for 7,60, 1 small enough one can check that F' € Sg; and is a Dirac delta
function. In Sg  one considers the sesquilinear form

<SRG = [ PVFE 06 Odedydedy (7.6)

which is a Hermitian scalar product on Sg n. Let L3  be the completion of Sg y for this scalar
product. Therefore L% y is a (complex) Hilbert space and Ss, is dense in L3 y-.

Proposition 7.1.1. C%,N is made with holomorphic functions on S.

proof. If F € L‘%’ ~» from a property of the completion, there is a sequence (F},), in Sg y which
converges to F' for the norm || [z  in the Hilbert space L% n- Therefore ”F"HZ%N is bounded
uniformly in n. Applying Lemma 7.1.1 to transform an integral bound into a sup. bound one
obtains that {F),} is a normal family [32]. Therefore there is a subsequence that converges uni-
formly on compact subsets of S. Therefore F' is holomorphic in S.0J

One defines an analog of the classical Sobolev space H' by stating : ’H}g’ n is the set of all
maps F : § — C such that F € £ y and 9€ € £3 . Hy v is equipped with the scalar product

dF dG

<F G >l = < F.G >z, T < T de >z,

(7.7)

Proposition 7.1.2. H}@,N is a Hilbert space.

proof. Let (F),), be a Cauchy sequence in H}‘;,N. Since [Z%’N is complete there are F,G € E%,N

such that F,, — F, %Fggl — G in L'%’N. Using the same proof as in Proposition 7.1.1 (F,), is a

normal family, therefore, from [32], G = %.D

One defines the subspace Hgﬁv of 'H}iN as the closure of Sg y in 'H}iN. Hg‘ﬁv is a Hilbert

space for the scalar product induced by H}g N- fu,ve Hgi\, the classical integration by parts
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formula < %, v>p = <u, g—g >r2 holds by continuation of the same formula in Sg .

Lemma 7.1.2. The map j : Ly — (’Hg’j\,)’,f — (u =< f,u >p2 ) is linear continuous
and injective.

proof. | < f,u >r2 . | < Ifllcz  Mlullez  therefore j(f) € (Hgi\,)’ with operator norm <

S,N
”fHE%,N‘ Therefore the linear map j has norm < 1. It is injective from the density of Sg n into

3.0
Denoting this map as an inclusion one has the sequence of continuous inclusions :
Ssv C Mgy € Lin = (L5 x) C (Mg (7.8)
The following spaces are defined as inductive limits in the category of vector spaces
LA(R) :=1im L5y, HO'(R) = 11317{% (7.9)
when r -+ 0, § -0, 4 — 0, N — 400. One has

HOY(R) C L2(R). (7.10)

As in the classical setting one can use the Lax-Milgram theorem (here in the complex case

[16]).
A standard model equation. Consider the model equation

—u" (z) + c(z)u(x) = f(z), u(—00) =0 = u(+o00) (7.11)

where f € £L2(R) . For instance f can be a Dirac delta function : this space £2(R) is very different
from the classical space of square integrable functions since it contains objects such as the Dirac
delta function and its derivatives. The function c¢ is assumed to be holomorphic and bounded on
some set S and have some positiveness property ; it can be a step function representing Heaviside
functions).

Lemma 7.1.3. cu is in L3 y.

proof. There exists a sequence (uy) in Sg,n such that [[u, —uf|zz =~— 0since u € L3y and Sg.n
is dense in L3 y. cu, € Sgn from the assumption that ¢ is bounded on S. [cu, — cu||2525 L=

S 1< [eun — cul® < [|el|2]lun — ul|2,  — 0, therefore cu € L% y from the definition of £% .00
2y : :
Let V = Hg’}N equipped with the scalar product of HaN. If u,v €V set

a(u,v) =< u',v Spp T <ewv > L) =< fu>e (7.12)
One has the familiar bounds
la(u,v)| < const||u|lv||v]v, |[L(v)] < const||v|v. (7.13)

