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Résumé

AAACette thèse a pour objet l'étude théorique et numérique de solutions singulières apparais-
sant dans des équations aux dérivées partielles non linéaires de la physique, en particulier en
dynamique des �uides. La présence de discontinuités dans les solutions de ces équations com-
plique la compréhension mathématique des phénomènes mis en jeu et leur traitement numérique,
notamment en vue de simulations informatiques.

AAALes discontinuités étudiées dans cette thèse sont principalement de trois types. Les ondes
de choc, qui peuvent apparaître spontanement au cours du temps ou être imposées en condition
initiale. C'est par exemple la brusque variation de pression lorsqu'un avion dépasse le mur du son.
Les delta-ondes qui sont des discontinuités surmontées par une masse de Dirac. Elles apparaîssent
notamment dans les systèmes de la dynamique des �uides sans pression. Les chocs singuliers sont,
quant à eux, des solutions de forme non classique qui restent à être élucidées mathématiquement.

AAANous étudions ces équations par une méthode de régularisation dans un espace fonctio-
nel approprié. L'idée de base qui a servi à l'élaboration de ce travail est la suivante : lorsque
des schémas numériques construits par des méthodes di�érentes conduisent à des résultats iden-
tiques, ceci jusque dans leurs moindres détails, il semble naturel de s'interroger dans quelle mesure
ces suites de solutions numériques constituent une approximation d'une solution des équations
étudiées. Nous construisons des suites de solutions approchées à partir d'un schéma numérique
original, stable et su�sament simple pour démontrer que ces suites constituent une méthode
asymptotique de Maslov au sens des distributions en dimension trois d'espace. La technique em-
ployée consiste à étendre les variables réelles du problème (domaine physique) en des variables
complexes (domaine non physique), ce qui nous permet de construire des familles de solutions
particulières que l'on ramène au cas réel en faisant tendre un petit paramètre vers 0. Les solutions
physiques recherchées apparaîssent alors comme valeurs au bord de fonctions holomorphes.

AAANous illustrons les résultats obtenus par des applications en dimension deux d'espace en
cosmologie dans les cadres Newtonien et relativistes pour des systèmes sans pression, puis avec
pression et auto-gravitation, ainsi que pour le système des gaz parfaits.

Mots-clés : Ondes non linéaires ; Solutions singulères ; Méthode itérative ; Méthode asympto-
tique de Maslov ; Valeurs aux bord de fonctions holomorphes ; Equations d'Euler compressibles ;
Dynamique des �uides Newtoniens et relativistes ; Cosmologie ; Gaz parfaits.
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Abstract

AAAThis thesis is devoted to the theoretical and numerical study of irregular solutions appea-
ring in nonlinear partial di�erential equations of physics, more speci�cally in �uid dynamics. The
mathematical understanding of the phenomena under concern and their numerical treatment, in
particular in view of computer simulations, is made di�cult by the presence of discontinuities in
the solutions of these equations.

AAAThe discontinuities concerned in this thesis range mainly into three kinds. The schock
waves, which can appear sponteanously as time passes or be imposed in the initial conditions.
For instance the sudden variation of pressure when a plane bypasses the sound speed. The delta
waves are discontinuities linked to a Dirac mass. They appear in particular in pressureless �uid
dynamics. The singular shocks are solutions having a nonclassical shape that are not completely
elucidated.

AAAWe study these equations by a regularization method in a convenient functional space.
The basic idea at the origin of this work is the following : when numerical schemes from very
di�erent numerical methods give identical results, up to the smallest details, it seems natural
to ask oneself to what extent these sequences of numerical solutions approximate a solution -
in a sense to be made precise - of the equations under study. We construct sequences of ap-
proximate solutions from an original numerical scheme which is stable and simple enough to
prove that these sequences form a weak asymptotic method in the sense of distributions in three
space dimension. The regularization in use consists in extending the real physical variables into
complex variables, which permits to construct families of particular solutions that are physically
interpreted by letting a small parameter tends to zero. The sought physical solutions appear as
boundary values of holomorphic functions.

AAAResults are illusttrated by applications in two spaces dimension in cosmology in the New-
tonian and relativistic domains for pressueless systems, then for systems with pressure and self-
gravitation, as well as for the system of ideal gases.

Keywords : Nonlinear waves ; Irregular solutions ; Iterative method ; Weak asymptotic me-
thod ; Boundary values of holomorphic functions ; Compressible Euler equations ; Newtonian and
relativistic �uid dynamics ; Cosmology ; Ideal gases.
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0.1 Foreword.

The equations of �uid dynamics have applications in numerous domains : cosmology and
astrophysics, oceanography, meteorology and climatology, industry and petroleum. . .. The aim
of this work is an attempt to contribute to a theoretical and numerical study of some basic
equations of compressible �uid dynamics. One main di�culty in dealing with these equations
is that solutions of the Cauchy problem, even those starting from analytic initial data, usually
develop singularities in a �nite time such as shock waves, delta waves, contact discontinuities,
concentrations of matter and void regions, among other irregular solutions. Therefore we are
particularly interested in the case where these equations provide irregular solutions. One also
faces a severe problem of lack of uniqueness for these irregular solutions.

We study these equations by a regularization method.
• This method consists �rstly of exhibiting approximate solutions from a suitable original nume-
rical scheme which is shown to be stable and consistent.
• Secondly of interpreting these approximate solutions in a convenient functional space which
permits to regularize them so that they could satisfy the equations.
• Thirdly one shows that one can pass to the limit in this functional space on a sequence of
approximate solutions. Then the limit can be considered as a solution of the equations even if it
is irregular.
• Finally this solution is concretely put in evidence as a �nite set of Radon measures which is an
interpretation of the genuine function solution, by letting the regularization variable tend to 0. In
the cases solutions are known (for instance in the system of ideal gases : Sod, Woodward-Colella,
Toro, Lax, . . .) we observe that the concrete solutions obtained in this way are exactly the same
as the solutions previously obtained by all authors and widely accepted. In the case of previously
unknown solutions we obtain the solutions compatible with physics (large structure formation
in cosmology, evolution of rotating dust clouds looking like formation of solar systems, Jeans
theory,. . .).

As pointed out by P.D. Lax in [25] and [26] numerical methods often give good results. When
several completely di�erent numerical methods give the same results up to the smallest details
one can reasonably expect that these numerical results suggest the existence of a mathematical
solution of the equations. This idea was the basis and the main motivation of this work : use
as auxiliary tool a numerical method (to be found so as to be valid and e�cient in any space
dimension, and to be suitable for proofs of stability and consistency) and use it in an appro-
priate functional space in which one could prove the convergence of the approximate solutions
to a "solution" of the equations in a natural sense, from a result "stability and consistency im-
ply convergence". Therefore the aspect of this solution is approximated by the results from the
scheme. This method unfortunately does not bring abstract results of uniqueness.

In the �rst part of the thesis one considers successively basic equations of �uid dynamics
(chapters 1 to 3) : pressureless �uid dynamics, presence of self-gravitation and/or presence of
pressure, ideal gases. These three systems model a large variety of physical situations. We o�er
a numerical scheme valid in any space dimension. This scheme is simple and therefore it is only
of order one in the space step, but its simplicity is a great mathematical advantage in that it
allows us to obtain mathematically rigorous proofs of consistency and convergence in important
cases. More precisely let us consider a system of the form

Ut + (F (U))x + (G(U))y + (H(U))z = 0, u = (u1, u2, . . . , un)T .



0.1. FOREWORD. 3

Let (Uh), h→ 0, be a family of step functions issued from a numerical scheme. We say that the
scheme "is consistent in the sense of distributions" on R3×]0, T [ i� ∀ψ ∈ C∞c (R3×]0, T [),∫

{Uhψt + F (Uh)ψx +G(Uh)ψy +H(Uh)ψz}dxdydzdt = O(hα)

for some α > 0 when h→ 0. This means that the approximate step functions Uh tend to satisfy
the equations when h→ 0 within an approximation of order α in h in the sense of distributions.
This concept of consistency provides a "weak asymptotic method" obtained from the numerical
scheme. The concept of weak asymptotic methods and their relevance have been �rst put in
evidence by V.G. Danilov, G.A. Omel'yanov, and V.M. Shelkovich in [12] by explicit calculations
and by reducing the problem of the description of interaction of nonlinear waves to the one of
solving some systems of ODEs.

We prove the consistency above for the system of pressureless �uids in 3-D and for the sys-
tem of self-gravitating pressureless �uids in 1-D (chapters 1 and 2). We can presume that for the
systems involving pressure such as the classical system of ideal gases the numerical tests done so
far indicate that this consistency would be true (chapters 2 and 3).

This leads to the natural question [26] p. 144 : to what extent do the results above indicate
that the existence of the �ow that we are approximately calculating exists as a mathematical
object that could be quali�ed as a mathematical solution of the equations ? A tentative answer to
this question has been proposed from an analysis of the singular shocks solutions of the Key�tz-
Kranzer system (chapter 5) [22], [21], [33], as well as from explicit calculations on systems of
relativistic cosmology (chapter 4) [8], [30]. To take into account the full shape of singular shocks
we study them in an appropriate functional space in which convergence can be obtained. The
functional space in which the equations are considered remains unchanged in 2-D and 3-D and
convergence holds as well.

We will construct elements Ũh in the functional space de�ned with a regularizing parameter
from the step functions in the numerical scheme.Then we can extract a convergent subsequence
(Ũhp)p. Let Ũ be its limit. Then we will show that Ũ is solution of the equations in a natural weak
sense close to the classical concept of a weak solution, whose aspect is the numerical solution
observed from the scheme.

The weak solutions obtained have the well-known defects of classical weak solutions, in parti-
cular a strong problem of lack of uniqueness. Fortunately explicit calculations in very particular
cases (shock waves) put in evidence the existence in these cases of stronger solutions for which
some uniqueness can be obtained. In chapter 7 we show that in some particular linear cases
existence-uniqueness can be obtained by adaptation of the classical method based on coercivity
for elliptic boundary value problems. This does not provide even an hint for the above problem of
uniqueness for equations of �uid dynamics but shows that extension of classical general results of
existence-uniqueness to the case of irregular solutions makes sense. Other existence-uniqueness
results are presented in appendix 2 as a work which is presently being investigated.

As a clari�cation let us divide the methodology into successive steps :

1) �nd a 3-D numerical scheme that should be rather general to be applied at least to signi-
�cant equations of �uid dynamics and rather simple to be the starting point of mathematical
proofs. As a consequence the (original as far as the author knows) scheme we present is only of
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order one for the 3-D usual systems such as the system of ideal gases, the shallow water equa-
tions, the systems of collisional and collisionless self-gravitating �uids,.... However it seems this
scheme could be useful in numerical practice since in 1-D it gives results similar to the classical
Godunov scheme. We show that this scheme extends at once to systems of a large number of
equations, and to 3-D problems without dimensional splitting and without any loss of accuracy
relatively to 1-D problems.

2) use this scheme for proofs of stability (L1 stability in density follows from the scheme) and
proofs of consistency. Consistency consists in a proof that the approximate solutions from the
scheme tend to satisfy the equations when the space step tends to 0. Consistency is rigorously
proved as much as possible (3-D pressureless �uids without gravitation, 1-D pressureless �uids
with gravitation) and when a proof is lacking (3-D collisional self-gravitating �uids, ideal gases,
shallow water equations,...) consistency is reduced to very simple criteria which are veri�ed as
convincingly as possible from numerical tests.

3) from an analysis of irregular solutions we can prove the convergence of a sequence of ap-
proximate solutions from the scheme to this object. In short this is no more than a version of
the familiar fact that "stability and consistency imply convergence". This step has mainly been
made possible from an analysis of the singular shock solutions of the Key�tz-Kranzer equations.

The contents of chapters 1 and 2 have been published in [9] and [10].
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0.2 Sum up of equations of �uid dynamics under study.

• Equations of pressureless �uid dynamics

In 1-D

ρt + (ρu)x = 0, (ρu)t + (ρu2)x = 0, (1)

in 3-D
ρt + ~∇.(ρ~u) = ~0, (ρ~u)t + ~∇.(ρ~u⊗ ~u) = ~0. (2)

We recall that the notation ~∇.(ρ~u⊗ ~u) means the vector of components ((ρu2)x + (ρuv)y +
(ρuw)z, (ρuv)x + (ρv2)y + (ρuw)z, (ρuw)x + (ρvw)y + (ρw2)z) if (u, v, w) are the components of
~u.

• Equations of self-gravitating pressureless �uids

In 1-D
ρt + (ρu)x = 0, (ρu)t + (ρu2)x + ρΦx = 0,Φxx = 4πGρ, (3)

in 3-D
ρt + ~∇.(ρ~u) = ~0, (ρ~u)t + ~∇.(ρ~u⊗ ~u) + ρ ~∇Φ = ~0, ∆Φ = 4πGρ. (4)

• Equations of collisional self-gravitating �uids

In 1-D
ρt + (ρu)x = 0, (ρu)t + (ρu2)x + px + ρΦx = 0,Φxx = 4πGρ, p = kρ, (5)

in 3-D

ρt + ~∇.(ρ~u) = ~0, (ρ~u)t + ~∇.(ρ~u⊗ ~u) + ~∇p+ ρ ~∇Φ = ~0,∆Φ = 4πGρ, p = kρ. (6)

• Equations of perfect gases

In 1-D

ρt + (ρu)x = 0, (ρu)t + (ρu2)x + px = 0,

(ρe)t + (ρeu)x + (pu)x = 0, p = (γ − 1)(ρe− ρu
2

2
), (7)

in 3-D
∂ρ

∂t
+ ~∇.(ρ~u) = 0,

∂

∂t
(ρ~u) + ~∇.(ρ~u⊗ ~u) + ~∇p = ~0, (8)

∂

∂t
(ρe) + ~∇.[(ρe+ p)~u] = 0, p = (γ − 1)(ρe− ρ~u

2

2
).
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• Equations of special relativistic �uid dynamics

In 1-D [8]
ρt + ((ρ+ p

c2 )u)x = 0, (ρ+ p
c2 )(ut + uux) + px + (ρ+ p

c2 )Φx = 0,

Φxx = 4πG(ρ+ 3
p

c2
), p = kρ, (9)

in 3-D [8]

ρt + ~∇.((ρ+ p
c2 )~u) = ~0, (ρ+ p

c2 )[~ut + (~∇.~u))~u] + ~∇p+ (ρ+ p
c2 ) ~∇Φ = ~0,

∆Φ = 4πG(ρ+ 3
p

c2
), p = kρ, (10)

with k = 1
3c

2 for pure radiation where c is the velocity of light.

In 1-D [30]
ρt + ((ρ+ p

c2 )u)x = 0, (ρ+ p
c2 )(ut + uux) + px + upt + (ρ+ p

c2 )Φx = 0,

Φxx = 4πG(ρ+ 3
p

c2
), p = kρ, (11)

in 3-D [30]

ρt + ~∇.((ρ+ p
c2 )~u) = ~0, (ρ+ p

c2 )[~ut + (~∇.~u))~u] + ~∇p+ ∂p
∂t ~u+ (ρ+ p

c2 ) ~∇Φ = ~0,

∆Φ = 4πG(ρ+ 3
p

c2
), p = kρ. (12)

In all these equations ρ is the density of matter (the density of energy in the relativistic case
10-13), ~u is the velocity vector, p the pressure, e the density of total energy per unit mass in
(7,9), Φ is the gravitation potential and G is the gravitation constant.
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0.3 Sum up and main results.

Part I is made of three chapters in which one considers successively in 1-D, 2-D and 3-D
the system of pressureless �uids (1)-(2), the system of collisional (5)-(6) (and collisionless, (3)-
(4), as a particular case) self-gravitating �uids and the system of ideal gases (7)-(8). These are
among the most classical systems of �uid dynamics. The aim is to �nd a convenient numerical
scheme valid in 1-D, 2-D and 3-D that gives of course good numerical results, but whose aim is
to serve as basic starting point for a theoretical study motivated by the questions raised by P.D.
Lax [25], [26] and other authors [17], [28], [34]. This scheme will provide a weak asymptotic
method, i.e. an asymptotic method whose discrepancy is intended in the sense of distributions,
as introduced by V.D. Danilov, G.A. Omel'yanov and V.M. Shelkovich [12] as an extension in the
sense of distributions of Maslov's method. This is some kind of consistency between the scheme
and the equations : it provides a sequence of approximate solutions that are plugged into the
equations stated in the sense of distributions. Therefore we also call this property "consistency
in the sense of distributions" as stated in the foreword. To prove this property, the scheme has
to be as simple as possible : indeed it is an order 1 scheme only. L1 stability and positiveness of
the density follow at once from the scheme. This scheme is obtained in three steps : transport
step from "free streaming" originating from cosmology and studied in chapter 1 for pressureless
�uids, averaging step and �nally correction step from a centered discretization. The averaging
step is needed to eliminate oscillations due to the centered discretization in the correction step.
This scheme is inspired from a convection-correction splitting of equations introduced by Le
Roux et al [2]. In Part I, besides the statement of the scheme for the various systems and careful
numerical tests showing its accuracy (Sod, Woodward-Colella, Toro, Lax and coworkers,. . .), one
proves consistency in the sense of distributions as far as possible. In the case of the 3-D system
of pressureless �uids this proof is completely rigorous as well as in the case of the 1-D system
of pressureless self-gravitating �uids. In the other cases one obtains very simple criteria to be
checked numerically for a family of values of the space step h that tend to 0. Of course one
cannot test an in�nity of values of h and the tests are limited to values of h as small as possible.
If one admits the veri�cation should hold as well when h→ 0 then one can apply the consistency
result. All tests give a strong impression one can put faith in this extrapolation. If one limits to
the �nite number of tested values of h then the proof gives an approximation result showing that
the numerical solution from the scheme satis�es the equations up to a small deviation of order 1
in the space step. Now let us describe the contents of each chapter.

• In chapter 1 we consider the system of pressureless �uids. In 1-D the solution of the Riemann
problem may contain delta waves. The Godunov method consists in taking an average in each cell
(projection step) of the solution of the Riemann problems at the interfaces of cells. This average
creates a discontinuity that looks somewhat in contradiction with the concept of cosmic �uid
since the delta waves can be close to the interface of cells or even change their location according
to minor details of calculation when they are located very close to an interface. We introduce
a continuous sharing of these delta waves between left and right cells from the observation of
the case in which there is coexistence of a physical solution made of discontinuities and of an
unphysical delta wave. The scheme so obtained corresponds exactly to the physical intuition : let
the constant state �uid in adjacent cells interpenetrate (which represents exactly the free strea-
ming of the cosmic �uid), then average over each cell in order to have well de�nite values at each
time tn (the averaging corresponds to the sticking of close enough particles). We observe that we
obtain very good numerical results by letting the free streaming take place between several cells
(2 or 3) before the averaging, which permits unusually large CFL conditions. In the case one
decides that the free streaming is allowed only through a single interface the scheme had already
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been noticed in mathematics as a very simple kinetic scheme [4]. In this case we have been able
to fully prove the consistency of the scheme which is particularly technical for arbitrary signs of
velocity in 2-D (each cell has 8 neighbors) and in 3-D (each cell has 26 neighbors) : therefore
direct evaluation is impossible and should be replaced by abstract reasoning. We have obtained

Theorem 1.5.1. Let the initial conditions be L1 in density ρ0 ≥ 0, more generally a positive
bounded Radon measure, and L∞ in velocity. Then the scheme for system (1)-(2) is well de�ned,
L1-stable and consistent in the sense of distributions for all positive time in 1-D, 2-D, and 3-D.

Various numerical simulations are presented : in particular structure formation in 2-D, and
the fact that structure formation is far less e�cient in presence of expansion, and frozen by too
fast expansion (Meszaros e�ect). These results are obtained with a very large CFL condition
r‖u‖∞ ≤ 2.5 if u is the velocity and r = ∆t

∆x .

• In chapter 2 we consider the system of self-gravitating collisional (presence of pressure)
and collisionless (absence of pressure) �uids in 1-D, 2-D and 3-D. In absence of pressure the
proof of consistency can be extended in 1-D at the price of a di�erent proof since gravitation can
increase the velocity. This proof extends in 2-D and 3-D under the assumption that the gradient
of the gravitation potential is bounded, which always holds in 1-D, but not always in 2-D (point
concentration of matter) and in 3-D (concentration of matter in points and strings). We have
obtained

Theorem 1.7.1. Let the initial conditions be L1 in density ρ0 ≥ 0, more generally a positive
bounded Radon measure, and L∞ in velocity. Then the scheme for the self-gravitating pressu-
reless system (3)-(4) is well de�ned, L1-stable and consistent in the sense of distributions for
all positive time in 1-D. This result remains true in 2-D and 3-D as long as the gradient of the
gravitation potential remains bounded.