It suffices to use the assumption that ¢ is bounded on S.
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From (7.12) and (7.6)
a(u,u) = [¢ ¢! (2, O)*dadydidn + [ [C]*N e(z, O)u(z, ¢)|*dxdydsdn.
One adopts a positiveness assumption on c :
Iy >0, Re(c(z,0)) >vV(z,() €S (7.14)

This implies that
la(u,u)| > const||ul)3. (7.15)

Therefore one can apply the Lax Milgram theorem in the complex case [16] :

u e V; alu,v) = L(v) Yo €V (7.16)

i.e. from the validity of the integration by parts in E%,N, < —u"4cu—f,v >z =0 You € Hg’}N,
which is equivalent to u” = cu — f in (Hgﬁv)' Since cu — f € Ly = (L3 ) C (Hg’}v)', then
' =cu— fin E%’N. Is such a u unique?

Let up,uz € HY*(R) be such that u/ = cu; — f in L2(R),i = 1,2. From the definitions (7.9)
as inductive limits 3 S, NV such that uq,us € Hgﬁv. Choosing S small enough and N large enough

c satisfies (7.14) on S and is bounded on S, f € ‘C%',N' Setting V := 'HOS’}N, both wuy,us satisfy
(7.16), therefore they are equal in ’Hos’jv, therefore in £2(R). One has proved :

Theorem 7.1.1.Under the above boundedness and positiveness assumptions on c, for any
[ € L2(R) there is a unique u € HO'(R) such that —u" + cu = f in L2(R).
7.2 Periodic problems.

Let the period T' be given. Here we set S¢°y := {F : S+ C, holomorphic, periodic of period
T in x, such that

t
deonst > 0; |F(z,0)| < C&Ti v (z,¢) € S}. (7.17)
In S&°y one considers the sesquilinear form
CEG > o= / CPN (2, )Gz, ) dadydédn (7.18)
SN Sn{z€0,T]}
per

which is an Hermitian scalar product on ¢’y .

Let Eé’f]’\?r be the completion of Sg°y for this scalar product. Therefore Eé’f]’\‘;" is a (complex)

. per - . 2,per
Hilbert space and Sg  is dense in Lg'y .

Proposition 7.2.1. C%’f;\?r is made of holomorphic functions on S.
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proof. It is the same as the proof of Proposition 7.1.1.00

1,pe . p2.pe
One defines Hg'y" as the closure of Sg°y in L'y for the scalar product

dF dG

F, eri= < F) er
< G>H1p < G>L2p +< d{L‘ d{E > S,N

Therefore H.g ’p °" is a Hilbert space. One has the inclusions

Sh% C MR C L3

with dense inclusions. Therefore as usual one has the inclusions :

Sher CHLRT C LERT = (L37T) (ML (7.19)

The following spaces are defined as inductive limits in the category of vector spaces

L277(R) 1= lim LT, T (R) o= lim MR (7:20)

when r -0, § =0, 4 — 0, N — 400. One has

HLPer(R) C L27°7(R). (7.21)

As in the classical setting one can use the Lax-Milgram theorem in the complex case [16]. This
yields results of existence and uniqueness of solutions of equations without classical solutions.

A standard model equation. Consider the model equation
—u"(z) + c(z)u(z) = f(z), u(—00)=0=u(+o0) (7.22)

where f € £2P¢"(R) is periodic with period 7. The statement of the periodic problem is : find v
holomorphic on some strip .S, periodic with period T', such that

v 4+ cv=f (7.23)
The variational formulation
/ IC1*N (v'w' + cow) = / 112N fw Y € 52’17” (7.24)
Sn{z€[0,T]} Sn{xz€[0,T]}
follows from the integration by parts formula fo v"w = 'w]d fo =/ Ty’ from the
periodicity. We set
a(u,v) = / ICIPN (W' + cuv),  L(u,v) = / fu. (7.25)
Sn{z€[0,T]} Sn{z€[0,T]}

Under the boundedness and positiveness assumptions on ¢ (7.14) one has again existence and
uniqueness of a solution of (7.23) similarly as in Theorem 7.1.1.

Theorem 7.2.1 : periodic problem. Under the boundedness and positiveness above as-
sumptions on c, for any f € L*P"(R) which is periodic of period T there is a unique u €
HIPer(R), periodic with period T solution of -u”+cu=f.
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7.3 Dirichlet problem on a finite interval [a,b].

Let a,b € R,a < b,N € N and

S(r,0, 1) = {(z,¢) € C x C such that

a<z<b 0<|(l<r —0<arg(<®0,lyl <pRe()}. (7.26)

Let ¥ = {(y,0) 0 < [¢| <7, =0 < arg( < 0,|y| < pRe(¢)}. We set (with abusively same notation
as in section 7.1 since a,b are omitted there).

Ss ={F:8 — C, (2,{) = F(z,¢) holomorphic, continuous on the set {(z,{);a < z <
b, 0 < |[¢|<r, —0<argl <0,y <uRe(()}, such that i), ii) and iii) below hold} :

i) sup(z,c)es|F(z,¢)| < +oo (7.27)

ii) Fla+iy,¢) = F(b+iy,() V(y,{) € X (7.28)

141) lim,n_m,g_,o#_)o(mei(z)/( fes F(a+ iy, )dyd&dn) = 0, (7.29)
AQIS

where mes(X) denotes the Lebesgue measure of the set ¥ ; the same formula with b in the place
of a follows from ii). With a=0,b=n polynomials in sin(z) with null constant term show that
this space is infinite dimensional.

The properties (7.28)-(7.29) replace here the classical statement of null values at the points
a and b. Let N € N be given. On Sg we define the sesquilinear form

<F,G >£2N;=/ ICIPNF(2,0)G(z, ¢)dadydEdn. (7.30)
’ S

This sesquilinear form is a Hermitian scalar product : < F, F' > 2 = 0= F = 0. We note Sg,n
the preHilbert space thus obtained.

Definition 7.8.1. E%’N :=the completion of the preHilbert space (Sg,< F,G >£%,N).
Proposition 7.3.1. E?;,N is made of holomorphic functions on S.
The proof follows from the lemma 1 as the proof of Proposition 7.1.1.07
Definition 7.3.2. H.1S',N :={F :S — C such that F and ‘3—5 € EQS,N} equipped with the scalar

product
oF 0G

—_— 2 . 31
< % B >rz (7.31)

<F G >yl =< F,.G >zt

Proposition 7.5.2. 7—[}971\, is complete, i.e. it is a Hilbert space.

proof. It is the same as the proof of Proposition 7.1.2.00
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Proposition 7.3.3. If v € ’H}Q’N the map V :]a,b|— C,

x—V(z)= / HMNo(z + iy, ¢)dydédn (7.32)

[Cl<r,largC|<O,|y|<pug

can be continuously extended to [a,b]. Further,

| (Nl + iy, O)ldydedn < constloly . (7.33)
[Cl<r,largC|<0,|y|<pé ’

proof. Let V(z fy ¢ ft ato CN Y (t 4 iy, ¢)dtdydEdn.

The map V is deﬁned ifr e [a7b since fy,c ftza%b N B2 (t4iy, ¢)|dedydedn < (fs 12)%(fs ICN[?)E <
const. ||U||Lz

Then, agaln from the Cauchy Schwarz inequality,

\V(xl) V(xa)| = |fy€.f 2, SN Gt + dy, Q)dtdydEdn| < constlz) — 9|7 fycf G O
i9, &) Pddydédn)t < constlr — ) 12811z,

Therefore V is (uniformly) continuous on [a,b]. The functions V and V are _defined on la, b]
and have the same z-derivatives. Therefore their difference is constant. Since V' is defined and

continuous on [a,b], so is V. Now let us prove the bound (7.32). The formula v(zy + iy,¢) =
v(zy +1y,¢) + fzf 99 (t + iy, ¢)dt implies that

oz + iy, Q)] < |v(we + iy, Q)| + [57 |52 (¢t + iy, ¢)|dt.