Anyway, we observe numerically that the scheme works even in cases the gravitation potential
is unbounded. Consistency can be proved in presence of pressure as long as the CFL condition
r‖u‖∞ ≤ 1 holds and the gradient of the gravitation potential remains bounded :

Theorem 1.8.1. Let the initial conditions be L1 in density ρ0 ≥ 0 and L∞ in velocity. Then
in 1-D, 2-D, and 3-D the scheme for the collisional system (5)-(6) is well de�ned, L1-stable
and consistent in the sense of distributions as long as the velocity remains bounded (in the CFL
condition) and the gradient of the gravitation potential remains bounded.

These properties are checked numerically in all tests since in presence of pressure one observes
that collapse to a point or string appears impossible. One applies the scheme to the numerical
simulation of gravitational collapse of clouds of gas : in absence of pressure gravitational collapse
to a point is observed in absence of expansion or slow expansion. In the case of a fast expansion
one observes absence of gravitational collapse (Meszaros e�ect). In 2-D when the cloud of gas is
rotating one observes creation of some structure looking like a solar system : most matter agglo-
merates in the center and there appear smaller agglomerations of matter accompanied by some
clouds, that rotate around the "sun" located in the center. In presence of pressure one observes
numerically Jeans theory : a cloud of gas whose size is large enough collapses gravitationally in
spite of pressure while a smaller cloud is smeared and dissipated by pressure.

• In chapter 3 we apply the scheme to the 2-D Riemann problems for ideal gases considered by
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P.D. Lax in [25] and [26]. We prove consistency as long as the CFL condition holds (boundedness
of the velocity) and as long as the density of total energy remains ≥ 0 (which has always been
observed in all tests).

Theorem 2.3.1. Let the initial conditions ρ0 and e0 be positive L1 functions and the ve-

locity ~u0 be L∞. Assume that on some time interval [0, T ] the velocity is bounded (in the CFL
condition) and that the density e of total energy remains ≥ 0. Then concerning the conserva-
tion laws the scheme is consistent in the sense of distributions. The consistency in the sense of
distributions of the state law takes place in regions in which ρ is strictly positive and in which
the approximate solution has the familiar aspect of piecewise C1 functions having limits on both
sides of the surfaces of discontinuity : shock waves, contact discontinuities, rarefaction waves,
for instance.

These assumptions on the boundedness of velocity and positiveness of the density of total energy
are immediate to check throughout the iterations and have always been satis�ed in all tests. 1-D
numerical tests : Sod, Woodward-Colella, Toro, show that the scheme gives the correct result
with arbitrary precision and with e�ciency, although it is only of order one. For the six 2-D
Riemann problems considered by P.D. Lax [25] and [26] the scheme gives exactly the results
obtained by the other authors with completely di�erent numerical methods. The proof of consis-
tency of the scheme shows that the numerical results obtained by all schemes (the one in this
paper and the schemes mentioned by P.D. Lax in [25] and [26]) represent some approximate
solution of the equations of ideal gases with a possible deviation of order one in the space step.
This is an encouragement and it suggests to go on the investigations in order to put in evidence
a mathematically exact solution of the equations, as developped in Part II.

Part II. After Part I that provides a method to obtain approximate solutions as a mathematical
tool for theoretical investigation, Part II consists in using this method to answer to the ma-
thematical problems that motivated this work : put in evidence rigorously de�ned mathematical
objects that could be proposed as solutions of the equations, prove they correspond to the known
or classically accepted solutions, study their existence, uniqueness and numerical approximation.
Of course, once the stability and consistency of the scheme have been proved in Part I, it re-
mains to put in evidence a convenient functional space in which one could pass to the limit by
compactness in the approximate solutions from the scheme, show that the limit so obtained is
"solution" of the equations in a natural sense, then try to study from "abstract mathematical
methods" the problem of existence-uniqueness of solutions in the functional space previously put
in evidence. From an analysis of the special relativistic equations (10)-(13) in chapter 4 and,
above all, in chapter 5, from an analysis of the singular shocks solutions of the Key�tz-Kranzer
equations [22], [21], [33], [35], [36] one will put in evidence a space of germs of holomorphic func-
tions on a boundary of the real space Rn, which can be interpreted as a particular regularization
procedure as well as a holomorphic version of the Egorov spaces of generalized functions [15].
In this space of holomorphic germs one can use convergence and compactness. The approximate
solutions from the scheme are extended as holomorphic germs. An analog of the classical result
"stability and consistency imply convergence" is proved by compactness. The results in Part I
permit to apply this convergence result and obtain convergence to a proposed solution of the
equations. Unfortunately the problem of uniqueness remains open and our various theoretical
attempts to state the equations in a more precise way -on physical ground- so as to guarantee
existence and uniqueness for the Cauchy problem have failed so far. Existence-uniqueness results
have been obtained but not for the above equations or, when the above equations are concerned,
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we only recover the known cases of regular solutions. In short we can mathematically justify -to
some reasonable extent- the numerical facts that are observed, but we have failed on the pro-
blem of uniqueness, even in the search of more precise formulations of the equations on physical
ground that would ensure existence and uniqueness of the irregular solutions. Now we describe
the contents of the various chapters.

• In chapter 4 we consider the equations that rule a radiation dominated universe as our
universe during the period from soon after the Big Bang to the time of decoupling 380000 years
later (13 billion years before the present time) when the cosmic microwave background was crea-
ted. The importance of these equations come from the fact that the seeds of the to-day universe
were created during this period. General Relativity is not indispensible since the �elds are weak.
Therefore the equations proposed in cosmology [30], [42] are issued from special relativity. The
universe is approximately regarded as a perfect �uid because of the very large scale of length used
by the observers. The Euler equation in (10)-(13) are in nonconservative form which makes an
important di�erence with the equations considered up to now in Part I. For equations in noncon-
servative form the classical Rankine-Hugoniot conditions do not hold as in the conservative case.
Discontinuous solutions of these equations do not make sense within the theory of distributions
and one cannot obtain the jump conditions by a mere integration as in the classical case. In
order to obtain jump conditions for equations (10)-(13) we propose a regularization that permits
to give a mathematical sense to the equations when the solutions are the regularized objects.
The classical Heaviside function H(x) is replaced by a function H(x, ε) where ε is a regularizing
parameter so that H(x, ε) tends to H(x), x 6= 0, when ε→ 0. The calculations on the regularized
objects make sense. The problem to obtain well de�ned jump conditions at the limit ε→ 0 is not
directly solved by the regularization. It has been solved on physical ground simply by observing
that physicists do nonlinear calculations to obtain the relativistic continuity and Euler equations,
so that we state these equations in a stronger form than the state law whose validity appears
to be far less precise. This statement gives nonambiguous jump conditions for systems (10)-(11)
and (12)-(13) :

Theorem 4.4.1. The system (10)-(11) of special-relativistic �uids, with G=0 and in one space
dimension, admits step functions solutions when stated in the following form, where the state law
is satis�ed only in a weak sense

ρt + ((ρ+
p

c2
)u)x = 0, (ρ+

p

c2
)(ut + uux) + px = 0, p

weak
= kρ.

Besides the classical jump condition of the conservative continuity equation, the shock waves
satisfy the nonclassical jump condition

V∆p = c2(ρl +
pl
c2

)(V − ul)(exp
V∆u

c2
− 1)

which follows from the nonconservative Euler equation. As a consequence the Euler equation can
equivalently be stated in the form ut+uux+ px

ρ+ p

c2
= 0 (these two formulations are found in texts

of cosmology). Similar results with a di�erent second formula hold for the system (12)-(13).

We check that adaptations of the numerical scheme used in Part I give the explicit jump condi-
tions so obtained, with a very good approximation in the physical domain under concern. We
observe that on this domain the two approximate systems (10)-(11) and (12)-(13) give approxi-
mately the same numerical solution. It is convenient to considerH(x, ε) as a real analytic function
in x and ε in order to bene�t of the uniqueness of analytic continuation in the statement of the
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space of germs that we introduce for the explicit calculations. This shows the relevance of holo-
morphy in this context and opens the way for the next chapter.

• The main purpose of chapter 5 is to put in evidence a functional space in which we will
�nd by compactness mathematical objects that could satisfy the equations in a natural sense
and appear as limits of the numerical scheme. In Part I it has been rigorously proved or observed
from numerical calculations that L1-stability and consistency hold. It remains to prove in a
suitable functional space that "L1-stability and consistency imply convergence". The singular
shock solutions of the Key�tz-Kranzer equation will permit to put in evidence such a functional
space, as an improvement of the space of holomorphic germs introduced in the previous chapter
for the need of explicit calculations. The scheme of Part I provides approximate solutions (chapter
6 below). In a singular shock solution of the Key�tz-Kranzer equations

ut + (u2 − v)x = 0, vt + (
1

3
u3 − u)x = 0,

the function v is a delta wave i.e. it carries a Dirac delta measure over the discontinuity. The
function u is a mere discontinuity with very small peaks of measure 0 located on the disconti-
nuity. Therefore in distribution theory the function u is equivalent to a mere discontinuity. The
facts that the function u is a mere discontinuity and that the function v is a delta wave, both
travelling with the same constant speed, are incompatible with the equations : for instance in the
�rst one u2− v would contain the Dirac function of v that would not be compensated in ut. This
shows that one has to dissociate the numerical solution u observed in the sense of distributions,
which is a mere discontinuity in distribution theory, from the "genuine" solution u, which is not
a distribution. Indeed one observes two small peaks in the discontinuity of u, that are negligible
in the sense of distributions, but whose participation in u2, u3 become essential to compensate
the delta wave in the variable v. In the space of holomorphic germs suggested in chapter 4 for
the study of explicit solutions of equations of relativistic cosmology these small peaks make sense
and permit the equations to hold because they have a signi�cative contribution in u2 and u3 and
can compensate the Dirac delta distribution in v. In these holomorphic germs one can de�ne a
family of Banach spaces and a concept of compactness so that, to any L1 bounded sequence of
step functions which are approximate solutions (for instance the approximate solutions obtained
from the scheme) we can associate holomorphic germs which are solutions of the equations in a
natural sense provided the given sequence of step functions satis�es the property of consistency,
i.e. we obtained a result of the form "L1-stability and consistency imply convergence". For sim-
plicity we state the theorem in the case of a system of two scalar conservation laws

ut + (f(u, v))x = 0, vt + (g(u, v))x = 0.

Theorem 5.3.1. Under the assumptions of L1-stability and consistency in the sense of distri-
butions the approximate solutions, denoted (un, vn), satisfy the following :
there exists a subsequence of the sequence (un, vn), still denoted (un, vn) to simplify the notation,
two sequences (Un), (Vn) of elements of the functional space on R×]0, T [ and a pair U, V of ele-
ments of the functional space such that
i)∀n, Un, Vn have the "real interpretations" un, vn respectively (the real interpretations are ob-
tained by letting the regularization parameter tend to 0),
ii) U, V have the "real interpretation" u, v respectively,
iii) Un → U, Vn → V in the functional space,
iv) the pair (U, V ) is a weak solution of the equations in a natural sense.



14 TABLE DES MATIÈRES

This applies to an arbitrary number of equations in 1-D, 2-D and 3-D, in particular to all
equations considered up to now and in any dimension. When using the scheme considered in this
work the numerical results -which have always been observed to approximate the exact ones when
exact solutions are known and to be in agreement with physics in absence of previously known
solutions- are approximations of the exact "solution" put in evidence in theorem 6. The problem
is that these proposed "solutions" are some kind of weak solutions and therefore as usual for weak
solutions they su�er from a lack of uniqueness. Various attempts have failed to solve this problem.

• In chapter 6 we extend the scheme considered in Part I and its consistency proof (or
consistency criterion when proofs are replaced by numerical tests) to a rather large family of
conservation laws, those of the form

(ui)t + (uiΦ(U))x = (A(U))x,

U = (u1, . . . , un)T , and their natural multidimensional extensions. The left member is a dege-
nerate system in which Φ(U) plays the role of the numerical velocity that we consider in the
transport step. As in Part I, the scheme is completed by a centered discretization of the right
hand side members with, in between, an averaging step imposed by the centered discretization.
The scheme applies to the Key�tz-Kranzer equations.

ut + (u2 − v)x = 0, vt + (
1

3
u3 − u)x = 0,

stated in the form above with Φ(U) = u.

• In chapter 7 we extend a classical method to the functional space used in theorem 6 : one
introduces generalized Sobolev spaces in which one can use standard tools such as coercivity,
the Lax-Milgram theorem, minimisation of convex functionals. A nontrivial extension is possible
and yields an extension of the classical results of existence-uniqueness for elliptic boundary value
problems in case of possibly very irregular data (our Sobolev spaces contain the distributions
with compact support for instance). This was motivated by the presence of the Poisson equation
inside the equations of self-gravitating �uids and it yields existence-uniqueness for other linear
equations without solution in a more classical context. This extension of the classical methods
has been done only in 1-D. The theorems look like the classical ones but take place in our gene-
ralized Sobolev spaces. It is clear all the results could be extended to several dimensions taking
inspiration from the classical theory. This shows that the space of holomorphic germs is suitable
for extensions of classical methods but up to now these results are limited to linear equations.
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Chapitre 1

Pressureless �uid dynamics

Some systems of PDE's, such as the one of pressureless �uid dynamics, show delta waves in
the solution of the Riemann problem. A method of projection of these delta waves in Godunov's
scheme is proposed. It provides a modi�cation of the original Le Roux et al. scheme in case of
changes in sign of velocity. Stability and convergence of the scheme are proved in one space
dimension for the system of pressureless �uids. As an application, this method has been exten-
ded to classical systems of �uid dynamics, used for the numerical simulation of large structure
formation in cosmology, in presence of expansion of the background. This method of projection
of delta waves can also be applied to systems of conservation laws that have delta waves in the
solution of the Riemann problem.

1.1 Introduction.

In [1] the authors noticed that the solution of the Riemann problem for the system of pres-
sureless �uid dynamics

ρt + (ρu)x = 0, (1.1)

(ρu)t + (ρu2)x = 0, (1.2)

shows a delta wave located on the discontinuity of the solution. Nevertheless, they succeeded
to extend the Godunov scheme to this case, and obtained excellent numerical results. After the
pioneering article [2], various numerical methods have been proposed for the numerical solution
of system (1.1)-(1.2). References are given in [3], [4], [7] and [27]. In the Godunov methods the
delta waves are projected on the cell in which they are located. This method of projection lacks
continuity relatively to the initial conditions, since in�nitesimal variations can change the loca-
tion of the delta waves when they are close to the interfaces of meshes. The method in [2] has
been modi�ed in this chapter to �t with physical intuition at the level of cells for the case of a
cosmic �uid modelled by pressureless material [8] p.34, p.210. The idea developped here is the
following : in this case the cosmic �uid is made of collisionless particles that interact through
gravitation only. Therefore the above lack of continuity looks irrealistic at the level of cells in
the case of large structure formation in cosmology.

To obtain a continuous �ux as in usual Godunov schemes, in the projection step of the Go-
dunov method, one has to share the delta waves into left-hand-side and right-hand-side contri-

17
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butions. In the solution of the Riemann problem there occur two cases. In the �rst case, we have
only one solution of the Riemann problem. It is made of a physically meaningful delta wave,
that we do not know a priori how to share. In the second case, one has two possible solutions :
a physical one that has a classical form (step functions without delta waves), and an unphysical
one involving a delta wave. In this second case, one obtains a Godunov scheme from the physical
solution in form of step functions, which permits to compute the formulas governing the sharing
of the unphysical delta wave that would lead to the same scheme. The method in this chapter
consists in applying the same formulas in the �rst case, when the unique solution is in form of
a delta wave. This method gives back, after some calculations, a very natural scheme from the
physical viewpoint (Theorem 1.5.1) : let the constant-state �uids in adjacent cells �interpenetra-
te�, then average over the overlapping states.

One could conjecture that this method works for pressureless �uid dynamics because by
chance it gives this very natural scheme. An example is given in which the formulas of the sha-
ring of delta waves are di�erent from those in the case of pressureless �uids and it is checked that
the scheme gives the exact solution (�gure 1.9.4). The above method of sharing delta waves can
be applied to systems of PDE's for which there is some coexistence of delta waves and classical
waves as described above in case of system (1.1)-(1.2).

In this chapter one proves stability and consistency of order one of the scheme, i.e. that the
scheme provides a weak asymptotic method of order one in the sense [12] for any con�guration
of the velocity �eld in one space dimension with initial condition any positive Radon measure of
�nite mass in density and any L∞ function in velocity. The proof is new and relies completely on
the very speci�c form of the scheme. The proof extends to two and three space dimension and
also in expanding background.

1.2 Description of the numerical scheme in [2].

Standard 1D notation is used : the space cells are the segments [ih − h
2 , ih + h

2 ], i ∈ Z, the
space step is denoted by h and the time step by ∆t ; we set tn = n∆t and r = ∆t

h . The constant

values of ρ and u on the cell [ih− h
2 , ih+ h

2 ] at time tn are denoted by ρni and uni . In the scheme

in [2] the passage from (ρni , u
n
i )i∈Z to (ρn+1

i , un+1
i )i∈Z is done as follows. One introduces three

intermediate values (attached to the junctions of cells)

wni+ 1
2

=
√
ρni u

n
i +

√
ρni+1u

n
i+1 (1.3)

and

uni+ 1
2
, ρni+ 1

2
,

de�ned by :

• if uni ≥ 0 and uni+1 ≥ 0 then un
i+ 1

2

= uni , ρ
n
i+ 1

2

= ρni ,

• if uni > 0 and uni+1 < 0,
if wn

i+ 1
2

> 0 then un
i+ 1

2

= uni , ρ
n
i+ 1

2

= ρni ,

if wn
i+ 1

2

< 0 then un
i+ 1

2

= uni+1, ρ
n
i+ 1

2

= ρni+1,

• if uni ≤ 0 and uni+1 ≥ 0 then un
i+ 1

2

= 0, ρn
i+ 1

2

= 0,
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• if uni ≤ 0 and uni+1 ≤ 0 then un
i+ 1

2

= uni+1, ρ
n
i+ 1

2

= ρni+1.

Finally one computes the values (ρn+1
i , un+1

i )i∈Z from the formulas

ρn+1
i = ρni − rρni+ 1

2
uni+ 1

2
+ rρni− 1

2
uni− 1

2
, (1.4)

(ρu)n+1
i = ρni u

n
i − rρni+ 1

2
(uni+ 1

2
)2 + rρni− 1

2
(uni− 1

2
)2, (1.5)

un+1
i =

(ρu)n+1
i

ρn+1
i

. (1.6)

In the case uni > 0 and uni+1 < 0, if wn
i+ 1

2

= 0, then the two possible values of ρn+1
i dif-

fer by a signi�cative quantity. As an example, let the values of ρni−1, ρ
n
i and ρni+1 be equal

(= ρ), uni−1 = 1, uni = 1 and uni+1 = −1 − ε ; then one computes that the scheme gives

ρn+1
i = (1 + 2r + rε)ρ. Now, if one changes uni and uni+1 into uni = 1 + ε and uni+1 = −1,

one computes ρn+1
i = (1 − rε)ρ, which di�ers from the previous value by a quantity 2rρ (when

ε→ 0, which makes the two possibilities undistinguishable while 2rρ is not at all small). In the
case wn

i+ 1
2

= 0 one can take an average.

In the case uni > 0 and uni+1 < 0 there is a collision of two volumes of �uid. From formulas
(1.8)-(1.13) below, in this case the solution of the Riemann problem is made of a delta wave
whose velocity has the sign of wn

i+ 1
2

. It is easy to check that in the scheme above this delta

wave is projected on the cell in which it is located. This looks physical in hydrodynamics [2] but
not in cosmology. As an example in the collision of two galaxies there is no star collision but
interpenetration of the two galaxies.