Integration gives :

e 1N vy + iy, Q)ldydédn < [, ¢V v (s + iy, C)|dydédn + [o |CN G2 (t + iy, ¢)|dtdydEdn.

Applying the Cauchy-Schwarz inequality in the last integral we obtain

S, N ol tiy, Oldydedn < [, 1CVv(watiy, O)ldydédn+( [ 1dtdydedn)® ([ 1CN 82 (t+iy, ) [2dtdydgdn) .

The last integral is equal to const||%|| 2 - Integration in x> on [a, b] of the inequality so obtai-
ned and use of the Cauchy-Schwarz inequality in the first integral in second member give

(b—a) fy,( |CN (g + iy, Q)|dydédn < const||v\|£z + const| %2 ||£2 < COHStHUHHlSyN-D
Definition 7.5.3. ’H, ~ denotes the closure of Sg in HSN
Therefore 7—[053\, is a Hilbert space for the scalar product <, >l and Sg is dense in 'Hgﬁv

Proposition 7.3.3. If F' € HSN then mes(Z) f(y Oes (NF(a+ iy, )dydédn — 0 when r,0, 11 — 0,
and same result with b in place of a.

proof. Let F' € ’H(S)’,l and let (F),), be a sequence of functions in Sg such that F,, — F in
Hg n- Obviously
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me;(2%| Jw.cres gNF]\ga + 1y, <>1dyd€dn| < e Jwoes |CJZF‘ = me;(Z)J{(y,C)EE Y (F —
)+ sy Juwoen 1€ Fal < sy constllFn = Flla o + marsy Jy,0en 167 Fal

from Proposition 7.3.3. If € > 0 is given Ing n = no = [|[F, — F[3 , < §. Choose n > no
and 7,0, u small enough such that such that the second term is < § from (7.29).0

Proposition 7.3.4. If F € Hgg\, then F(a+iy,¢) = F(b+iy, ) if 0 <|¢ < Jargl| < 6, |y| < ué.

proof. If v € ’H}%N from Proposition 7.3.3,

f(y,C)GZ ICN(2E2 + 21 + iy, ¢) — v(%E2 — 21 + 4y, Q)]] < const.||v|\H13’N. Since by defini-
tion Sg is dense in Hg%\r there is a sequence (F),) in Sg such that ||F, — FHH}@,N — 0. Using
F=(F-F,)+F,,

Joes [CVIE(EEE + 21 + iy, Q) — F(42 — 21 + w5, Ol < [, 0ex ICV(F — Fu)(%42 + 21 +
iy, Q) = (F = F) (52 — o1 4+ i, Qll 4 fiy ¢ en [V P (552 + 21 4y, Q) = Fu (452 — 21 + iy, Ol

Set x1 := %2 then “T*b +x1 = b, “7“’ — 21 = a. Therefore

f(%()eE [CN[F(b+iy, () — Fla+iy, Q)] < f(y,C)EZ ICN[(F — F) (b+iy, ) — (F — Fp)(a+iy, ]| +
f(%()ez ‘CN[Fn(b + Zy? C) - Fn(a + Zyv C)”

The last integral is nul from (7.28). From Proposition 7.3.3,

/ (CYIF (b + iy, ¢) — Fla+iy, Ol < const.||F — Fyllyy -
(y,0)ex ’

Since ||[F — Fp|l41  — 0 it follows that
S,N

/ (CVIF(b + iy, ¢) — Fla+iy, )] = 0
(y,)ex

therefore F'(b+ iy,() = F(a + iy, ¢).00

As a consequence the integration by parts formula

is valid since the two boundary terms simplify.
In the sequel ’Hgﬁv will be equipped with the scalar product from ’H};,N. Let j : LéN —

(H%}N)’ defined by j(F) : ’Hg’j\, — C,u > j(F)(u) :=< F,u >,z . The map j is linear
continuous : ’

B <] < Fuses 1< Flea b -
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The map j is injective : j(F) =0 =< F,u >rz = 0 Yu € Hos’jv, ie. Vu € Sg and Sg is
dense in L% . From now on we note £ 5 C (Hg’j\,)’ through the map j. Therefore we have the
sequence of inclusions

Ss CHgw C Lyn = (L3 n) C (Mg (7.34)
The spaces HY s, N, HLE SN L2 g N are made of holomorphic functions on S. To pass to the setting of
germs we consider the inductive limits

£%(a,b) = lim_, £2 , H'(a,b) = lim_, HY , 1" (a,b) = lim_, H

when r, 0, 4 — 0 and N — 4+00. We have
HO (a,b) € H'(a,b) C L (a,b).

Now let us give an example of use of the Lax-Milgram theorem in this context. We consider the
model equation

—"(@) + e(@)u(x) = (), ula) = 0, u(b) =0, (7.35)
where f € £%(a,b) and c is a bounded holomorphic function on S (¢ can be a germ whose real
interpretation is a Heaviside function or f can be a Dirac delta measure) We choose S small

enough such that f € L% y, for some N large enough. Let V := ’HSN with [[[lv = [[[l3y - If
u,v € V we set ’
(‘3u Ov
a(u,v) = 5 B >z T <cu,v>p L(v) :=< f,v >e2 (7.36)

lemma 7.3.1. uEE%7N:> cuEE&N.

proof. Since Sg is dense in £%~7N there exists a sequence (u,) of elements of Sg that tends
to u, ie. [[u — upllz2 . — 0. The product cu, is an element of Sg since ¢ is bounded, and

|y, — cuHL:ZS,N — 0. Apply the definition of L% .00
We have :

la(u, o) < 1Gllez o N82 e +lellocllullez,  Nvlles < const(IFzlles , +llullez VG2 ez, +
[vllez ) < constllullv o]l v,

L) < [fllez Mollez , < N llez ol

S,N —

au,u) = [|G21%: + [51CPN e(z, Qlulz, ¢)dwdydgdn,

We assume that
Y(z,{) € S Re(c(z,()) > a>0. (7.37)

Then

Re([q 1¢I*Ne(z, Q)ulz, ¢) | dudydEdn) > O‘Hu”%g - This implies that

ou
a(u,u) > 5= 122 +alullze > const|ulf.
Oxr ' '=s,N s~
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One can apply the Lax-Milgram theorem in the complex case : there exists a unique v € V' such
that

a(u,v) = L(v) Yv eV, (7.38)
ie.
i G g+ [ je e - / <Y 7,
which implies < — 8932 steu—fv>p =0 Vv € ’H ~- Therefore =52 +cu—f =0in (’HO i\,)’

Since cu — f € ES,N and »CS,N C ('ngv)', 9z € £

We have found v € H%1(a,b) such that % = cu — f in L£2(a,b). Such a u is unique : let
uy,uz € H%1(a,b) such that %2;‘2/" = cu— f, i = 1,2. There exists S, N such that uy,us € 'Hgﬁv
and f € L% . Both u; and uy are solutions of (7.38). From the uniqueness in the Lax-Milgram
theorem one has u;|s = uz|g i.e. u; = ug as germs. The following has been proved

Theorem 7.3.1 : Dirichlet problem in a finite interval For all f € L?(a,b) and all c
satisfying (7.36) there exists a unique u € H%(a,b) such that — 612 +cu=f.
7.4 An example of minimization of a nonlinear functional.