1.3 Solution of the Riemann problem.

The formulas of the solution of the Riemann problem for the system of pressureless �uid
dynamics can be found in [4] and [27]. The values of (ρ, u) are (ρl, ul) on the left-hand-side of
the initial discontinuity located at x = 0 and (ρr, ur) on the right-hand-side. If w is any variable,
we set ∆w = wr − wl. We set

u(x, t) = ul + ∆uH(x− ct), (1.7)

ρ(x, t) = ρl + ∆ρH(x− ct) + αtδ(x− ct), (1.8)

(ρu)(x, t) = (ρu)l + ∆(ρu)H(x− ct) + βtδ(x− ct), (1.9)

(ρu)l = ρlul, (ρu)r = ρrur, u =
(ρu)

ρ
, (1.10)

where H is the Heaviside function and δ is the Dirac delta function. The velocity u is disconti-
nuous at x = ct, while ρ and ρu display a δ-peak on the discontinuity, which is proportional to
time.

Calculations give [4] and [27] :

c =

√
ρrur +

√
ρlul√

ρr +
√
ρl

, (1.11)
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α = −√ρlρr∆u, (1.12)

β = cα. (1.13)

In the case ul > ur one has ∆u < 0, therefore α > 0, as requested since the density ρ cannot
be < 0. But in the case ul < ur, ∆u > 0, therefore α < 0, which is not acceptable for a density.
Therefore the solution (1.7)-(1.10) is not physically acceptable in the case ul < ur (one also �nds
it is unstable). Fortunately, in this case, one �nds another solution, which is physically acceptable
[2], [4] and [27] :

• if x < ult then u(x, t) = ul, ρ(x, t) = ρl (left-hand-side region),
• if ult < x < urt then u(x, t) unde�ned, ρ(x, t) = 0 (void region),
• if x > urt then u(x, t) = ur, ρ(x, t) = ρr (right-hand-side region).

(1.14)

This solution corresponds to the physics of the problem : in absence of pressure the two sides
depart each other with their respective velocities.

1.4 Projection of delta waves.

When a function is regular enough, say L∞, one usually projects it on a discretization lattice
by taking its mean value on each cell [ih− h

2 , ih+ h
2 ]. This method lacks continuity when a delta

wave is located close to an interface. Such a delta wave that, within the unavoidable uncertainty,
would be located on the interface, could be as well attributed to any side. In presence of delta
waves, the knowledge of the function itself is not su�cient to permit a correct projection on a
discretization lattice. The presence of delta waves in the solution (1.7)-(1.9) of Riemann problems
for the equations (1.1)-(1.2) and for the systems of physics in [8], [30] and [31] therefore makes
the projection step of a Godunov scheme nontrivial. The delta waves from the Riemann problems
should have non trivial right-hand-side and left-hand-side contributions to be discovered.

How can we treat the delta wave in the projection step of a Godunov scheme in the case
ul > ur ? The idea developed here is the following :

• In the case ul < ur, one applies the classical Godunov scheme using the solution (1.14)
which has the usual form of step functions.
• Still in this case ul < ur, one seeks how to share the (unphysical) delta-waves in ρ and ρu

in (1.8)− (1.9), so as to obtain the classical Godunov scheme. The delta wave in ρ is assumed to
contribute to the left-hand-side cell by a factor λl and to the right-hand-side cell by a factor λr,
with λl + λr = 1. Same for the delta wave in (ρu) whose explicit contributions are proportional
to factors µl and µr, with µl + µr = 1. We compute explicitely the values λl, λr, µl and µr that
give the same numerical scheme as the one from the step functions solution.

• Now, in the case ul > ur, for each con�guration of the waves, one adopts the same formulas
for λl, λr, µl and µr to share the delta waves into left-hand-side and right-hand-side contributions.

In the sequel of this section the sharing coe�cients λl, λr, µl and µr are calculated in the case
ul < ur as functions of the variables ul, ur, ρl and ρr. We denote by wl (respectively wr) the
mean value of a variable w on the segment [−h2 , 0] (resp. [0, h2 ]).
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• Case : 0 < ul < ur. In this case ul < c < ur from (11). Projection of the step functions
(two discontinuities of velocities ul and ur, provided the CFL condition ur∆t <

h
2 i.e. rur <

1
2 )

gives from (1.14) :

ρl = ρl,
(ρu)l = (ρu)l,

ρr =
ρlul∆t+ρr(h2−ur∆t)

h
2

= ρr + 2rρlul − 2rρrur,

(ρu)r = (ρu)r + 2rρlu
2
l − 2rρru

2
r.

Projection of the (unphysical) delta wave gives from (1.8)-(1.10) :

ρl =
ρl
h
2 +λlα∆t

h
2

= ρl + 2rλlα,

(ρu)l =
(ρu)l

h
2 +µlβ∆t
h
2

= (ρu)l + 2rµlβ,

ρr =
ρlc∆t+λrα∆t+ρr(h2−c∆t)

h
2

= ρr + 2rc(ρl − ρr) + 2rλrα,

(ρu)r =
(ρu)lc∆t+µrβ∆t+(ρu)r(h2−c∆t)

h
2

= (ρu)r + 2rc((ρu)l − (ρu)r) + 2rµrβ.

Identi�cation of the two sets of formulas gives

λl = 0,
µl = 0,

ρlul − ρrur = (ρl − ρr)c+ λrα,
ρru

2
r − ρlu2

l = ((ρu)l − (ρu)r)c+ µrβ.

Using (1.11)-(1.13), the last two formulas give, after immediate calculation, λr = 1 and µr = 1.
Therefore, in this case, the sharing coe�cients are

λl = 0, λr = 1, µl = 0, µr = 1.

This means that in this case the delta wave contributes only to the right-hand-side.

• Case ul < ur < 0. In this case one obtains similarly as above

λl = 1, λr = 0, µl = 1, µr = 0.

• Case ul < 0 < ur and c > 0. Projection of the step functions (provided the CFL condition
max(|ul|, ur)∆t < h

2 i.e. rmax(|ul|, ur) < 1
2 ) gives from (1.14) :

ρl =
ρl(

h
2 +ul∆t)
h
2

= ρl + 2rρlul,

(ρu)l =
(ρu)l(

h
2 +ul∆t)
h
2

= (ρu)l + 2r(ρu)lul,

ρr =
ρr(h2−ur∆t)

h
2

= ρr − 2rρrur,

(ρu)r =
(ρu)r(h2−ur∆t)

h
2

= (ρu)r − 2r(ρu)rur.

Projection of the (unphysical) delta wave gives from (1.7)-(1.13) exactly the same results as in
the �rst case obtained above in the case 0 < ul < ur.

Identi�cation of the two sets of formulas gives
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ρlul = λlα,
ρlu

2
l = µlβ,

−ρrur = ρlc+ λrα− ρrc,
−(ρu)rur = (ρu)lc+ µrβ − (ρu)rc.

Thus one obtains the formulas for the left-hand-side and right-hand-side contributions of the
delta wave

λl =
ρlul
α
, λr =

−ρrur + c(ρr − ρl)
α

, µl =
ρlu

2
l

β
, µr =

−ρru2
r + c(ρrur − ρlul)

β
. (1.15)

• Case ul < 0 < ur and c < 0. Similar calculations give

AAAAAAA λl = ρlul+c(ρr−ρl)
α , λr = −ρrur

α , µl =
ρlu

2
l+c(ρrur−ρlul)

β , µr =
−ρru2

r

β .

In summary, the rule of splitting of the unphysical delta wave observed in the case ul < ur.
The splitting of the unphysical delta wave into a left-hand-side contribution and a right-hand-
side contribution depends on the (left or right-hand-side) positions of the three waves under
concern : the discontinuities of velocities ul, ur and the delta wave of velocity c. Looking at the
above four cases in which ul < ur one arrives at the conclusion that the following rule always
hold to evaluate the λl and λr factors in the contribution of the delta wave in ρ :
• λ-contribution to the side where the physical discontinuity of velocity ul is located : ρlulα ;
• λ-contribution to the side where the physical discontinuity of velocity ur is located : -ρrurα ;

• λ-contribution to the side where the delta wave of velocity c is located : cρr−ρlα .

Note that the respective contributions are null if ur = 0, ul = 0 or c = 0 : there is no
ambiguity when a wave lies at the interface.

For example, in the case ul < 0 < ur and c > 0,
• the wave of velocity ur contributes to the right-hand-side, i.e. to λr, by −ρrurα ;
the wave of velocity ul contributes to the left-hand-side, i.e. to λl, by

ρlul
α ;

the wave of velocity c contributes to λr by c
ρr−ρl
α .

To summarize all contributions : λl = ρlul
α and λr = −ρrurα + cρr−ρlα . One recovers (1.15).

For the µl and µr factors in the contribution of the delta wave in ρu the rule is :

• µ-contribution to the side where the wave of velocity ul is located :
ρlu

2
l

β ,

• µ-contribution to the side where the wave of velocity ur is located : -
ρru

2
r

β ,

• µ-contribution to the side where the delta wave of velocity c is located : cρrur−ρlulβ .

The method in this chapter consists in adopting this rule (obtained in the classical case ul <
ur) in the (unknown) case ul > ur for the splitting of delta waves. How can it be justi�ed ? One
could think that the proper formulas for the projection of delta waves are the same whether they
are physical or unphysical. This rule will be validated by the physical interpretation (Theorem
1.5.1), the numerical tests (section 1.8) and the convergence proof of the scheme (Theorem 1.8.1).
Then this modi�ed Godunov method can be exploited in physics (section 1.9) and applied to
other systems (end of section 1.7). For some of them the splitting formulas are di�erent from
those obtained with the system of pressureless �uids (�gure 1.9.4).
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1.5 Interpretation of the splitting rule.

In the case ur > ul, in which the formulas were obtained, the solution displays a void region
separated by two discontinuities of velocities ul and ur. In the case ur < ul one has instead
some phenomenon looking intuitively like a collision of two volumes of �uid. Does the adopted
splitting rule allow an intuitive interpretation in the collision case ?

Theorem 1.5.1. The Godunov type scheme with delta wave splitting de�ned above amounts
to the following method in the variables ρ and ρu : a free streaming step followed by an averaging
step.

The free streaming step consists in letting matter from any cell cross freely the interfaces
with the neighbor cells and penetrate freely through the matter in these cells. The averaging
step consists in taking an average of the matter present in each cell.

The simplest version of the scheme (CFL : r‖u‖L∞ ≤ 1) consists in letting the matter enter
only in the immediate neighbor cells (on left and right). Then numerical tests showed the rele-
vance of letting the matter cross p successive cells in the �rst step, thus giving CFL conditions
r‖u‖L∞ ≤ p. The scheme so obtained gives usually good numerical results for p = 2 and p = 3
(�gures 1.9.1 and 1.9.2). The scheme degenerates for larger values of p.

proof. For case 0 < ur < ul, from (1.11) one has 0 < ur∆t < c∆t < ul∆t <
h
2 . The projection in

case of interpenetration of the two �uids gives ρl = ρl and ρr =
ρlul∆t+ρr(h2−ur∆t)

h
2

= ρr+2rρlul−

2rρrur. The splitting rule gives λr = ρlul
α −

ρrur
α + c(ρr−ρl)

α , and then ρr =
ρlc∆t+λrα∆t+(h2−c∆t)ρr

h
2

.

Same formulas hold for ρu. Same results are obtained in the case ur < ul < 0.

For case ur < 0 < ul and c > 0, the splitting rule gives λl = −ρrurα , λr = ρlul+c(ρr−ρl)
α , µl =

−ρru
2
r

β and µr =
ρlu

2
l+c(ρrur−ρlul)

β .

Then, from the splitting rule,

ρl =
ρl
h
2 +λlα∆t

h
2

= ρl − 2rρrur,

ρr =
ρr(h2−c∆t)+c∆tρl+λrα∆t

h
2

= ρr − 2rρlul,

(ρu)l =
(ρu)l

h
2 +µlβ∆t
h
2

= (ρu)l − 2rρru
2
r,

(ρu)r =
(ρu)r(h2−c∆t)+c∆t(ρu)l+µrβ∆t

h
2

= (ρu)r + 2rρlu
2
l .

The projection in case of interpenetration gives

ρl =
−ur∆tρr+h

2 ρl
h
2

= ρl − 2rρrur,

ρr =
h
2 ρr+ul∆tρl

h
2

= ρr + 2rρlul,

(ρu)l =
−ur∆t(ρu)r+h

2 (ρu)l
h
2

= ρlul − 2rρru
2
r,

(ρu)r =
h
2 ρrur+ul∆tρlul

h
2

= ρrur + 2rρlu
2
l .

We proceed the same way in the case ur < 0 < ul and c < 0.�
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1.6 A free streaming numerical scheme.

In this section the general scheme in static background is described. At �rst it is stated in
one space dimension. The statement of the scheme depends on the parameter p = 1, 2, 3, ... that
represents the number of cells crossed before the averaging step. For p = 1 the scheme admits
the CFL condition r‖u‖L∞ ≤ 1. The scheme stated with the number p, that we will call p-
scheme, amounts to allow free streaming up to the pth neighbor cell (both into the left and into
the right cells) before the averaging step. Then its CFL condition is r‖u‖L∞ ≤ p. Of course for
r‖u‖L∞ ≤ p−1 it coincides with the (p-1)-scheme. Hence the title of this section. The motivation
of the introduction of these variants is that it is observed that the 2 and 3-scheme usually give
far better results than the 1-scheme. But a degenerescence has been observed for p ≥ 3 or 4
according to the test.

As usual the space cells in one dimension are the segments [ih − h
2 , ih + h

2 ], i ∈ Z. One sets
∆t = rh and tn = n∆t. The constant values of ρ and u on the cell [ih− h

2 , ih+ h
2 ] at time tn are

denoted by ρni and uni respectively. If a < b one sets

L(a, b) = max(0,min(1, b)−max(0, a)) (1.16)

which is the length of [0, 1] ∩ [a, b]. The p-scheme is :

ρn+1
i =

∑
−p≤λ≤p

ρni+λL(λ+ runi+λ, λ+ 1 + runi+λ), (1.17)

(ρu)n+1
i =

∑
−p≤λ≤p

(ρu)ni+λL(λ+ runi+λ, λ+ 1 + runi+λ), (1.18)

un+1
i =

(ρu)n+1
i

ρn+1
i

. (1.19)

The notation L allows a synthetic formulation of the transport, without being forced to
distinguish several cases depending on the signs of the numerical velocities.Take p = 1 for brevity.
Then (1.17) can be rewritten as

ρn+1
i := ρni−1L(−1 + runi−1, ru

n
i−1) + ρni L(runi , 1 + runi ) + ρni+1L(1 + runi+1, 2 + runi+1), (1.20)

When the CFL condition r|uni | ≤ 1 ∀i, ∀n is satis�ed, the �rst term, when multiplied by
h, represents the quantity ρ issued from the cell Ii−1 between times tn and tn+1 that lie in the
cell Ii at time tn+1. Indeed, the cell Ii−1 = [(i− 3

2 )h, (i− 1
2 )h] has been transported according to

the vector runi−1h, since u
n
i−1 is the numerical velocity and the duration time is rh. The overlap

with the �xed cell Ii = [(i− 1
2 )h, (i+ 1

2 )h] has a length of runi−1h if uni−1 ≥ 0, 0 if uni−1 ≤ 0, taking
into account the CFL condition r|uni−1| ≤ 1. From (1.16), one �nds L(−1+runi−1, ru

n
i−1) = runi−1

if uni−1 ≥ 0, 0 if uni−1 ≤ 0. Division by h is due to the fact that ρn+1
i is a mean value on cells of

length h.

The second term, when multiplied by h, represents the quantity ρ issued from the cell Ii that
remain in Ii at time tn+1. Indeed the cell [(i− 1

2 )h, (i+ 1
2 )h] has been transported by the vector

runi h. The overlap with the �xed cell [(i− 1
2 )h, (i+ 1

2 )h] is h−runi h if uni ≥ 0, h+runi h if uni ≤ 0.
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From (1.16) one �nds L(runi , 1 + runi ) = 1− runi if uni ≥ 0, 1 + runi if uni ≤ 0.

The third term is similar to the �rst one : it concerns the quantity ρ issued from the cell Ii+1

that lies in the cell Ii at time tn+1, with the same veri�cation as above.

One observes void regions so that in numerical practice the denominator in (1.19) is replaced
by max(ρn+1

i , 10−100). The CFL condition is

rmax(|uni |) ≤ p. (1.21)

From the proposition below uni is unde�nite in the vacuum points and this unde�nite value
enters only into factors of the value 0 in (1.17) and (1.18).

Proposition 1.6.1. ρni = 0 implies (ρu)ni = 0.

proof. From the fact the initial condition is a pair (ρ0, u0) then ρ0
i = 0 implies (ρu)0

i := ρ0
iu

0
i = 0.

Note from (1.16) that all Lni,λ := L(λ+ runi+λ, λ+ 1 + runi+λ) are positive or null and from (1.17)
that all ρni+λ are positive or null (immediate induction from the initial condition which is a posi-
tive Radon measure). From the positiveness of ρ0

i+λ and L0
i,λ, (1.17) and the assumption, ρ1

i = 0

imply that ρ0
i+λ = 0 or L0

i,λ = 0 for −p ≤ λ ≤ p. From the above remark that ρ0
i = 0 implies

(ρu)0
i = 0 this implies that (ρu)0

i+λ = 0 or L0
i,λ = 0, for −p ≤ λ ≤ p. From formula (1.18) this

implies that (ρu)1
i = 0. The lemma is proved for n=1. The result is immediate by induction on n.�

The two dimensional space (x, y) is divided into square cells Ci,j of side h and centers
(ih, jh)i∈Z : Ci,j is the set of all (x, y) such that ih− h

2 < x < ih+ h
2 and jh− h

2 < y < jh+ h
2 .

We set
A(a, b) = L(a, 1 + a).L(b, 1 + b) (1.22)

which is the area of the intersection of the square of vertices (0, 0), (0, 1), (1, 0), (1, 1) with the
square of vertices (a, b), (1 + a, b), (a, 1 + b), (1 + a, 1 + b). The p-scheme permits free streaming
through p successive cells and it has the CFL condition rmax(|uni,j |, |vni,j |) ≤ p. The formulas of
the p-scheme are

ρn+1
i,j =

∑
−p≤λ,µ≤p

ρni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (1.23)

(ρu)n+1
i,j =

∑
−p≤λ,µ≤p

(ρu)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (1.24)

(ρv)n+1
i,j =

∑
−p≤λ,µ≤p

(ρv)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (1.25)

un+1
i,j =

(ρu)n+1
i,j

ρn+1
i,j

, vn+1
i,j =

(ρv)n+1
i,j

ρn+1
i,j

. (1.26)

The unde�nedness of u, v in vacuum points is no problem (same proof as in the one dimensional
case). The scheme in three space dimension is similar. Let Ci,j,k be the cube of all (x, y, z) such
that (i− 1

2 )h < x < (i+ 1
2 )h, (j − 1

2 )h < y < (j + 1
2 )h, (k − 1

2 )h < z < (k + 1
2 )h. Let

V (a, b, c) = L(a, 1 + a).L(b, 1 + b).L(c, 1 + c) (1.27)
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be the volume of the intersection of the cube of vertices (i, j, k), i, j, k = 0 or 1, with the cube
of vertices (a+ i, b+ j, c+ k), i, j, k = 0 or 1. For the p-scheme, if ω = ρ, ρu, ρv, ρw one sets

ωn+1
i,j,k =∑
−p≤λ,µ,ν≤p

ωni+λ,j+µ,k+νV (λ+ runi+λ,j+µ,k+ν , µ+ rvni+λ,j+µ,k+ν , ν + rwni+λ,j+µ,k+ν). (1.28)

Stability for the p-scheme (for any p) and consistency for the 1-scheme (i.e. the p-scheme in
the case r‖~u‖L∞ ≤ 1) can be proved in three space dimension as an immediate adaptation of the
proof of Theorem 1.7.1 for stability, and in section 1.11 for consistency.

1.7 Stability of the p-scheme.

The aim of this section is to give the proof of stability. To simplify the exposition the proof
is given in the case p = 1. It is identical for any p. For convenience let us recall the 1-scheme

ρn+1
i = ρni−1L(−1 + runi−1, ru

n
i−1) + ρni L(runi , 1 + runi ) + ρni+1L(1 + runi+1, 2 + runi+1), (1.29)

(ρu)n+1
i = (ρu)ni−1L(−1 + runi−1, ru

n
i−1)+

(ρu)ni L(runi , 1 + runi ) + (ρu)ni+1L(1 + runi+1, 2 + runi+1), (1.30)

un+1
i =

(ρu)n+1
i

ρn+1
i

(1.31)

if ρn+1
i 6= 0. In case ρn+1

i = 0 it has been proved in the proposition of section 1.5 that any
arbitrary value un+1

i �ts. For convenience in statement of results one chooses a value between
mini(u

n
i ) and maxi(u

n
i ).

The CFL condition is
rmax(|uni |) ≤ 1. (1.32)

lemma 1.7.1. The maximum principle in u holds

min(u0) ≤ uni ≤ max(u0) ∀i. (1.33)

proof. If a ≤ uni ≤ b ∀i, one proves that

a ≤ un+1
i ≤ b ∀i. (1.34)

If ρn+1
i = 0 this is the above choice. If ρn+1

i > 0 one has to prove from (1.28-1.30) that

a ≤ (ρu)ni−1L(−1+runi−1,ru
n
i−1)+(ρu)ni L(runi ,1+runi )+(ρu)ni+1L(1+runi+1,2+runi+1)

ρni−1L(−1+runi−1,ru
n
i−1)+ρni L(runi ,1+runi )+ρni+1L(1+runi+1,2+runi+1) ≤ b.

Indeed since ρni ≥ 0 ∀i (from (1.28)) and since (ρu)ni = ρni u
n
i (from (1.30) if ρni > 0 and

from the proposition of section 1.5 for vacuum points) the assumption implies

aρni ≤ (ρu)ni ≤ bρni ∀i. (1.35)
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Since the coe�cients L's are positive and the same in the numerator and in the denominator,
inequalities (1.34) with i− 1, i and i+ 1 prove (1.33). It su�ces to consider an induction on n to
conclude. �

Theorem 1.7.1 : stability. Assume that r‖u0‖L∞ ≤ 1. Then on R, ρ is positive and L1

stable, u is L∞ stable and satis�es the maximum principle, ρu and ρu2 are L1 stable.

proof. The L1 stability of ρ follows from (1.28) which is merely a transport. The L∞ stability of
u follows from the lemma. The stabilities of ρ and u imply the stabilities of ρu and ρu2.�

1.8 Consistency of the 1-scheme in one space dimension.

For ω = ρ, u, ρu and ρu2 we denote by ωh the step function on R × [0,+∞[ whose values
on the rectangles [ih− h

2 , ih+ h
2 [×[nrh, (n+ 1)rh[ are ωni . We skip the indices h to shorten the

notation.

Theorem 1.8.1 : consistency. For ∀ψ ∈ C∞c (R×]0,+∞)) the following limits hold when h→ 0∫
(ρψt + ρuψx)dxdt = O(h), (1.36)∫

(ρuψt + ρu2ψx)dxdt = O(h), (1.37)

i.e. the scheme provides a weak asymptotic method of order one.

proof. First step. If ω = ρ or ρu a direct calculation gives that ∀ψ ∈ C∞c (R×]0,+∞))

∫
(ωψt + ωuψx)dxdt = −h

∑
i,n

[ωni − ωn−1
i + r((ωu)n−1

i − (ωu)n−1
i−1 )]ψni + hO(1), (1.38)

where ψni = ψ(ih, nrh). Indeed (1.37) is easily obtained using the stability results in Theorem
1.1.7 and Taylor's formula for ψ. The intermediate steps are∫

(ωψt + ωuψx)dxdt = rh2
∑
i,n(ωni

ψn+1
i −ψni
rh + (ωu)ni

ψni+1−ψ
n
i

h ) + hO(1).

Then∫
(ωψt + ωuψx)dxdt = −h

∑
i,n[ωni − ω

n−1
i + r((ωu)ni − (ωu)ni−1)]ψni + hO(1).

Then, one uses that∑
i,n[(ωu)ni − (ωu)ni−1)]ψni =

∑
i,n[(ωu)n−1

i − (ωu)n−1
i−1 )]ψni +

∑
i,n(ωu)ni (ψni −ψni+1 −ψ

n−1
i +

ψn−1
i+1 ), where the last factor is O(h2).

Remark : positive signs of velocities. If un−1
i ≥ 0 ∀i then (1.28)-(1.29) give

ωni = ωn−1
i−1 ru

n−1
i−1 + ωn−1

i (1− run−1
i ) = ωn−1

i − r((ωu)n−1
i − (ωu)n−1

i−1 ). (1.39)

Therefore the �rst term in the sum in (37) is null, which proves (35)-(36).
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Second step : arbitrary signs of velocities. For given index i0 the value u
n−1
i0

can be ≥ 0 or ≤ 0.

• If un−1
i0
≤ 0 then the "matter ω� in the cell [(i0 − 1

2 )h, (i0 + 1
2 )h] at time tn−1 goes to the

left between tn−1 and tn.
Therefore, after division by h, the amount of matter in the cell i0−1 is ωni0−1 = ωn−1

i0
(−run−1

i0
)+terms

not involving ωn−1
i0

, and the amount of matter in the cell i0 is ωni0 = ωn−1
i0

(1 + run−1
i0

)+terms

not involving ωn−1
i0

, where the ωn−1
i0

terms concern respectively received and remaining matter.

Therefore, for �xed n, in the sum
∑
i ω

n
i ψ

n
i the term ωn−1

i0
occurs in (and only in) ωn−1

i0
(−run−1

i0
)ψni0−1+

ωn−1
i0

(1 + run−1
i0

)ψni0 .

Consequently, in the sum
∑
i[ω

n
i −ω

n−1
i +r((ωu)n−1

i −(ωu)n−1
i−1 )]ψni the term involving ωn−1

i0
is

ωn−1
i0

(−run−1
i0

)ψni0−1+ωn−1
i0

(1+run−1
i0

)ψni0−ω
n−1
i0

ψni0+r(ωu)n−1
i0

ψni0−r(ωu)n−1
i0

ψni0+1 = rωn−1
i0

un−1
i0

(−ψni0−1+

ψni0 + ψni0 − ψ
n
i0+1) = rωn−1

i0
un−1
i0

O(h2)

from Taylor's formula applied to ψ.

• Similarly, if un−1
i0
≥ 0 one checks that one has again O(h2) (O(h2) is the value 0 in this

case) in factor of ωn−1
i0

un−1
i0

. This is done as follows. Now the matter goes to the right. Therefore

ωni0+1 = ωn−1
i0

run−1
i0

+terms not involving ωn−1
i0

,

ωni0 = ωn−1
i0

(1− run−1
i0

)+terms not involving ωn−1
i0

.

Therefore in the sum
∑
i ω

n
i ψ

n
i the term ωn−1

i0
occurs in (and only in) ωn−1

i0
run−1
i0

ψni0+1+ωn−1
i0

(1−
run−1
i0

)ψni0 .

As a consequence in the sum
∑
i(ω

n
i −ω

n−1
i +r((ωu)n−1

i −(ωu)n−1
i−1 ))ψni the term involving ωn−1

i0
is

ωn−1
i0

run−1
i0

ψni0+1+ωn−1
i0

(1−run−1
i0

)ψni0−ω
n−1
i0

ψni0+r(ωu)n−1
i0

ψni0−r(ωu)n−1
i0

ψni0+1 = rωn−1
i0

un−1
i0

(ψni0+1−
ψni0 + ψni0 − ψ

n
i0+1) = 0.

Finally from these two cases the second member of (1.37) appears as
−h

∑
i0,n

ωn−1
i0

un−1
i0

O(h2) + hO(1) = hO(1) from the L1 stability in ωu.�

This proof extends to three space dimension in which case it becomes rather technical : sec-
tion 1.11.�

The initial condition. The initial values (ρ0
i , u

0
i )i∈Z are obtained as mean values of the data

ρ0, u0 on the cells in x-space. Since u0 ∈ L∞ and since ρ0 is a positive Radon measure of �nite
mass, i.e. a positive continuous linear map on the Banach space of continuous bounded functions
on R, there is a di�culty to interpret the product ρ0u0 (think at a Dirac mass located on a
discontinuity of u0). The physically signi�cant quantities are the mass (of density ρ0) and the
momentum (of density ρ0u0) ; of course the velocity of a concentration of matter is physically
well de�ned which eliminates the above ambiguity and permits a well de�ned discretization of ρ0

and ρ0u0 on the cells. When a concentration of ρ0 is located on an interface of cells it is shared
arbitrarily into left and right, sharing in the same way ρ0u0. Then u0 is well de�ned on the non
void cells. In the void cells the values u0 do not matter (from the scheme). One can choose them
in between the min and the max of u0 in nonvoid cells for a more precise formulation of the
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maximum principle.

Let ρ0
h(x), u0

h(x) denote the step functions on R which are the discretizations of the initial
condition on the cells and let ρh(x, t), uh(x, t) be the step functions solution from the scheme.
The initial condition is satis�ed in the following natural sense :

Proposition 1.8.1. ∀ψ ∈ C∞c (R) one has the following :

∫
[ρh(x, t)− ρ0

h(x)]ψ(x)dx = tO(1) + hO(1), (1.40)

∫
[(ρhuh)(x, t)− (ρhuh)0(x)]ψ(x)dx = tO(1) + hO(1). (1.41)

proof. For simplicity in notation we drop again the indices h. Let ω = ρh or ρhuh. If t ∈
](n− 1

2 )rh, (n+ 1
2 )rh[ let

AAAAAAAAAAAAAAA I =
∫

[ω(x, t)− ω0(x)]ψ(x)dx.

Then I =
∑
i

∫
[(i− 1

2 )h,(i+ 1
2 )h]

(ωni − ω0
i )ψ(x)dx =

∑
i(ω

n
i − ω0

i )ψih + hO(1) using the L1 sta-

bility in ω. Then

I =
∑n
p=1

∑
i(ω

p
i − ω

p−1
i )ψih+ hO(1).

From the following bound of the second member of (1.37) with only
∑
i instead of

∑
i,n ob-

tained in the third step in the above proof of convergence with ψ(x) in place of ψ(x, t) :∑
i(ω

p
i − ω

p−1
i )ψi =

∑
i−r[(ωu)p−1

i − (ωu)p−1
i−1 ]ψi +

∑
i r(ωu)p−1

i O(h2),

one has

I =
∑n
p=1

∑
i−r[(ωu)p−1

i − (ωu)p−1
i−1 ]ψih+

∑n
p=1

∑
i r(ωu)p−1

i O(h3) + hO(1).

Then from the L1 stability in ωu

I =
∑n
p=1

∑
i r(ωu)p−1

i (ψi+1 − ψi)h+ hO(1) =
∑n
p=1 hO(1) + hO(1).

Since for �xed t one has n = the integer part of t
rh , I = tO(1) + hO(1), which ends the proof. �

Remark 1. The method of projection of delta waves can be applied to systems of conservation
laws of the form

ut + (u2)x = 0, vt + (f(u))x + (uv)x = 0. (1.42)

The case f = 0 has been studied in [24], [38] and [44] as a system whose solution of the Riemann
problem contains delta waves. Plugging

u(x, t) = ul + ∆uH(x− ct), v(x, t) = vl + ∆vH(x− ct) + αtδ(x− ct) (1.43)
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into (1.41) one obtains a solution of the Riemann problem in the form (1.42) where the formulas
of c and α are :

c = ul + ur, α = c∆v −∆f −∆(uv). (1.44)

The projection method described in section 1.1 can be used because when ul ≤ ur the stable
solution in u for equation ut + (u2)x = 0 is a rarefaction wave therefore there is no longer a
delta wave in v. To simplify the calculation this rarefaction wave is replaced by a suitable pair
of nonentropic waves having the usual form of discontinuities with constant speed. In this case
ul ≤ ur one considers (unstable) solutions of the Riemann problem of the form :

u(x, t) = ul + (ū− ul)H(x− clt) + (ur − ū)H(x− crt),

v(x, t) = vl + (v̄ − vl)H(x− clt) + (vr − v̄)H(x− crt). (1.45)

The jump formulas are obtained as usual :

cl = ul + ū, cr = ur + ū, vrū− urv̄ + f(ū) = f(ur), vlū− ulv̄ + f(ū) = f(ul). (1.46)

In the case f(u) = u one obtains ū = 0 and v̄ = −1. Then the formulas for the contributions
are respectively :

ul(vl + 1)

α
,−ur(vr + 1)

α
,
c(vr − vl)

α
. (1.47)

The projection gives a scheme di�erent from the one described in Theorem 1.5.1. It is compared
with the exact solution in �gure 1.9.4.

1.9 Numerical tests.

The scheme in this chapter is compared with other schemes. We also propose a test showing
the applicability of the method to other systems.

In �gure 1.9.1 the left �gures show comparisons with the exact solution for three di�erent
large CFL conditions when this solution is a piecewise continuous curve. In the right �gures the
exact solution is a delta wave at i = 250. One �rst observes that it is perfectly located. From top
to bottom the CFL conditions are r‖u‖L∞ = 1.035, 2.07, 3.57 (relevant of values p = 2, 3, 4). The
support of the delta wave encompasses 10, 3, 10 cells respectively. In this test the sticky particle
method of [7] gives a support located on one mesh only (�gure 6 in [7]). The isolated points that
are observed in the left �gures are parasite values due to some unphysical numerical inconsisten-
cies at sonic points, i.e. points in which the wave speed equals 0 and usually changes sign. These
isolated points have been observed in �gure 1 of [4], �gure 1 in [3], �gure 1.9.3 in this chapter
from the scheme in [2] and are mentioned in section 5 of [27] when the velocity changes sign in
regions where the density is smoothly varying. The method in [4] makes them disappear in an
order 2 scheme (�gure 2 in [4]). They are absent in the sticky particle method of [7]. For p < 1
there is only one of them (indeed the numerical result from the scheme in this chapter is identical
to the one in �gure 1.9.3 top-left). Best results are obtained for r‖u‖L∞ between 2 and 2.5 as
it is observed in the middle �gures. A beginning of degenerescence is observed on the bottom
�gures for r‖u‖L∞ = 3.57. The computations are very fast : from 0.05 second to 0.08 second on
a standard PC. The initial conditions are [7] : if −π ≤ x ≤ π, ρ0(x) = 2 − sinx, u(x) = 1 − x.
Elsewhere the initial values are ρ0 = 0 = u0. The values x = 0 and x = π correspond respectively
to i = 200 and i = 357. On the left �gures the product Nr is chosen equal to 25 where N is the
number of time steps. On the right �gures Nr=50.





i = 110 rN = 351

r‖u‖L∞ = 1, 2, 3, 4
20, 15, 2, 15

r‖u‖L∞ = 3 i = 50
100, ρ(i) = 2, u(i) = 1 i = 200 400, ρ(i) = 1, u(i) = �1. ρ = 0 u = 0

r‖u‖L∞ ≤ 1
r



r‖u‖L∞ ≤ 1

i + 1
2 uni > 0 uni+1 < 0

300
r = 0.5

ul = 2, vl = 1, ur = 1 vr = 12
(c, ul, vl, ur, vr) = (2, 2, 1, 2, 25) (3, 2, 25, 1, 12)

α = 0
ul = 2, vl = 1, ur = �1 vr = 1 i = 750

i = 751 300 600 ct = 150 t = 150
c = 1 αt = 600 + 300 = 900 α = 6

r‖u‖L∞ = 2.6
p = 3 4 r‖u‖L∞ > 2.5

h→ 0

r‖u‖L∞ > 1 r



a(t)

ρt + 3
ȧ(t)

a(t)
ρ+

1

a(t)
(ρu)x = 0,

(ρu)t + 4
ȧ(t)

a(t)
ρu+

1

a(t)
(ρu2)x = 0.



ρ(x, t), u(x, t)

φ(t) =
∫ t

0
dτ
a(τ)2 ρ̄(x, t) = a(t)�3ρ(x, φ(t)), ū(x, t) = a(t)�1u(x, φ(t))

�

0.9 ≤ ρ ≤ 1.1,�0.5 ≤ u ≤ 0.5 a(t) = 1 + ct
c

a3

r‖u‖L∞ = 2
200 × 200
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evolution one observes is exactly similar to the one depicted in [8] p.308. The 2D tests can be
done on any standard PC.

1.11 End of the proof of consistency in 2-D and 3-D.

For brevity we set ω := ρ, ρu, ρv, ρw. Following the 1-D proof in 2-D and 3-D the respective
extension of (1.37) is :

I2 := −h2
∑
i,j,n

[ωn+1
i,j − ω

n
i,j + r((ωu)ni,j − (ωu)ni−1,j) + r((ωv)ni,j − (ωv)ni,j−1)]ψni,j , (1.50)

and

I3 := −h3
∑
i,j,k,n

[ωn+1
i,j,k − ω

n
i,j,k + r((ωu)ni,j,k − (ωu)ni−1,j,k) + r((ωv)ni,j,k − (ωv)ni,j−1,k) (1.51)

+r((ωw)ni,j,k − (ωw)ni,j,k−1)]ψni,j,k.

We will prove that I2 and I3 equal O(h) which will prove that the scheme is a weak asymp-
totic method of order one in 2-D and 3-D.

First step : two dimension and positive velocities. In this �rst step let us assume that
∀i, j, n (u)ni,j ≥ 0 and (v)ni,j ≥ 0. The induction formulas (1.28)-(1.29) are an evaluation of
the transports that take place between times tn and tn+1 : the cell Ci,j looses part of its
contents (wich has been transported at velocity (uni,j , v

n
i,j)) and has received matter from the

cells Ci−1,j , Ci,j−1, Ci−1,j−1 only since we assume positiveness of velocities. The following contri-
butions are obvious from pictures of the overlapping transported cells with the �xed cell Ci,j in
the four cases given in the Appendix.

From �gure 1.11.1 we obtain

h2ωn+1
i,j = Ti,j + Ti−1,j + Ti,j−1 + Ti−1,j−1

where
• Ti,j := ωni,j(h − rhuni,j)(h − rhvni,j) denotes the matter that remains at time tn+1 in the �xed
cell Ci,j , from an evaluation of the area of the intersection of the transported cell Ci,j with the
�xed cell Ci,j ;
• Ti−1,j := ωni−1,jrhu

n
i−1,j(h− rhvni−1,j) denotes the matter that comes from the cell Ci−1,j from

an evaluation of the area of the intersection of the transported cell Ci−1,j with the �xed cell Ci,j ;
• Ti,j−1 := ωni,j−1(h− rhuni,j−1)rhvni,j−1 denotes the matter that comes from the cell Ci,j−1 from
an evaluation of the area of the intersection of the transported cell Ci,j−1 with the �xed cell Ci,j ;
• Ti−1,j−1 := ωni−1,j−1rhu

n
i−1,j−1rhv

n
i−1,j−1 denotes the matter that comes from the cell Ci−1,j−1

from an evaluation of the area of the intersection of the transported cell Ci−1,j−1 with the �xed
cell Ci,j .

Developping and dividing by h2 one obtains the formula

ωn+1
i,j − ωni,j + r[(ωu)ni,j + (ωv)ni,j − (ωu)ni−1,j − (ωv)ni,j−1] =

r2((ωuv)ni,j − (ωuv)ni−1,j − (ωuv)ni,j−1 + (ωuv)ni−1,j−1). (1.52)
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Therefore, from (1.49)

I2 = −r2h2
∑
i,j,n

[(ωuv)ni,j − (ωuv)ni−1,j − (ωuv)ni,j−1 + (ωuv)ni−1,j−1]ψni,j . (1.53)

A change in indices gives

I2 = −r2h2
∑
i,j,n

(ωuv)ni,j(ψ
n
i,j − ψni+1,j − ψni,j+1 + ψni+1,j+1). (1.54)

From the L1 stability of ωuv and Taylor's formula in ψ, which gives a O(h2) bound depending
only on ψ, I2 = O(h).�

Second step : three dimension and positive velocities. From the transport formula (1.27) with
p = 1 and since all velocities are ≥ 0 one has to take into account the cell Ci,j,k itself, the
three cells Ci−1,j,k, Ci,j−1,k, Ci,j,k−1, the three cells Ci−1,j−1,k, Ci,j−1,k−1, Ci−1,j,k−1 and �nally
the cell Ci−1,j−1,k−1. This gives 27 terms in the second member below. Using the similarity with
the 2-D case, one obtains

h3ωn+1
i,j,k = U0 + U1 + U2 + U3

where

U0 = ωni,j,k(h− rhuni,j,k)(h− rhvni,j,k)(h− rhwni,j,k);

U1 = ωni−1,j,krhu
n
i−1,j,k(h− rhvni−1,j,k)(h− rhwni−1,j,k)

+ωni,j−1,k(h− rhuni,j−1,k)rhvni,j−1,k(h− rhwni,j−1,k)
+ωni,j,k−1(h− rhuni,j,k−1)(h− rhvni,j,k−1)rhwni,j,k−1;

U2 = ωni−1,j−1,krhu
n
i−1,j−1,krhv

n
i−1,j−1,k(h− rhwni−1,j−1,k)

+ωni,j−1,k−1(h− rhuni,j−1,k−1)rhvni,j−1,k−1rhw
n
i,j−1,k−1

+ωni−1,j,k−1rhu
n
i−1,j,k−1(h− rhvni−1,j,k−1)rhwni−1,j,k−1;

U3 = ωni−1,j−1,k−1rhu
n
i−1,j−1,k−1rhv

n
i−1,j−1,k−1rhw

n
i−1,j−1,k−1.