Let us consider the functional F : 7-{,5 N — R,
0
v Fo) = 5 [ PO + loP)dedydsin — Re [ 1CP odadyacn,
with given f € L% y. Let V := Hg%\r Then

1
Fo) = Slloly = Re < fv >y,

The map F' is continuous on V| and strictly convex since the quadratic form is issued from a
scalar product. The map F is coercive since |v]|#, dominates the linear term when ||v||y — +oc.
As a consequence there exists a unique ug € V such that F(ug) = min,ev F(v).

Further F is Gateaux-differentiable on V and

d*v
dF(v).w = Re(< ——= +v— f,w >£§N)'

dz?
Since ug minimizes F', dF(up).w =0 Vw € V. Therefore Re(< —%% —fiw>p )=
0 Yw e ’Hg’j\,. The change of w into iw gives the nullness of the imaglnary part and therefore
< 7%252“ +ug— f,w >r3 = 0 Yw e ’HOSR,
Therefore 9
- Oa? Fuo—f=

e (7.39)
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in L3 . We have found ug € H'(a,b) such that (7.37) holds. Uniqueness is proved as for
Theorem 7.3.1.

7.5 A physical example and numerical evidence.

As an example of an equation of physics without classical solution that motivates these
techniques let us quote the beam-column equation [14]. The out of plane transverse displacement
w of a beam subject to in-plane loads is governed by the equation

02 0*w 0 ow

5Bl =5) - (No—)=p (7.40)

Ox? Oz oz Ox

where p represents loads in the transverse y-direction, N is the tensile resultant, F is the Young

modulus of the beam and I is the area moment of inertia of the beam’s cross section. Nume-

rical simulations and physical evidence show that when the transverse force p acts on a point
ow

7o then the right and left hand side derivatives of the displacement w are different. Then % is

discontinuous at xg and ‘g%;’ is a Dirac delta function located at xg. Then if ET is discontinuous
at xg the product El‘gi%’ does not make sense classically. This equation can be solved in the
same way as the model above by introducing in a similar way Sobolev spaces of order 2 in the
present context, in the real line for the Dirichlet problem , in a segment for periodic or Neumann
conditions. In this situation it can model pipe-lines;...

We present one of the simplest examples in which one observes a nonclassical solution. It
concerns the equation a(x)u”(z) + u(z) = f(z) where the function f is a Dirac delta function
and where the function a is discontinuous on the support of f. The discretization in use is the
standard one. One observes that the same numerical solution u is obtained independently of the
meshsize. Its derivative v’ is discontinuous on the support of the Dirac delta function therefore
the product a(x)u”(z) has the form of a Heaviside function multiplied by a Dirac delta function.
One observes that a translation of the Dirac delta function by one cell suffices to change the
solution u as expected in presence of this kind of product.
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0151 1 400
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0.05- 1 100
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0 500 1000 1500 2000 2500 3000 3500 4000 0 20 40 60 80 100 120 140 160 180 200

Figure 7.5.1. A numerical solution of a Dirichlet problem on [0,1] with irregular coefficient and
Dirac second member with different precisions : 50, 100, 1000, 5000 space steps.

In the figure we show two solutions of the Dirichlet problem a(z)u”(z) + u(z) = f(x) on
the segment [0,1]; a(z) = 1if 0 < z < 0.5,a(0.5) = 1.5,a(x) = 2 if 0.5 < z < 1. The second
member f consists successively of two Dirac delta functions that have slightly different supports
around the discontinuity of @ at x = 0.5. One observes neatly different numerical solutions u that
do not depend on the meshsize h = 50 ',100 !,1000 ',5000 ' from top-left to bottom-right.
Therefore the results, which are obtained by the standard discretization of the second order
derivative, are not an artefact of calculations. This numerically puts in evidence a non classical
problem since an infinitesimal translation of the Dirac delta function f changes significantly the
solution. Indeed one observes that the solutions are not differentiable at = = 0.5 therefore the
term au’ is in form of a product which is classically meaningless.
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