Developping, dividing by h3 and setting A = ωuv,B = ωuw,C = ωvw,D = ωuvw,E = −ωuvw
(it is convenient to consider D and E separately), one obtains

ωn+1
i,j,k = ωni,j,k+

r(−(ωu)ni,j,k − (ωv)ni,j,k − (ωw)ni,j,k + (ωu)ni−1,j,k + (ωv)ni,j−1,k + (ωw)ni,j,k−1) (1.55)

+r2(Ani,j,k −Ani−1,j,k −Ani,j−1,k +Ani−1,j−1,k +Bni,j,k −Bni−1,j,k −Bni,j−1,k +Bni−1,j−1,k (1.56)

+Cni,j,k − Cni−1,j,k − Cni,j−1,k + Cni−1,j−1,k)

−r3(Dn
i,j,k−Dn

i−1,j,k−Dn
i,j−1,k +Dn

i−1,j−1,k +Eni,j,k−1−Eni−1,j,k−1−Eni,j−1,k−1 +Eni−1,j−1,k−1).
(1.57)
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The sum (1.54) enters into the sum in the second member of (1.50). Each of the �ve blocks of
four terms in A,B,C,D,E gives a O(h2) bound after transfer of the lower indices to the smooth
function ψ : for instance∑
i,j,k,n r

2(Ani,j,k − Ani−1,j,k − Ani,j−1,k + Ani−1,j−1,k)ψni,j,k =
∑
i,j,k,n r

2Ani,j,k(ψni,j,k − ψni+1,j,k −
ψni,j+1,k + ψni+1,j+1,k).

The conclusion I3 = O(h) follows from the L1 stability of A,B,C,D,E and Taylor's formula in
ψ.�

Third step : recall of the one dimensional proof with arbitrary signs of velocities. We need to
recall the one dimensional proof of Theorem 1.8.3, as a preparation to help for the understanding
of the two and three dimensional proofs. Indeed it provides a description of the proof for the �rst
order terms in r in the two and three dimensional cases.

From (1.17)-(1.18), for given index i0, the quantity ωni0 , ω = ρ, ρu, which lies in the cell

[i0h − h
2 , i0h + h

2 ] at time tn is in part transported from time tn to time tn+1 at a velocity
uni0 to one of the two neighbor cells : a quantity ωni0u

n
i0

(tn+1 − tn) = ωni0u
n
i0
rh leaves the cell

[i0h − h
2 , i0h + h

2 ]. It contributes to the cell on the left if uni0 < 0, or to the cell on the right if
uni0 > 0. Therefore, after division by h,

if uni0 > 0, then (loss of the cell i0 and gain of the cell i0 + 1) :

ωn+1
i0
− ωni0 = −r(ωu)ni0 (and terms not involving (ωu)ni0) ,

ωn+1
i0+1 − ωni0+1 = r(ωu)ni0 (and terms not involving (ωu)ni0).

if uni0 < 0, then (loss of the cell i0 and gain of the cell i0 − 1) :

ωn+1
i0
− ωni0 = r(ωu)ni0 (and terms not involving (ωu)ni0),

ωn+1
i0−1 − ωni0−1 = −r(ωu)ni0 (and terms not involving (ωu)ni0).

In both cases, from the CFL condition (1.20) with p = 1, there are no more terms (ωu)ni0 in

the sum
∑
i(ω

n+1
i − ωni ). Therefore in the sum

∑
i(ωi − ωni )ψni there are only two occurences of

(ωu)ni0 , namely those in the two above cases : (ωu)ni0 appears in this sum as

r(ωu)ni0(ψni0+1 − ψni0) if uni0 > 0, r(ωu)ni0(ψni0 − ψ
n
i0−1) if uni0 < 0.

(1.58)

Applying this result for all i in place of i0, one obtains∑
i(ω

n+1
i − ωni )ψni + r

∑
i(ωu)ni ψ

n
i − r

∑
i(ωu)ni−1ψ

n
i = r

∑
i(ωu)ni Q

n
i

where Qni = ψni+1 − ψni + ψni − ψni+1 = 0 if uni ≥ 0
or
Qni = ψni − ψni−1 + ψni − ψni+1 = O(h2) if uni ≤ 0.

One obtains
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I1 := −h
∑
i,n

[ωn+1
i − ωni + r((ωu)ni − (ωu)ni−1)]ψni = −h

∑
i,n

(ωu)ni O(h2) = O(h) (1.59)

from the L1 stability of ωu.�

Fourth step : two dimensional case and arbitrary signs of velocities. In the two dimensional
case the one dimensional argument applies without any change in the terms r(ωu)ni,j , r(ωv)ni,j in
I2, (1.49). If, for instance u

n
i0,j0

> 0, then the matter ωni0,j0 in the cell Ci0,j0 at time tn goes to the
right. Therefore, at time tn+1 it covers in the cell Ci0+1,j0 a region of area ru

n
i0,j0

h(h−rh|vni0,j0 |) =

runi0,j0h
2 (and term in r2). Therefore the terms in factor of r are exactly the same in each x, y

direction as in the one dimensional case, except that the factor h2 replaces the factor h. The
di�erence with the one dimensional case is the occurence of terms in r2 that we now consider.

In the (unknown since it depends on the �eld of velocity at time tn) formula giving ω
n+1
i,j (see

(1.51) in the case all velocities are positive) there appear terms r2(ωuv)ni,j that were proved in
(1.52)-(1.53) to be une�cient in the case all velocities are positive. Here one has to prove again
that these terms are une�cient. For given (i0, j0) one can distinguish four cases, depending on
the signs in (uni0,j0 , v

n
i0,j0

). Let us �rst consider the case (uni0,j0 ≥ 0, vni0,j0 ≥ 0) : one cannot a
priori use (1.51)-(1.53) because the signs of all the velocities for (i, j) 6= (i0, j0) are unknown here.

In (1.51) the quantity (ωn+1
i,j − ωni,j) has been evaluated in the case all velocities are positive.

This is no longer the case here since we only know that uni0,j0 ≥ 0, vni0,j0 ≥ 0 (with any possible
signs for the other velocities). In the present case, formula (1.51) is no longer valid. The second
members of the unknown formulas which here replace the formulas (1.51) depend on the unk-
nown signs of the velocities for all (i, j), but, when considered for all (i, j), they contain the same
terms r2(ωuv)ni0,j0 as the set of all formulas (1.51) since these terms follow from the transport
of the cell Ci0,j0 according to the positive velocities uni0,j0 ≥ 0, vni0,j0 ≥ 0 . Therefore it su�ces
to search the terms (ωuv)ni0,j0 in formulas (1.61) written for all (i, j). Therefore from formulas

(1.51) the terms (ωuv)ni0,j0 in the series
∑
i,j(ω

n+1
i,j − ωni,j)ψni,j are

•+ r2(ωuv)ni0,j0ψ
n
i0,j0

from (51) with �rst member ωn+1
i0,j0
− ωni0,j0 + . . . ;

• − r2(ωuv)ni0,j0ψ
n
i0+1,j0

from (51) with �rst member ωn+1
i0+1,j0

− ωni0+1,j0
+ . . . ;

• − r2(ωuv)ni0,j0ψ
n
i0,j0+1 from (51) with �rst member ωn+1

i0,j0+1 − ωni0,j0+1 + . . . ;

•+ r2(ωuv)ni0,j0ψ
n
i0+1,j0+1 from (51) with �rst member ωn+1

i0+1,j0+1 − ωni0+1,j0+1 + . . .

Their sum gives

r2[(ωuv)ni0,j0ψ
n
i0,j0 − (ωuv)ni0,j0ψ

n
i0+1,j0 − (ωuv)ni0,j0ψ

n
i0,j0+1 + (ωuv)ni0,j0ψ

n
i0+1,j0+1]. (1.60)

We have obtained : if uni0,j0 ≥ 0 and vni0,j0 ≥ 0 the factor (ωuv)ni0,j0 occurs in the sum
∑
i,j(ω

n+1
i,j −

ωni,j)ψ
n
i,j as the term

r2(ωuv)ni0,j0(ψni0,j0 − ψ
n
i0,j0+1 − ψni0+1,j0 + ψni0+1,j0+1). (1.61)

The ψ′s give the O(h2) bound already noticed in the one dimensional case.
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Now it su�ces to notice that for each of the three other cases concerning the signs of
(uni0,j0 , v

n
i0,j0

) the O(h2) bound occurs as above by changing the sense of some x, y axis so as to
be in the above positiveness case (the scheme is clearly unsensitive to a change in sense of the x, y
axis). Finally, in the sum

∑
i,j(ω

n+1
i,j −ωni,j)ψni,j , the sum of all terms in r2 is

∑
i,j r

2(ωuv)ni,jO(h2).

Therefore the sum of all r2 terms gives O(h) in (1.49). �

Fifth step : Three dimension and arbitrary signs of velocities. In the three dimensional case
(1.50), the occurences in the sum

∑
i,j,k(ωn+1

i,j,k − ωni,j,k)ψni,j,k of the terms of order 1 in r are
similar to those considered in the one dimensional case and the occurences of the terms of or-
der 2 are similar to those considered in the two dimensional case. It remains to evaluate the terms
r3(ωuvw)ni0,j0,k0

. We distinguish eight cases, depending on the signs of (uni0,j0,k0
, vni0,j0,k0

, wni0,j0,k0
).

First, consider the case all signs are positive. As explained in the two dimensional case the terms
in r3(ωuvw)ni0,j0,k0

contained in the sum
∑
i,j,k(ωn+1

i,j,k − ωni,j,k)ψni,j,k can be extracted from all
formulas (1.56) written for all (i, j, k) by searching the terms emanating from the cell Ci0,j0,k0

because the three velocities uni0,j0,k0
, vni0,j0,k0

, wni0,j0,k0
are positive. Considering only the D terms

(the proof is the same for the E terms) we recall for convenience the formula (1.56) (only valid
in the case all velocities in all cells are positive) under the form

∑
i,j,k(ωn+1

i,j,k−ωni,j,k)ψni,j,k = −r3
∑
i,j,k(Dn

i,j,kψ
n
i,j,k−Dn

i−1,j,kψ
n
i,j,k−Dn

i,j−1,kψ
n
i,j,k+Dn

i−1,j−1,kψ
n
i,j,k)

(and terms not involving D).

The terms we seek emanating from the cell Ci0,j0,k0
are the terms in Dn

i0,j0,k0
:

−r3Dn
i0,j0,k0

(ψni0,j0,k0
− ψni0+1,j0,k0

− ψni0,j0+1,k0
+ ψni0+1,j0+1,k0

).

The four ψ′s give the requested O(h2) bound. The seven other cases of signs of velocities are
treated by changing the senses of the coordinate axis as in the two dimensional case.�

1.12 Conclusion.

In the case of pressureless �uids the method of splitting of delta waves presented in this chap-
ter has permitted to obtain a numerical scheme which is stable (Theorem 1.7.1) and convergent
Theorem 1.8.3. In particular, the p-schemes described in this chapter improve signi�cantly the
original Godunov scheme, taking into account they are fast and with a large CFL condition.
They extend at once, without dimensional splitting, into 2 and 3 space dimension. This method
of projection of delta waves applies to di�erent systems of conservation laws from physics and
mathematics, whether they are connected or not with the system of pressureless �ows. These
results will be transformed, from chapter 5, into a result of convergence to a solution of the
equations.
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1.13 Appendix.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.11.1. The four successive evaluations below from overlapping squares 

are represented by hatched regions. 
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   jiC ,   n jirhv ,  

 n jirhu ,  
dtransporteC ji,  

jiC ,  

dtransporteC ji 1,   

dtransporteC ji 1,1   

jiC ,  

jiC ,  

dtransporteC ji ,1  

 n jirhu ,1  

 n jirhu 1,   

 n jirhv 1,   

 n jirhv ,1  

 n jirhv 1,1   

 n jirhu 1,1   
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Chapitre 2

Self-gravitating �uids

In this chapter we present a numerical scheme for the 3-D system of self-gravitating �uid
dynamics in the collisional case as well as in the non-collisional case. Consistency of order one
in the sense of distributions is proved in 1-D and in absence of pressure. In the other cases
consistency is proved under the numerical assumptions of boundedness of the velocity �eld in
the CFL condition and of boundedness of the gradient of the gravitation potential. In 2-D and
3-D, concentrations of matter in strings and points can cause a theoretical di�culty although
one observes that the scheme still works. The initial data are L∞ functions in velocity and L1

functions in density. Applications are given to situations in cosmology and astrophysics such
as the role of dark matter at decoupling time, the formation and repartition of galaxies, the
formation of solar systems and Jeans theory which explains the formation of stars.

2.1 Introduction.

We consider the equations governing a self-gravitating �uid [8] p. 207, [30] p. 460, [31] p. 231,
[5] p. 49

∂ρ

∂t
+ ~∇.(ρ~u) = 0, (2.1)

∂

∂t
(ρ~u) + ~∇.(ρ~u⊗ ~u) + ~∇p+ ρ ~∇Φ = ~0, (2.2)

∆Φ = 4πGρ, (2.3)

p = Kρ, (2.4)

where ρ, ~u = (u, v, w), p,Φ denote respectively the density, the velocity vector, the pressure and
the gravitation potential ; G is the gravitation constant and K ≥ 0 a constant from the state law.
These equations are the continuity equation (2.1), the Euler equation (2.2), the Poisson equation
(2.3) and an isothermal state law (2.4). These equations are extended to expanding background
by a change of variable [8] p. 294, [31] p. 233, for their use in cosmology.

This system is classically treated in cosmology by perturbation theory which consists in li-
nearization of the equations around a known solution, see [8] p. 207, [30] pp. 460-461, [31] pp.

43
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231-232, [5] p. 50. The linearized equations of motion provide an excellent description of gravita-
tional instability when density �uctuations are small. However, the linear regime breaks down as
soon as the density �uctuations are not small, which makes a numerical approximate solution of
(2.1)-(2.4) indispensible, see [8] pp. 304-332. In the absence of an exact solution to validate the
scheme, one needs to prove at least its consistency, i.e. that the step functions from the scheme
tend to satisfy the equations when the space step tends to 0. As far as the author is aware this
is the �rst time that a mathematical proof of consistency has been obtained for this system,
even in one space dimension and absence of pressure. It is also the �rst time that the full system
(2.1)-(2.4) is studied numerically even in 1-D.

We propose an original 3-D numerical scheme for (2.1)-(2.4) which is consistent in the sense
of distributions under natural assumptions whose numerical veri�cation is immediate for a given
value of the space step h : a CFL condition ‖u‖L∞ ∆t

∆x ≤ 1, supplemented by an assumption of
boundedness of the gravitation potential. Then, in order to apply the consistency theorem, this
property has to be extrapolated when h→ 0. If one does not accept this extrapolation, the proof
in this chapter shows that whenever these properties hold for a small value of h, then the step
functions from the scheme satisfy the equations with a small deviation of order one in the space
step (for given test functions ψ, with bounds depending on the size of the support and the sup.
of the �rst and second derivatives). In absence of exact solutions or physical experiments this
mathematical result allows us to put faith in the numerical solutions obtained from the scheme,
which is interesting since faith in numerical results is a serious problem in cosmology while the
equations (2.1)-(2.4) are fully accepted.

In the case of absence of pressure, i.e. K = 0 in (2.4), the scheme is simpli�ed. It concerns
the system of self-gravitating pressureless �uids. This system has already been considered in [13]
and [29] from a theoretical viewpoint. These authors have obtained results of existence of solu-
tions under various assumptions. In [13] the authors consider in particular the case of random
initial data needed to explain large structure formation in cosmology (see [8] and [30]). The ini-
tial density is either discrete or absolutely continuous with respect to the Lebesgue measure. In
[29] the authors use the theory of mass transportation. The initial velocity has to be continuous
and square integrable and the initial density has to be a Borel probability on R with �nite two
order moment. From the numerical viewpoint cosmologists have developped N -body simulations
representing a sample of the universe as a box with periodic boundary conditions containing
a large number of point masses interacting through their mutual gravity [8] pp. 304-310, [30]
pp. 482-494. There exists a number of numerical codes done by cosmologists. They represent
a cosmological �uid as a discrete set of a large number of particles and calculate the gravita-
tional forces between them. They di�er mainly in the way gravitation forces on each particle
are calculated, [8] pp. 305-310. In absence of exact solutions for their validation, and impos-
sibility of physical experiments, faith in these methods comes only from the fact they mimick
the real physical process and reproduce qualitatively the aspect of the universe as it is observed,
[8] p. 308. This is the reason which makes a mathematical proof of consistency particularly useful.

As applications we propose four simulations in the pressureless case : gravitational collapse
to a point in absence of fast expansion, then impossibility of collapse in presence of fast expan-
sion of the background (Meszaros e�ect), formation of structures looking like solar systems from
gravitational collapse of a rotating disk, agglomeration of baryonic matter on the existing struc-
tures of dark matter at decoupling. Then, in presence of pressure we present two simulations of
Jeans theory [8] p. 206, [5] p. 44 : Jeans theory asserts that a gas of collisional particles collapses
gravitationally besides pressure if its size is large enough (≥ Jeans length), which explains the
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formation of stars.

The scheme is obtained from a convection-pressure correction method which was introduced
in Le Roux et al. [2]. The authors of [2] used a splitting technique consisting of separation of the
convection terms from the pressure terms and showed the good numerical quality of the schemes
thus obtained, with a less restrictive CFL condition than the original schemes without splitting.

2.2 Statement of the scheme.

The real line is divided into intervals Ii =]ih − 1
2h, ih + 1

2h[, i ∈ Z. We set r := ∆t
∆x and

tn = nrh for r small enough. We will construct step functions ρ(x, t), u(x, t), p(x, t), . . . de-
pending on h, which are constant on the rectangles Ii×]tn, tn+1[, whose step values are denoted
ρni , u

n
i , p

n
i , . . ., respectively. The indices h are skipped to simplify the notation : ρ stands for ρh, ....

From these step functions ρ and u, we de�ne the step functions ρu, ρu2, . . . by (ρu)ni = ρni u
n
i and

(ρu2)ni = ρni (uni )2, .... The initial condition (ρ0, u0) is discretized on the intervals Ii by taking
mean values on these intervals. We always assume that u0 is a L∞ function and that ρ0, e0 are
positive L1 functions.

Statement of the scheme for self-gravitating �uids in one dimension. In one space
dimension the equations (2.1)-(2.4) reduce to

ρt + (ρu)x = 0, (2.5)

(ρu)t + (ρu2)x + px + ρΦx = 0, (2.6)

Φxx = 4πGρ, (2.7)

p = Kρ. (2.8)

We assume the set {ρni , uni , pni }i∈Z is given. The set {ρn+1
i , un+1

i , pn+1
i }i∈Z is de�ned as follows.

If a < b, one sets
L(a, b) := length of [0, 1] ∩ [a, b], (2.9)

i.e.
L(a, b) = max(0,min(1, b)−max(0, a)). (2.10)

• Transport step. See section 1.5,

ρi := ρni−1L(−1 + runi−1, ru
n
i−1) + ρni L(runi , 1 + runi ) + ρni+1L(1 + runi+1, 2 + runi+1). (2.11)

When the CFL condition (2.37) is satis�ed, the �rst term represents the matter issued from
the cell Ii−1 between times tn and tn+1 that lies in the cell Ii at time tn+1. The second term
represents the matter from the cell Ii that remains in Ii at time tn+1. The third term is similar
to the �rst one : it concerns matter issued from the cell Ii+1 that lies in the cell Ii at time tn+1.
Note that ρi depends on n, which is not explicitely stated to shorten the notation. The same
discretization as the one in chapter 1 gives

(ρu)i := (ρu)ni−1L(−1 + runi−1, ru
n
i−1)+

(ρu)ni L(runi , 1 + runi ) + (ρu)ni+1L(1 + runi+1, 2 + runi+1) (2.12)

where (ρu)ni = ρni u
n
i . The state law is set in the form
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pn+1
i := Kρi. (2.13)

• Averaging step. For some value 0 ≤ α < 0.5 chosen in the scheme

ρn+1
i := αρi−1 + (1− 2α)ρi + αρi+1, (2.14)

(̃ρu)i := α(ρu)i−1 + (1− 2α)(ρu)i + α(ρu)i+1. (2.15)

The averaging step serves to avoid oscillations caused by the centered discretization in pressure
in the next step. In absence of pressure one chooses α = 0.

• Pressure correction step. One can compute Φ from (2.7), considered as a Dirichlet problem
with values 0 on the boundary, or as a periodic problem, which gives

(Φx)n+1
i := 4πG

i∑
j=1

ρn+1
j h+ β (2.16)

for some �xed value β. Then a centered discretization of the pressure term gives

(ρu)n+1
i := (̃ρu)i −

r

2
(pn+1
i+1 − p

n+1
i−1 )− rhρn+1

i (Φx)n+1
i . (2.17)

If ρn+1
i 6= 0, we set

un+1
i :=

(ρu)n+1
i

ρn+1
i

, (2.18)

if ρn+1
i = 0 then un+1

i can be given any value from Proposition 2.2.1 below.

Proposition 2.2.1. ρni = 0 implies (ρu)ni = 0 and pni = 0.

proof. The proof is an induction on n. We �rst give the proof in presence of pressure. For n = 0 it
holds by construction. Assume the property holds for n. Then, if ρn+1

i = 0, since α > 0, formula
(2.14) implies

ρi−1, ρi, ρi+1 = 0. (2.19)

From (2.11)-(2.12) it follows that ρi = 0 implies (ρu)i = 0 : indeed from (2.11) ρnj L(. . .) = 0 for
j = i−1, i, i+1 since each term in (2.11) is ≥ 0. Either ρnj = 0 or L(. . .) = 0. From the induction
assumption, ρnj = 0 implies (ρu)nj = 0, therefore one has always (ρu)nj L(. . .) = 0, j = i−1, i, i+1,
i.e. each term in (2.12) is null. Therefore, (2.19) implies

(ρu)i−1 = 0, (ρu)i = 0, (ρu)i+1 = 0.

Then, from (2.15), we obtain (̃ρu)i = 0. From (2.19), formula (2.13) implies pn+1
i−1 = 0, pn+1

i =

0, pn+1
i+1 = 0. Finally, all terms in (2.17) are null. In the pressureless case one can take α = 0.

Then, from (2.14) ρi = 0 ; from the above implication (ρu)i = 0 and from (2.15) with α = 0

(̃ρu)i = 0. It su�ces to use (2.17) without pressure to conclude.�

It follows from (2.11)-(2.14) that ρ is positive. Since the coe�cients L in (2.11) represent
transport i.e. a new repartition of matter at time tn+1, Theorem 1.5.1. and section 1.5, one has∑
i ρ
n
i h =

∑
i ρ

0
ih. From the positiveness of ρ one has the L1 stability in ρ. The L1 stability in ρu
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follows from the L1 stability in ρ and the boundedness of u from assumption (2.37). From (2.16)
and L1-stability in ρ, Φx is L

∞ bounded : |(Φx)ni | ≤ 4πG(‖ρ0‖L1 + |β|). In one space dimension,
assumption (2.38) is always satis�ed since |Φx| ≤ const : the gradient of the gravitation potential
is bounded, even on a point concentration of matter.

Statement of the scheme for self-gravitating �uids in two and three dimensions.
The equations in the two dimensional case are

ρt + (ρu)x + (ρv)y = 0, (2.20)

(ρu)t + (ρu2)x + (ρuv)y + px + ρΦx = 0, (2.21)

(ρv)t + (ρuv)x + (ρv2)y + py + ρΦy = 0, (2.22)

p = Kρ, (2.23)

∆Φ = 4πGρ. (2.24)

The two dimensional space (x, y) is divided into square cells Ci,j of side h and centers
(ih, jh)i,j∈Z : Ci,j is the set of all (x, y) such that ih− h

2 < x < ih+ h
2 and jh− h

2 < y < jh+ h
2 . We

assume the set {ρni,j , uni,j , vni,j , pni,j}i,j∈Z is given. The set {ρn+1
i,j , un+1

i,j , vn+1
i,j , pn+1

i,j }i,j∈Z is de�ned
as follows. We set

A(a, b) := L(a, 1 + a).L(b, 1 + b) (2.25)

which is the area of the intersection of the square of vertices (0, 0), (0, 1), (1, 0), (1, 1) with the
square of vertices (a, b), (1 + a, b), (a, 1 + b), (1 + a, 1 + b). Then we set

• Transport step. As in the 1D case let

ρi,j :=
∑

−1≤λ,µ≤1

ρni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (2.26)

(ρu)i,j :=
∑

−1≤λ,µ≤1

(ρu)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (2.27)

(ρv)i,j :=
∑

−1≤λ,µ≤1

(ρv)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (2.28)

pn+1
i,j := Kρi,j . (2.29)

Interpretation of (2.26)-(2.29) is a transport in 2-D, see section 1.6, similarly to (2.11)-(2.12) in
1-D.

• Averaging step. Let α, 0 ≤ α < 1
20 , be given in the scheme. Set

ρn+1
i,j := α(2ρi−1,j−1 + 2ρi−1,j+1 + 2ρi+1,j−1 + 2ρi+1,j+1 + 3ρi−1,j+

3ρi,j−1 + 3ρi,j+1 + 3ρi+1,j) + (1− 20α)ρi,j , (2.30)

(̃ρu)i,j := α(2(ρu)i−1,j−1 + 2(ρu)i−1,j+1 + 2(ρu)i+1,j−1 + 2(ρu)i+1,j+1 + 3(ρu)i−1,j+

3(ρu)i,j−1 + 3(ρu)i,j+1 + 3(ρu)i+1,j) + (1− 20α)(ρu)i,j . (2.31)

We set the same formula for (̃ρv)i,j , replacing u by v.
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• Pressure correction step. The values Φn+1
i,j of the potential are obtained from a numerical

solution of the Poisson equation (for instance the Dirichlet problem with null values on the
boundary, or the periodic problem) on the mesh of cells Ci,j with second member the function
4πGρ, where ρ here is the step function equal to ρn+1

i,j on Ci,j . Then a centered discretization
gives

(Φx)n+1
i,j :=

1

2h
(Φn+1

i+1,j − Φn+1
i−1,j), (Φy)n+1

i,j :=
1

2h
(Φn+1

i,j+1 − Φn+1
i,j−1), (2.32)

(ρu)n+1
i,j := ρ̃ui,j −

r

2
(pn+1
i+1,j − p

n+1
i−1,j)− rhρ

n+1
i,j (Φx)n+1

i,j . (2.33)

A similar formula is given for (ρv)n+1
i,j , using y-derivatives. If ρn+1

i,j 6= 0, then

un+1
i,j :=

(ρu)n+1
i,j

ρn+1
i,j

, vn+1
i,j :=

(ρv)n+1
i,j

ρn+1
i,j

, (2.34)

if ρn+1
i,j = 0, then un+1

i,j can be given any value as in 1-D as it is proved in Proposition 2.2.1 in 1-D.

The scheme in three space dimension is very similar to the scheme in two space dimension
(2.25)-(2.34). Let Ci,j,k be the cube of all (x, y, z) such that (i− 1

2 )h < x < (i+ 1
2 )h, (j − 1

2 )h <
y < (j + 1

2 )h, (k − 1
2 )h < z < (k + 1

2 )h. Let

V (a, b, c) = L(a, 1 + a).L(b, 1 + b).L(c, 1 + c) (2.35)

be the volume of the intersection of the cube of vertices (i, j, k), i, j, k = 0 or 1, with the cube
of vertices (a+ i, b+ j, c+ k), i, j, k = 0 or 1. If ω = ρ, ρu, ρv, ρw successively, one sets

ωi,j,k =∑
−1≤λ,µ,ν≤1

ωni+λ,j+µ,k+νV (λ+ runi+λ,j+µ,k+ν , µ+ rvni+λ,j+µ,k+ν , ν + rwni+λ,j+µ,k+ν). (2.36)

We extend (2.30)-(2.31) by taking an average over the cell Ci,j,k and its 26 neighbors in order
that Taylor's formula in ψ annihilates the �rst order terms.

2.3 Statement of the consistency theorem.

The constant values on Ci,j,k of the approximate solutions ωh(x, y, z, t) (usually denoted by
ω to simplify the notation) are denoted ωni,j,k for tn < t < tn+1, where ω = ρ, u, v, w, p, .... We

assume that the initial density ρ0 is a positive L1 function and the initial velocities u0, v0, w0 are
L∞ functions. We note ~∇Φ = (Φx,Φy,Φz) and | ~∇Φ| =

√
(Φx)2 + (Φy)2 + (Φz)2. For simpli�ca-

tion, boundary problems are eliminated by assuming that the physical variables we are interested
in tend to 0 at in�nity.

Theorem 2.3.1. consistency of the scheme. Assume that during some time interval [0, T ]
(i.e. ∀(i, j, k) ∈ Z3 and n / tn ≤ T ) one has

|uni,j,k|
∆t

∆x
≤ 1, |vni,j,k|

∆t

∆x
≤ 1, |wni,j,k|

∆t

∆x
≤ 1, (2.37)
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and the following condition (that always holds in 1-D)

∃M > 0 / ∀i, j, k, n |( ~∇Φ)ni,j,k| ≤M (2.38)

for all h > 0. Then the scheme is consistent in the sense of distributions when h→ 0.

More precisely we obtain : ∀ψ ∈ C∞c (R3×]0, T [)∫
(ρhψt + ρhuhψx + ρhvhψy + ρhwhψz)dxdydzdt = O(h), (2.39)∫

{ρhuhψt+ρh(uh)2ψx+ρhuhvhψy +ρhuhwhψz +phψx−ρh.(Φx)hψ}dxdydzdt = O(h), (2.40)

and similar limits for the two other components of the Euler equation in (ρhvh), (ρhwh),∫
(ph −Kρh)ψdxdydzdt = O(h), (2.41)

∫
{Φh∆ψ − 4πGρhψ}dxdydzdt = O(h), (2.42)

when h→ 0.

• Presence of pressure. System (2.1)-(2.4) models Jeans' gravitational collapse : when a me-
dium has pressure, a perturbation bigger than a critical length can collapse under its own gravity,
see �gures 2.5.5 and 2.5.6 below. The presence of pressure does not allow the perturbation to
collapse to a mathematical point, as shown in �gure 2.5.6 below, and | ~∇Φ| remains bounded.
Assumptions (2.37)-(2.38) cover gravitational collapse in the presence of pressure.

• Absence of pressure. In the absence of pressure in 2-D, assumption (2.38) can no longer
hold in the case of gravitational collapse to one single cell : �gure 2.5.1 ; it is well known that
the gradient of the gravitation potential can be unbounded in 2-D in the presence of point ac-
cumulation of matter and in 3-D in the presence of accumulation of matter on submanifolds of
dimension 0 or 1 (points or strings). Nevertheless, it has been observed that the scheme works :

�gure 2.5.1. In the absence of pressure (i.e. K = 0) and if ~∇Φ is bounded, then, for all values
T > 0, the proof of Theorem 2.3.2 below proves that assumption (2.37) is satis�ed as soon as
∆t
∆x is small enough.

Theorem 2.3.2. In the absence of pressure and in one space dimension one can choose ∆t
∆x

small enough such that the scheme applies and is consistent.

Proof. The proof is given in 1-D to shorten the formulation. In the absence of pressure the
scheme is simpli�ed by dropping the averaging step (choice α = 0) due to the absence of cente-
red discretization in pressure. First, notice that if an ≤ uni ≤ bn ∀i, then if ρn+1

i 6= 0 one has

an ≤
(ρu)ni−1L(−1+runi−1,ru

n
i−1)+(ρu)ni L(runi ,1+runi )+(ρu)ni+1L(1+runi+1,2+runi+1)

ρn+1
i

≤ bn,

(2.43)

since, from (2.11) and (2.14) with α = 0, numerator and denominator are same convex
combinations. If ρn+1

i = 0 it follows from the proof of Proposition 2.3.1 in the pressureless case
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that the quotient is undeterminate and its value is useless for the next step. Set

K = 4πG(‖ρ0‖L1 + |β|). (2.44)

Now, let us prove that ∀n such that tn ≤ T one has

min(u0)− TK ≤ uni ≤ max(u0) + TK ∀i. (2.45)

To this end, let an ≤ uni ≤ bn ∀i. Formulas (2.18), (2.17) without pressure, (2.15) with α = 0,
and (2.12) imply that

un+1
i =

(ρu)ni−1L(−1+runi−1,ru
n
i−1)+(ρu)ni L(runi ,1+runi )+(ρu)ni+1L(1+runi+1,2+runi+1)

ρn+1
i

− rh(Φx)n+1
i .

Therefore, from (2.43), (2.16) and (2.44)

an − rhK ≤ un+1
i ≤ bn + rhK. (2.46)

We obtain (2.45) by induction on n since tn = nrh ≤ T.

Now �x a value r such that
r(‖u0‖L∞ + TK) < 1. (2.47)

Then, as long as tn = nrh < T the scheme satis�es r‖u‖L∞ < 1. When the CFL condition (2.47)
is satis�ed time T can be attained. One has the stability results : ρ is positive and L1 stable
on R × [0, T ] since it is ruled by a transport, u and Φx are L∞ stable from (2.45) and (2.16)
respectively, ρu and ρu2 are L1 stable, since ρ is L1 stable and u is L∞ stable.�

2.4 Proof of Theorem 2.3.1.

We �rst give the proof in one space dimension.

• Set
I :=

∫
(ρψt + ρuψx)dxdt. (2.48)

Using repeatedly the L1-stability in ρ and ρu one has : I =
∑
i,n rh

2[ρni (ψt)
n
i + (ρu)ni (ψx)ni ] +

O(h) =
∑
i,n rh

2[ρni
ψn+1
i −ψni
rh + (ρu)ni

ψni+1−ψ
n
i

h ] +O(h). Then

I = −h
∑
i,n

[ρn+1
i − ρni + r((ρu)ni − (ρu)ni−1)]ψni +O(h) (2.49)

from a change in indices.

From (2.14), ρn+1
i = ρi + α(ρi−1 − 2ρi + ρi+1). Therefore I = I1 + I2 +O(h), where

I1 = −h
∑
i,n

[ρi − ρni + r((ρu)ni − (ρu)ni−1)]ψni , (2.50)

I2 = −hα
∑
i,n

(ρi−1 − 2ρi + ρi+1)ψni = −hα
∑
i,n

ρi(ψ
n
i+1 − 2ψni + ψni−1) = O(h) (2.51)

since, from (2.11), the L1 stability in ρ implies L1-stablility in ρ, and from Taylor's formula in ψ.
Distinguishing two cases in the signs of velocities it has been proved in chapter 1 that I1 = O(h)
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(with a change in notation : here ρi replaces ρ
n+1
i in formula (1.37)). Then I = O(h) which

proves (2.39) in one space dimension.�

• Set
J :=

∫
[(ρu)ψt + (ρu2)ψx + pψx − ρΦxψ]dxdt. (2.52)

Since ρu, ρu2, p, ρ are L1 stable, the proof of formula (1.7) with ω = ρu (and in presence of p)
gives, as (2.48)-(2.49), ∫

[(ρu)ψt + (ρu2)ψx + pψx]dxdt =

−h
∑
i,n

[(ρu)n+1
i − (ρu)ni + r((ρu2)ni − (ρu2)ni−1) + r(pni − pni−1)]ψni +O(h). (2.53)

A direct evaluation gives∫
ρΦxψdxdt =

∑
i,n

ρni (Φx)ni

∫
(i− 1

2 )h<x<(i+ 1
2 )h,nrh<t<(n+1)rh

ψdxdt =

∑
i,n

ρni (Φx)ni rh
2ψni +O(h) =

∑
i,n

ρn+1
i (Φx)n+1

i rh2ψni +O(h) (2.54)

from the L1 stability of ρΦx. Therefore, from (2.52)-(2.54)

J = −h
∑
i,n

[(ρu)n+1
i − (ρu)ni + r((ρu2)ni − (ρu2)ni−1) + r(pni − pni−1) + rhρn+1

i (Φx)n+1
i ]ψni +O(h).

(2.55)

Developping (ρu)n+1
i from (2.15)-(2.17), one obtains the simpli�cation of the terms in Φx and

the decomposition J = J1 + J2 + J3 +O(h) where

J1 = −h
∑
i,n

[(ρu)i − (ρu)ni + r((ρu2)ni − (ρu2)ni−1)]ψni , (2.56)

J2 = −hα
∑
i,n

(ρui−1 − 2ρui + ρui+1)ψni = −hα
∑
i,n

ρui(ψ
n
i+1 − 2ψni + ψni−1), (2.57)

J3 =
rh

2

∑
i,n

(pn+1
i+1 − p

n+1
i−1 − 2(pni − pni−1))ψni =

rh

2

∑
i,n

pni (ψn−1
i−1 − ψ

n−1
i+1 − 2ψni + 2ψni+1). (2.58)

As for I1 above it has been proved in chapter 1 that J1 = O(h) ; as (2.51) J2 = O(h), and
J3 = O(h) from Taylor's formula in ψ and L1 stability in p from (2.13)-(2.11). Therefore
J = O(h). This proves (2.40) in one space dimension.�

• Similarly, as (2.54),

I ′ :=
∫

(p−Kρ)ψ = rh2
∑
i,n(pni −Kρni )ψni +O(h) = rh2

∑
i,n(pn+1

i −Kρn+1
i )ψni +O(h)
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from the L1 stability in p and ρ. From (2.13)

I ′ = Krh2
∑
i,n

(ρi − ρn+1
i )ψni +O(h).

Then, from (2.14)

I ′ = −Krh2α
∑
i,n

(ρi−1 − 2ρi + ρi+1)ψni +O(h) = O(h),

which proves (2.41) in one space dimension.�

• Now we check the consistency (2.42) for the Poisson equation. Using the boundedness of
|Φx| and the L1-stability of ρ, one obtains∫

(−(Φx)ψx−4πGρψ)dxdt =
∑
i,n[−(Φx)ni rh

2(ψx)ni −4πGρni rh
2ψni ]+O(h) =

∑
i,n[−(Φx)ni rh

2 1
h (ψni+1−

ψni ) − 4πGρni rh
2ψni ] + O(h) =

∑
i,n rh

2[ 1
h ((Φx)ni − (Φx)ni−1) − 4πGρni ]ψni + O(h) = O(h) from

(2.16). �

Proofs of Theorem 2.3.1 in two and three space dimensions. They are direct adaptations of
the 1-D proof concerning the above calculations. The extension of the 1-D results stating that
I1 = O(h), J1 = O(h) is di�cult since we must consider all neighboring cells in the transport
step. A full proof is given in section 1.11.�

2.5 Numerical simulations.

All numerical calculations below were done on a standard PC in a few minutes. We �rst give
four simulations in the pressureless case (K = 0).

Velocity increases in a gravitational collapse. With a �xed value of r given a priori it is
di�cult to produce a simulation, which is explained by the theorem : in a gravitational collapse,
r depends very much on time, see ‖u‖∞ in the bottom left panel. If at each iteration one adapts
the value of r at the maximum value to respect the CFL condition r‖~u‖L∞ = 1, then one easily
observes a gravitational collapse to a point. In �gure 2.5.1 one has a cloud of cosmic �uid in the
form of a disk surrounded by a void (top left panel). The values of ρ and (u, v) inside the disk are
at random between 0.9 and 1.1 and between -0.1 and 0.1 respectively. One performs 80 iterations
in a 200 × 200 window, G = 1

4π , in the absence of expansion. One observes collapse to a point
located in the center of the window (top right panel). We show the evolution of the sup. of velocity
(max(|u|, |v|), bottom left panel) and the sup. of density (bottom right panel). The maximum
of |Φx|, |Φy| follows the growth of max(ρ) in the bottom right panel and reaches a value 150
but only on the cells close to the point concentration of matter. In two dimensions, the gradient
of the gravitation potential is unbounded in a point concentration of matter. Nevertheless the
scheme works very well provided one follows the above described adaptation of the value of r that
enables to ensure the CFL condition in the most e�cient way. This suggests that consistency of
the scheme still holds even in 2-D point concentrations of matter.



a(t) = 1 + 10t
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[13], or some matter is ejected from the window. After 100 iterations (bottom �gure) the ring
has split into a few local accumulations of matter that reminds us of planets before accretion and
a few dilute clouds of gas. This set is bound by gravitation and evolves slowly. Usually the "pla-
nets" rotate endlessly around the "sun" with slight modi�cations of the general con�guration.
The consistency of the scheme has been proved outside the central point as long as the "planets"
are not pointlike, which gives con�dence in the results. One observes the results are very sensitive
to the initial data and that they evolve slowly with time as we could expect. The initial values of
ρ are at random between 0 and 4, the initial velocities are all directed in a direction tangential to
circles centered in the center of the window, with values (0.1.rand. i√

(i2+j2)
, 0.1.rand. j√

(i2+j2)
)

where each rand denotes a random value between 0 and 1 ; the velocity chosen is equal to 0 in
a neighborhood of the center ; as in �gures 2.9.1 and 2.9.2 the values of r are adapted at each
iteration so as to have r‖u‖L∞ = 1, absence of expansion, 100 × 100 window, G=0.0004. This
problem is being intensively studied in computational physics by heuristic algorithms using a
large number of pointmasses bound by gravitation, see [37] and references therein.
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Figure 2.5.3. Formation of a �simili solar system �from the gravitational collapse of a 2-D
rotating dust cloud.

The 1-D simulation in �gure 2.5.4 shows agglomeration of baryonic matter on the previously
existing structures of dark matter when baryonic matter became decoupled with radiation. The
top �gure shows the initial conditions : dark matter (80 per cent, black continuous line) has
formed structures when the universe was radiation dominated, while baryonic matter (20 per
cent, red continuous line, scale multiplied by 10 for visualization, coupled to radiation before
decoupling), is at random around the value 0.4 in density and between −0.1 and 0.1 in velocity.
In the bottom �gure, after a few iterations, one observes agglomeration of baryonic matter on
the structures of dark matter, as expected : the baryonic material follows the behavior of dark
matter [8] p. 260, [30] p. 473. This is modelled (with change of variable to take into account
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2.6 Conclusion.

We have presented a numerical scheme for the system of collisional as well as non-collisional
self-gravitating �uid dynamics. In 1-D and absence of pressure consistency of order one has been
proved. In the other cases consistency holds under the assumptions of boundedness of the velocity
�eld in the CFL condition and boundedness of the gradient of the gravitation potential. These
two numerical properties have been checked in all numerical tests up to very small values of h
in the presence of pressure (K 6= 0). In the absence of pressure (K = 0) and in three space
dimension they have been rigorously proved whenever there is no point or string accumulation
of matter. Even in these cases it has been observed that the scheme works well. If one does not
accept the extrapolations of these properties for values of h smaller than those tested, the proof
of the theorem shows that the approximate solutions from the scheme satisfy the equations up to
a deviation of order one in h. As an application we have numerically reproduced various events
in cosmology and astrophysics.
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Chapitre 3

The system of Ideal Gas dynamics

In this chapter we present a 3-D numerical scheme for the approximation of the system
of gas dynamics. Consistency in the sense of distributions is studied. We prove that, as long
as the boundedness of the velocity �eld (in the CFL condition) and the positiveness of the
energy are numerically veri�ed when the space step tends to 0, the scheme provides a numerical
solution which satis�es the equations in the sense of distributions with an approximation of order
one in the space step. Numerical veri�cations of convergence are done from classical 1-D tests
(Sod, Woodward-Colella, Toro). These veri�cations provide numerical evidence that the scheme
produces the exact solution with arbitrary precision. This scheme gives back the numerical results
on the six 2-D Riemann problems presented by P. D. Lax in [25] and [26], up to the smallest
details. This simple order one low-cost 3-D scheme is obtained from the convection-pressure
correction method proposed by Le Roux et al [2].

3.1 Introduction.

The system of ideal gases has been studied by many authors, see for instance [17], [28]
and [34]. In [25] and [26] the author points out the need of a mathematical justi�cation of the
numerical solutions of the 2-D Riemann problems presented in these articles. In this chapter we
introduce a simple numerical scheme which permits to provide a 3-D consistency proof in the
sense of distributions under the numerical assumptions of boundedness of the velocity �eld (in
the CFL condition) and positiveness of the energy when the space step h → 0. Of course, from
a theoretical point of view one cannot be sure that these numerical assumptions always hold
for every h when h → 0, however we point out that, for the scheme presented in this chapter,
these assumptions have always been satis�ed in the 1-D Sod, Woodward-Colella, Toro tests and
the 2-D Riemann problems in [17], [25], [26], [28] and [34] for all tested values of h, some of
them very small. The proof in this chapter shows that, for any given family of test functions
with uniformly bounded support and uniformly bounded �rst and second derivatives, then the
numerical solution satis�es the equations in the sense of distributions within a small deviation
of order one in h, whenever the numerical velocity remains bounded (in the CFL condition) and
the energy density remains positive, which is presumably veri�ed in physical cases for all h when
h→ 0 and can easily be checked numerically up to very small values of h. As far as the author
knows the proof is new and relies on the speci�c form of the scheme. This proof is an extension to
the system of ideal gases in 3-D of the consistency proof given in [2] for the far simpler system of
pressureless �uid dynamics in 1-D. In addition to the consistency proof, numerical convergence
and low-cost e�ciency of the scheme are checked by classical 1-D tests (Sod, Woodward-Colella,

59
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Toro). The numerical results in [17], [25], [26], [28] and [34] on 2-D Riemann problems are also
obtained, even up to the smallest details, which suggests that the numerical schemes in [17], [28],
[34] could be convergent, as this is conjectured by P. D. Lax in [25] and [26]. Now let us recall
the system of ideal gases :

∂ρ

∂t
+ ~∇.(ρ~u) = 0, (3.1)

∂

∂t
(ρ~u) + ~∇.(ρ~u⊗ ~u) + ~∇p = ~0, (3.2)

∂

∂t
(ρe) + ~∇.[(ρe+ p)~u] = 0, (3.3)

p = (γ − 1)(ρe− ρ~u
2

2
), (3.4)

where ρ, ~u = (u, v, w), p, e denote respectively the density, the velocity vector, the pressure and
the density of total energy ; γ is a constant.

The scheme and its consistency proof adapt easily to systems of �uid dynamics involving the
continuity equation (3.1), such as the Saint-Venant equations or the compressible Navier-Stokes
equations.

3.2 Statement of the scheme.

The real line is divided into intervals Ii =]ih− 1
2h, ih+ 1

2h[, i ∈ Z. We set tn = nrh for r small
enough. We will construct step functions ρ(x, t), u(x, t), p(x, t), . . . depending on h, which are
constant on the rectangles Ii×]tn, tn+1[, whose step values are denoted ρni , u

n
i , p

n
i , . . ., respectively.

The indices h are skipped to simplify the notation : ρ stands for ρh, .... From these step functions
ρ and u, we de�ne the step functions ρu, ρu2, . . . by (ρu)ni = ρni u

n
i and (ρu2)ni = ρni (uni )2, ....

The initial condition (ρ0, u0) is discretized on the intervals Ii by taking mean values on these
intervals. We always assume that u0 is a L∞ function and that ρ0, e0 are positive L1 functions
null at in�nity.

Statement of the scheme in one dimension. In one space dimension the equations (3.1)-(3.4)
reduce to

ρt + (ρu)x = 0, (3.5)

(ρu)t + (ρu2)x + px = 0, (3.6)

(ρe)t + (ρeu)x + (pu)x = 0, (3.7)

p = (γ − 1)(ρe− ρu2

2
). (3.8)

We assume the set {ρni , (ρu)ni , (ρe)
n
i , u

n
i , p

n
i }i∈Z is given. The set

{ρn+1
i , (ρu)n+1

i , (ρe)n+1
i , un+1

i , pn+1
i }i∈Z is de�ned as follows.

If a < b one sets

L(a, b) := length of [0, 1] ∩ [a, b], (3.9)
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i.e.
L(a, b) = max(0,min(1, b)−max(0, a)). (3.10)

• Transport step. In order to use the convergence proof in [2] we set

ρi := ρni−1L(−1 + runi−1, ru
n
i−1) + ρni L(runi , 1 + runi ) + ρni+1L(1 + runi+1, 2 + runi+1). (3.11)

When the CFL condition r‖u‖∞ ≤ 1 is satis�ed the �rst term represents the matter issued from
the cell Ii−1 between times tn and tn+1 that lies in the cell Ii at time tn+1. The second term
represents the matter from the cell Ii that remains in Ii at time tn+1. The third term is similar
to the �rst one : it concerns matter issued from the cell Ii+1 that lies in the cell Ii at time tn+1.
Note that ρi depends on n, which is not explicitely stated to shorten the notation. The same
discretization as the one in (3.11) gives

(ρu)i := (ρu)ni−1L(−1 + runi−1, ru
n
i−1)+

(ρu)ni L(runi , 1 + runi ) + (ρu)ni+1L(1 + runi+1, 2 + runi+1), (3.12)

(ρe)i := (ρe)ni−1L(−1 + runi−1, ru
n
i−1)+

(ρe)ni L(runi , 1 + runi ) + (ρe)ni+1L(1 + runi+1, 2 + runi+1). (3.13)

The state law is set in the form

pn+1
i := (γ − 1)[(ρe)i −

((ρu)i)
2

2ρi
] (3.14)

if ρi 6= 0 ,

pn+1
i = 0 (3.15)

if ρi = 0.

• Averaging step. The averaging step is needed to avoid oscillations caused by the centered
discretization in the next step. From numerical tests we choose a value α ∈]0, 1

2 [ and we set

ρn+1
i := αρi−1 + (1− 2α)ρi + αρi+1, (3.16)

(̃ρu)i := α(ρu)i−1 + (1− 2α)(ρu)i + α(ρu)i+1, (3.17)

(̃ρe)i := α(ρe)i−1 + (1− 2α)(ρe)i + α(ρe)i+1. (3.18)

• Pressure correction step. We set

(ρu)n+1
i := (̃ρu)i −

r

2
(pn+1
i+1 − p

n+1
i−1 ), (3.19)

un+1
i :=

(ρu)n+1
i

ρn+1
i

(3.20)

if ρn+1
i 6= 0, and any value if ρn+1

i = 0. We set
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(ρe)n+1
i := (̃ρe)i −

r

2
(pn+1
i+1 u

n+1
i+1 − p

n+1
i−1 u

n+1
i−1 ). (3.21)

Proposition 3.2.1. ρni = 0 implies (ρu)ni = 0, (ρe)ni = 0 and pni = 0.

proof. The proof is an induction on n. For n = 0 it holds by construction. Assume the pro-
perty holds for n. Then, if ρn+1

i = 0, (3.16) implies

ρi−1, ρi, ρi+1 = 0. (3.22)

From (3.11)-(3.13), ρi = 0 implies (ρu)i = 0 and (ρe)i = 0, see proposition 1.6.1 in chapter 1 for
details, the induction assumption is used here. Therefore, (3.22) implies

(ρu)i−1 = 0, (ρu)i = 0, (ρu)i+1 = 0, (ρe)i−1 = 0, (ρe)i = 0, (ρe)i+1 = 0.

Then, from (3.17)-(3.18), one obtains (̃ρu)i = 0 and (̃ρe)i = 0. Formula (3.15) implies pn+1
i−1 =

0, pn+1
i = 0, pn+1

i+1 = 0. Finally all terms in (3.19), (3.21) are null.�

It follows from (3.11), (3.16) that ρ is positive. Since the coe�cients L in (3.10) represent
transport i.e. a new repartition of matter at time tn+1, as in Theorem 1.5.1 and section 1.5, one
has

∑
i ρ
n
i h =

∑
i ρ

0
ih. From the positiveness of ρ one has the L1 stability in ρ.

Statement of the scheme in two and three dimensions. The equations in the two
dimensional case are

ρt + (ρu)x + (ρv)y = 0, (3.23)

(ρu)t + (ρu2)x + (ρuv)y + px = 0, (3.24)

(ρv)t + (ρuv)x + (ρv2)y + py = 0, (3.25)

(ρe)t + (ρeu)x + (ρev)y + (pu)x + (pv)y = 0, (3.26)

p = (γ − 1)(ρe− ρu
2 + v2

2
). (3.27)

The two dimensional space (x, y) is divided into square cells Ci,j of side h and centers
(ih, jh)i,j∈Z : Ci,j is the set of all (x, y) such that ih − h

2 < x < ih + h
2 and jh − h

2 <

y < jh + h
2 . We assume the set {ρni,j , (ρu)ni,j , (ρv)ni,j , (ρe)

n
i,j , u

n
i,j , v

n
i,j , p

n
i,j}i,j∈Z is given. The set

{ρn+1
i,j , (ρu)n+1

i,j , (ρv)n+1
i,j , (ρe)n+1

i,j , un+1
i,j , vn+1

i,j , pn+1
i,j }i,j∈Z is de�ned as follows. We set

A(a, b) := L(a, 1 + a).L(b, 1 + b) (3.28)

which is the area of the intersection of the square of vertices (0, 0), (0, 1), (1, 0), (1, 1) with the
square of vertices (a, b), (1 + a, b), (a, 1 + b), (1 + a, 1 + b). Then we set

• Transport step. As in the 1D case, when the CFL condition r‖u‖∞ holds, we set

ρi,j :=
∑

−1≤λ,µ≤1

ρni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (3.29)

(ρu)i,j :=
∑

−1≤λ,µ≤1

(ρu)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (3.30)
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(ρv)i,j :=
∑

−1≤λ,µ≤1

(ρv)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (3.31)

(ρe)i,j :=
∑

−1≤λ,µ≤1

(ρe)ni+λ,j+µA(λ+ runi+λ,j+µ, µ+ rvni+λ,j+µ), (3.32)

pn+1
i,j := (γ − 1)((ρe)i,j −

((ρu)i,j)
2 + ((ρv)i,j)

2

2ρi,j
). (3.33)

Interpretation of (3.29)-(3.32) is a transport in 2-D, see section 1.6, similarly to (3.11), (3.13) in
1-D.

• Averaging step. Let α, 0 < α < 1
20 , be given in the scheme. Set

ρn+1
i,j := α(2ρi−1,j−1 + 2ρi−1,j+1 + 2ρi+1,j−1 + 2ρi+1,j+1 + 3ρi−1,j+

3ρi,j−1 + 3ρi,j+1 + 3ρi+1,j) + (1− 20α)ρi,j , (3.34)

(̃ρu)i,j := α(2(ρu)i−1,j−1 + 2(ρu)i−1,j+1 + 2(ρu)i+1,j−1 + 2(ρu)i+1,j+1 + 3(ρu)i−1,j+

3(ρu)i,j−1 + 3(ρu)i,j+1 + 3(ρu)i+1,j) + (1− 20α)(ρu)i,j . (3.35)

We set the same formula for (̃ρv)i,j , (̃ρe)i,j , replacing u by v, e respectively.

Remark. The scheme adapts to the shallow water equations. Then, it has been noticed in the
cylindrical dam break test of Toro [41], pp. 245-260, that the averaging step does not work in
some regions thus producing strong oscillations and an uncorrect result. To make the averaging
e�cient in these regions it su�ces to change (u, v) into (u + rand, v − rand) in each iteration,
where rand is a random value between 0 and 4. Then one obtains the correct solution. There-
fore, in certain geometrical situations the averaging (3.34)-(3.35) should be modi�ed to make it
e�cient.

• Pressure correction step. A centered discretization gives

(ρu)n+1
i,j := ρ̃ui,j −

r

2
(pn+1
i+1,j − p

n+1
i−1,j). (3.36)

A similar formula is given for (ρv)n+1
i,j , using y-derivatives. If ρn+1

i,j 6= 0, then

un+1
i,j :=

(ρu)n+1
i,j

ρn+1
i,j

, vn+1
i,j :=

(ρv)n+1
i,j

ρn+1
i,j

, (3.37)

if ρn+1
i,j = 0 then un+1

i,j can be given any value as in 1-D (Proposition 3.2.1 holds with the same
proof).

(ρe)n+1
i,j := ρ̃ei,j −

r

2
(pn+1
i+1,ju

n+1
i+1,j − p

n+1
i−1,ju

n+1
i−1,j)−

r

2
(pn+1
i,j+1v

n+1
i,j+1 − p

n+1
i,j−1v

n+1
i,j−1). (3.38)

The scheme in 2-D has the same properties as those in 1-D.

The scheme in three space dimension is very similar to the scheme in two space dimension
(29)-(38). Let Ci,j,k be the cube of all (x, y, z) such that (i− 1

2 )h < x < (i+ 1
2 )h, (j − 1

2 )h < y <
(j + 1

2 )h, (k − 1
2 )h < z < (k + 1

2 )h. Let
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V (a, b, c) = L(a, 1 + a).L(b, 1 + b).L(c, 1 + c) (3.39)

be the volume of the intersection of the cube of vertices (i, j, k), i, j, k = 0 or 1, with the cube
of vertices (a+ i, b+ j, c+ k), i, j, k = 0 or 1. If ω = ρ, ρu, ρv, ρw, ρe successively, one sets

ωi,j,k =∑
−1≤λ,µ,ν≤1

ωni+λ,j+µ,k+νV (λ+ runi+λ,j+µ,k+ν , µ+ rvni+λ,j+µ,k+ν , ν + rwni+λ,j+µ,k+ν). (3.40)

We extend (3.34)-(3.35) by taking an average over the cell Ci,j,k and its 26 neighbors in order
that Taylor's formula in ψ annihilates the �rst order terms.

3.3 Statement of the consistency theorem.

The approximate solutions ωh(x, y, z, t) (denoted here ω to simplify the notation) are constant
equal to ωni,j,k (depending on h) on Ci,j,k for nrh < t < (n+ 1)rh where ω = ρ, u, v, w, p, .... We

assume ρ0 and e0 are positive L1 functions and u0, v0, w0 are L∞ functions. For simpli�cation,
boundary problems are eliminated by assuming that the physical variables under concern tend
to 0 at in�nity.

Theorem 3.3.1. Consistency under numerical assumptions. Assume that on some
time interval [0, T ] (i.e. ∀(i, j, k) ∈ Z3 and ∀n ≤ T

rh) one has ∀h > 0 small enough the CFL
condition

r|uni,j,k| ≤ 1, r|vni,j,k| ≤ 1, r|wni,j,k| ≤ 1, (3.41)

and the positiveness of the energy

eni,j,k ≥ 0. (3.42)

Then concerning the conservation laws (3.1)-(3.3) the scheme is consistent in the sense of distri-
butions. The consistency in the sense of distributions of the state law (3.4) takes place in regions
in which ρ is strictly positive and in which the approximate solution has the familiar aspect of
piecewise C1 functions having limits on both sides of the surfaces of discontinuity : shock waves,
contact discontinuities, rarefaction waves, for instance.

This means that ∀ψ ∈ C∞c (R3×]0, T [),∫
(ρhψt + ρhuhψx + ρhvhψy + ρhwhψz)dxdydzdt→ 0, (3.43)∫

{ρhuhψt + ρh(uh)2ψx + ρhuhvhψy + ρhuhwhψz + phψx}dxdydzdt→ 0, (3.44)

and similar limits for the two other components of the Euler equation in (ρhvh), (ρhwh), and the
energy equation. Further∫

[ph − (γ − 1)((ρe)h −
(ρu)h.uh

2
)]ψdxdydzdt→ 0, (3.45)
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that convergence cannot be obtained in sup norm even in regions where the exact solution is
continuous. Now we give the details of the tests in the following array. The Riemann problem
(ρl, ul, pl, ρr, ur, pr) of �gure 3.4.5 is (5.99924, 19.5975, 460.894, 5.99242,−6.19633, 46.0950). On
the left we give the values r, α and the number of iterations used in the conditions of the Toro
tests (h = 0.01) ; on the right we give the values of h, r, α used to superpose exactly the numerical
solution on the exact solution given in [40].

fig. ρl, ul, pl, ρr, ur, pr r α iter h r α
2 1,0.75,1,0.125,0,0.1 0.5 0.05 40 6 10−4 0.5 0.1
3 1,-2,0.4,1,2,0.4 0.48 0.03 31 7 10−5 0.45 0.05
4 1,0,1000,1,0,0.01 0.02 0.01 60 5 10−5 0.012 0.1
5 see above 0.08 0.1 37 10−4 0.08 0.1

3.5 Consistency proofs : �rst part.

Proof of the theorem in one dimension.

• Set
I :=

∫
(ρψt + ρuψx)dxdt. (3.46)

Since ρ and ρu are L1-stable, it is proved, formula (1.37), that

I = −h
∑
i,n

[ρn+1
i − ρni + r((ρu)ni − (ρu)ni−1)]ψni +O(h) (3.47)

(in [2] one has ψn+1
i in place of ψni ; it does not matter : h

∑
i,n(ρn+1

i − ρni )(ψn+1
i − ψni ) =

h
∑
i,n ρ

n
i (ψni − ψ

n−1
i − ψn+1

i + ψni ) = h
∑
i,n ρ

n
i O(h2) = O(h), same for the term in ρu). From

(3.16), ρn+1
i = ρi + α(ρi−1 − 2ρi + ρi+1). Therefore I = I1 + I2 +O(h), where

I1 = −h
∑
i,n

[ρi − ρni + r((ρu)ni − (ρu)ni−1)]ψni , (3.48)

I2 = −hα
∑
i,n

(ρi−1 − 2ρi + ρi+1)ψni = −hα
∑
i,n

ρi(ψ
n
i+1 − 2ψni + ψni−1) = O(h) (3.49)

since, from (3.11), the L1 stability in ρ implies the L1-stablility in ρ. It has been proved in
the end of the proof of Theorem1.8.1 that I1 = O(h) (with a change in notation : here ρi re-
places ρn+1

i in formula (37) in [2]). Then I = O(h), which proves (3.43) in one space dimension.�

• Set
J :=

∫
[(ρu)ψt + (ρu2)ψx + pψx]dxdt. (3.50)

Since ρu, ρu2, p, ρ are L1 stable the proof in chapter 1, (formula (1.37) with ω = ρu and in
presence of p), gives, as (3.47),

J = −h
∑
i,n

[(ρu)n+1
i − (ρu)ni + r((ρu2)ni − (ρu2)ni−1) + r(pni − pni−1)]ψni +O(h). (3.51)

Developping (ρu)n+1
i from (3.17)-(3.19) one obtains the decomposition J = J1+J2+J3+O(h)

where



70 CHAPITRE 3. THE SYSTEM OF IDEAL GAS DYNAMICS

J1 = −h
∑
i,n

[(ρu)i − (ρu)ni + r((ρu2)ni − (ρu2)ni−1)]ψni = O(h) (3.52)

as I1, from the end of proof of Theorem 1.8.1,

J2 = −hα
∑
i,n

(ρui−1 − 2ρui + ρui+1)ψni = −hα
∑
i,n

ρui(ψ
n
i+1 − 2ψni + ψni−1) = O(h) (3.53)

as (3.49),

J3 =
rh

2

∑
i,n

(pn+1
i+1 − p

n+1
i−1 − 2(pni − pni−1))ψni =

rh

2

∑
i,n

pni (ψn−1
i−1 − ψ

n−1
i+1 − 2ψni + 2ψni+1) = O(h)

(3.54)

from Taylor's formula in ψ and the L1 stability in p (from (3.14) the L1 stability in p follows
from the L1 stability in ρe, implied from (3.13) by the L1 stability in ρe, and from the bound

|ρuiρi | ≤ maxi|u
n
i |, from (3.11), (3.12) using the proof of (1.32). Therefore J = O(h). This proves

(3.44) in one space dimension.�

• Assuming ρ null at in�nity, the formula
∑
i ρ
n
i e
n
i h =

∑
i ρ

0
i e

0
ih holds from (3.21), (3.18),

(3.13). Then the assumed positiveness of e, (3.42), implies the L1 stability in ρe. The energy
equation is treated similarly as J since pu is L1 stable.

• Concerning the state law, let

K :=

∫
[p− (γ − 1)(ρe− (ρu).u

2
)]ψdxdt. (3.55)

Since K =
∑
i,n{pni − (γ − 1)[(ρe)i,n − (ρu)ni u

n
i

2 ]
∫
cell(i,n)

ψdxdt}, Taylor's formula in ψ and

the L1 stability in p, ρe, ρu2 imply K = rh2
∑
i,n{pni − (γ − 1)[(ρe)ni −

(ρu)ni u
n
i

2 ]}ψni + O(h) =

rh2
∑
i,n{p

n+1
i − (γ − 1)[(ρe)ni −

(ρu)ni u
n
i

2 ]}ψni +O(h) (the change of upper index in p enters into
O(h) as after (47)). From (14), (20)

K = rh2(γ − 1)
∑
i,n

[(ρei − (ρe)ni )− 1

2
(
((ρu)i)

2

ρi
− ((ρu)ni )2

ρni
)]ψni +O(h). (3.56)

If ρ, e, u are continuously di�erentiable functions on the support of ψ, except possibly on a �nite
number of curves in the (x, t) space, in which they have limits on both sides (shock waves, contact
discontinuities, . . .) and if ρ is strictly positive, then from (3.11)-(3.13) the quantity [. . .] in (3.56)
tends to 0 "almost everywhere" on the support of ψ, therefore K → 0 when h→ 0. �

Proofs of the theorem in two and three space dimensions. They are practically iden-
tical to the proof in the one dimensional case except the proofs of lemmas 3.5.1, 3.5.2 below,
which are given in section 1.11.

• Set
I :=

∫
(ρψt + ρuψx + ρvψy)dxdydt. (3.57)
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Since ρ, ρu and ρv are L1-stable, an immediate 2-D extension of the one dimensional proof of
formula (1.37), gives the 2-D analog of (3.47) :

I = −h2
∑
i,j,n

[ρn+1
i,j − ρ

n
i,j + r((ρu)ni,j − (ρu)ni−1,j) + r((ρv)ni,j − (ρv)ni,j−1)]ψni,j +O(h). (3.58)

From (34), ρn+1
i,j = ρi,j +α(2ρi−1,j−1 + . . .+ 3ρi−1,j + . . .− 20ρi,j). Therefore I = I1 + I2 +O(h),

where

I1 := −h2
∑
i,j,n

[ρi,j − ρni,j + r((ρu)ni,j − (ρu)ni−1,j) + r((ρv)ni,j − (ρv)ni,j−1)]ψni,j , (3.59)

I2 := −h2α
∑
i,j,n

[2ρi−1,j−1 + . . .+ 3ρi−1,j + . . .− 20ρi,j ]ψ
n
i,j = −h2α

∑
i,j,n

ρi,j(2ψ
n
i+1,j+1+

2ψni+1,j−1 +2ψni−1,j+1 +2ψni−1,j−1 +3ψni+1,j+3ψni−1,j+3ψni,j+1 +3ψni,j−1−20ψni,j) = O(h) (3.60)

from Taylor's formula in ψ and the L1 stability of ρ.

lemma 3.5.1. I1 = O(h).

The lemma is proved in section 1.11.

Therefore I = O(h), which proves (3.43) in two space dimension.�

• Set

J :=

∫
[(ρu)ψt + (ρu2)ψx + (ρuv)ψy + pψx]dxdydt. (3.61)

Since ρu, ρu2, ρuv, p are L1 stable one can prove as formula (1.37), see (3.58), that

J = −h2
∑
i,j,n

[(ρu)n+1
i,j − (ρu)ni,j + r((ρu2)ni,j−

(ρu2)ni−1,j) + r((ρuv)ni,j − (ρuv)ni,j−1) + r(pni,j − pni−1,j)]ψ
n
i,j +O(h). (3.62)

Therefore, from (3.35), (3.36), J = J1 + J2 + J3 +O(h) where

J1 := −h2
∑
i,j,n

[(ρu)i,j − (ρu)ni,j + r((ρu2)ni,j − (ρu2)ni−1,j) + r((ρuv)ni,j − (ρuv)ni,j−1)]ψni,j , (3.63)

J2 := −h2α
∑
i,j,n

(2(ρu)i−1,j−1 + . . .+ 3(ρu)i−1,j + . . .− 20(ρu)i,j)ψ
n
i,j = O(h), (3.64)

as (3.60),

J3 :=
rh2

2

∑
i,j,n

[pn+1
i+1,j − p

n+1
i−1,j − 2(pni,j − pni−1,j)]ψ

n
i,j = O(h), (3.65)

as (3.54).
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Riemann problems in [25] and [26]. All calculations have been done on a standard PC. Since it is
immediate to check the CFL condition (3.41) and positiveness of the energy, the simplicity and
e�ciency of the scheme in several space dimension could make it useful in scienti�c computing
where one is often confronted with the problem of con�dence in the validity of numerical calcu-
lations. Indeed comparisons with the numerical solutions of the 2-D Riemann problems from the
schemes presented in [17], [28] and [34] show that we have obtained again the same �gures up
to the smallest details, which could contribute to be con�dent in far more e�cient schemes from
computational �uid dynamics for which consistence proofs are lacking. Our consistency study
suggests that the schemes in [17], [28] and [34] could actually be convergent in some suitable
weak sense, as this will be considered mathematically in chapter 5 where a suitable functional
space will be introduced for this purpose.
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Deuxième partie

Weak limits of the approximate

solutions as boundary values of

holomorphic functions.
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Chapitre 4

Introduction of the holomorphic tool

For some nonlinear equations of hydrodynamics used in cosmology to model radiation do-
minated universes we propose a method which permits transformations of the equations and
calculations of discontinuous solutions. These formulas permit to select numerical schemes for
these equations. As an application, we present a numerical simulation for the coupled system
modeling evolution of densities of a mixture of a Newtonian �uid and a relativistic �uid.

4.1 Introduction.

Nonlinear calculations are usually unavoidable in derivation of the equations from physical
postulates. In case of nonsmooth solutions, �formal� nonlinear calculations on equations of �uid
dynamics can lead to wrong results : indeed these calculations can strongly modify the nonsmooth
solutions. Therefore it is important to know the calculations that are permitted and those that
are forbidden. This chapter focusses on two systems modeling radiation dominated universes, [8]
p. 221, [30] pp. 35-38 and p. 465, when the linear regime breaks down. In particular we study
discontinuous solutions of these equations in the fully nonlinear regime in order to obtain explicit
formulas for the jump conditions.

The linearized equations of motion provide an excellent description of gravitational instability
when density �uctuations are small. But the linear regime breaks down as soon as the density
�uctuations cease to be small, which makes perturbation theory no longer valid. Therefore it is
indispensible to solve the equations in the fully nonlinear regime [8] pp. 304-332, [30] pp. 482-493.
To this end, in case of discontinuous solutions, we propose a method of calculation that consists
in the introduction of a �small� parameter to regularize the problem so as to permit calcula-
tions. After the calculations the regularization is removed by letting the parameter tend to 0.
This method uses (implicitely or explicitely) functions of complex variables to perform explicit
calculations and obtain solutions.

In [8] p. 221 the motion of a relativistic �uid in cosmology is modelled by the system (conti-
nuity equation, Euler equation, Poisson equation)

∂ρ

∂t
+ ~∇.((ρ+

p

c2
)~v) = 0, (4.1)

(ρ+
p

c2
)(
∂~v

∂t
+ (~v.~∇)~v) + ~∇p+ (ρ+

p

c2
)~∇Φ = ~0, (4.2)

79
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∆Φ = 4πG(ρ+ 3
p

c2
), (4.3)

where c is the velocity of light, ρ the energy density, ~v the velocity vector, p the pressure and
Φ the gravitation potential. These equations are completed by a state law of the form p = P(ρ)
where P is a function. A usual equation of state is

p = Kρc2, (4.4)

where K is a constant value, [8] p. 222, with K = 1
3 in the case of a radiation dominated �uid

[8] p. 221, [30] p. 37, p. 465. A more complete system is given in [30] p. 465 (7 lines after for-
mula 15.25 to take into account the omitted term in formula 15.24) : equation (4.2) is replaced by

∂~v

∂t
+ (~v.~∇)~v +

~∇p+ ∂p
∂t~v

ρ+ p
c2

+ ~∇Φ = ~0, (4.5)

which di�ers from (4.2) by division by ρ+ p
c2 and the presence of the supplementary term ∂p

∂t~v.
This equation is a simpli�cation of the equations in [30] p. 36, [42] p. 49.

Since the �elds are considered as relatively weak, there is no need to use general relativity :
these equations of special-relativistic hydrodynamics are formally derived from special-relativity
�uid mechanics and Newtonian gravity with a relativistic source term, see [42] pp. 47-51, [30]
pp. 18-25, pp. 35-37, pp 464-465. They can be considered as issued from the general expression
of the energy-momentum tensor of a perfect �uid [30] p. 19 at a limit for small velocities and
weak �elds. Equation 4.1 is a generalization of the conservation of energy. Equations 4.2 and 4.5
are relativistic generalizations of Euler's equation for momentum conservation in �uid dynamics.
Since one cannot assume p << ρc2, gravitation is modelled by equation (4.3), see [8] p. 221, [30]
pp. 24-25. pp. 35-37, pp. 50-51.

We show in section 4.2 that formal calculations on discontinuous solutions of system (4.1)-
(4.4) lead to inconsistencies. Further, the �rst term in (4.2) and the third term in (4.5) do not
make sense in case of discontinuous solutions since they appear in form of a product of a dis-
continuous function and a Dirac delta function. This last fact is at the origin of speci�c trouble
in numerical schemes since, for these nonconservative equations, one does not have a priori well
de�ned Rankine-Hugoniot jump conditions.

In the third section of this chapter, one states precisely a mathematical context for this
method, so as to use it in the study of Cauchy problems for these equations of special-relativistic
�uid dynamics. Then, one calculates explicit solutions for these two systems in the case of a
solution made of two constant states separated by a discontinuity. Existence of solutions from
this method is shown below from explicit calculations in physically signi�cant cases. A numerical
scheme is presented and tested in section 6 relatively to the explicit jump conditions obtained in
sections 4.4 and 4.5.

4.2 Inconsistencies from formal calculations.

Formal calculations consist in using the classical rules of mathematical calculations (valid
on smooth functions) even on nonsmooth functions without a mathematical justi�cation of the
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validity of these calculations. In this section we show that formal calculations on system (4.1)-
(4.4) lead to inconsistencies, i.e. contradictory results. In one space dimension and absence of
gravitation, immediate formal calculations transform system (4.1), (4.2), (4.4) into

ρt + (K + 1)(ρu)x = 0, (4.6)

ut + [
1

2
u2 +

Kc2

1 +K
log ρ]x = 0. (4.7)

Setting

q := (1 +K)
u2

2
− Kc2

1 +K
log ρ, (4.8)

system (4.6)-(4.7) is transformed into

ut + (
K + 2

2
u2)x = qx, (4.9)

qt + [(1 +K)
u3

3
]x = Kc2ux. (4.10)

The proof is a mere formal veri�cation from formulas (4.6)-(4.8) : insert (4.8) into (4.9)-(4.10) and
use (4.6)-(4.7). We seek shock wave solutions in the form of two constant states separated by a

discontinuity moving with constant speed denoted V . According to the usual formula V = ∆(f(u))
∆u

that gives the velocity of shock waves of the equation ut + f(u)x = 0, the jump conditions of the
conservative equations (4.9)-(4.10) are

V =
K+2

2 ∆(u2)−∆q

∆u
, V =

(K + 1)∆(u
3

3 )−Kc2∆u

∆q
.

Elimination of ∆q gives that the velocity V of the shock wave is solution of the second degree
equation

V 2 − {2 +K

2
(ur + ul)}V + {1 +K

3
(u2
r + urul + u2

l )−Kc2} = 0. (4.11)

An algebraic inconsistency is put in evidence as follows. Formula (4.23) below has been
calculated inside the proof of Theorem 4.1.1. This formula follows from suitably chosen formal
calculations on physical ground, for which it has been checked in the proof of Theorem 4.1.1
that this choice ensures existence of shock wave solutions with well de�ned jump conditions.

Formula (4.23) and the state law (4.4) imply ρr
ρl

= 1 + 1+K
K

V−ul
V (exp V (ur−ul)

c2 − 1). Since it is

in conservative form, equation (4.6) gives the classical jump condition V = (1 +K)∆(ρu)
∆ρ , which

gives ρr
ρl

= V−(1+K)ul
V−(1+K)ur

. Finally, we obtain

V − (1 +K)ul
V − (1 +K)ur

= 1 +
1 +K

K

V − ul
V

(exp
V (ur − ul)

c2
− 1). (4.12)

Given ur, ul,K, c
2, one can compute two values V1, V2 from (4.11). Then insertion of these

values into both members of (4.12) shows that (4.12) does not hold in general (take for instance
K = c = ur = 1, ul = 0). This is an algebraic contradiction.

How to avoid the inconsistencies ? Let us consider the way these equations are obtained.
Equations (4.1)-(4.2) are issued from special-relativistic hydrodynamics since the �elds are still
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weak. They are an extension of the classical laws of mass and momentum conservation. They
have already been subject to formal nonlinear calculations [42] pp.47-49, [30] pp.35-36. The state
law (4.4) is directly obtained from a physical reasoning or observation. One should be allowed
to perform nonlinear calculations on the equations (4.1)-(4.2) and (4.1), (4.5), since nonlinear
calculations have already been done to obtain them, but not necessarily on the state law (4.4).
Since the inconsistencies in section 4.2 are obtained from formal calculations involving both (4.1),
(4.2) and (4.4), does the idea to calculate freely on (4.1)-(4.2) or (4.1), (4.5) only permit to avoid
inconsistencies in presence of shock waves calculations for systems (4.1)-(4.4) and (4.1), (4.5),
(4.3), (4.4) ?

Another problem under concern here is the presence of the product of a discontinuous function
and a Dirac delta function in the �rst term of equation 4.2 as well as in the third term of
equation 4.5. Such a product does not make sense classically. To remedy for these problems
(the inconsistencies and the above unde�ned products) we introduce a method of regularization
directly inspired from classical calculations of physics and mathematics, using a small regularizing
parameter, that will permit to give a positive answer : in the space of the regularized objects
one can compute freely on (4.1)-(4.2) and (4.1), (4.5) concerning shock waves, and (4.4) (on
which nonlinear calculations are forbidden to avoid inconsistencies) gives a needed supplementary
piece of information. These explicit calculations permit to put in evidence numerical schemes in
agreement with the jump conditions obtained from them.

4.3 Mathematical context.

It is usual in physics and mathematics to regularize an irregular function f , denoted here
f(x), x ∈ Rn, by introducing a small parameter ε > 0, so as to replace the irregular function f(x)
by smooth functions fε(x) denoted here f(x, ε), such that f(x, ε) tend weakly to f(x) when ε→ 0.

The method we use consists in transfering the physical problem under consideration to a
larger space made of the regularized objects f(x, ε). One considers in this new space functions
that play the role of representatives of the Heaviside function and of the Dirac delta function.
In order to bene�t from the property of uniqueness of analytic continuation, so as to identify
a function and its restriction to a smaller strip, the functions f(x, ε) are analytic functions in
the variables x and ε, which amounts to consider holomorphic functions of complex variables
f(z, ζ), z = x + iy, ζ = ε + iη, x, y ∈ Rn, ε, η ∈ R, de�ned in complex neighborhoods of the real
space. Convenient neighborhoods are de�ned as follows.

The letters r, θ, µ will always denote real numbers such that

0 < r < 1, 0 < θ <
π

6
, 0 < µ <

1

2
. (4.13)

The values r, θ, µ can be as small as needed. One considers the open strip in R2n+2 parallel to
the real space Rn of variable x de�ned by

S(r, θ, µ) = {(z, ζ) ∈ Cn × C such that

x ∈ Rn, 0 < |ζ| < r, −θ < argζ < θ, |yi| < µε ∀i = 1, ..., n}. (4.14)

The real space Rn lies on the boundary of S(r, θ, µ) by letting ζ tend to 0 (and therefore, since
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ε < |ζ|
2 from (4.13), y → 0). Let F be the set of all strips S(r, θ, µ). The set F is a net for the

inclusion :

∀ S1, S2 ∈ F ∃S3 ∈ F / S3 ⊂ S1 ∩ S2.

We denote by const a positive real number which may not be the same from an expression to
the following. If S ∈ F , one de�nes

HS := {holomorphic functions F : S 7−→ C, (z, ζ) 7−→ F (z, ζ)}.

Note that ∂
∂xi

HS ⊂ HS . If S
′ ⊂ S, with S, S′ ∈ F , the restriction map

HS 7−→ HS′ ,

F 7−→ F |S′ ,

is injective from the uniqueness of analytic continuation since F |S′ = 0⇒ F = 0 in the connec-
ted strip S. For convenience we note HS ⊂ HS′ . Now we identify a function and its analytic
continuation.

De�nition. In the reunion of the sets HS one considers the equivalence relation

(F1, S1) ≡ (F2, S2)

⇔

∃S3 ⊂ S1 ∩ S2 / F1|S3 = F2|S3 .

The set of all equivalence classes is by de�nition a space of germs of holomorphic functions on
Rn in the x-variable. Since this space is also classically refered to as an inductive limit we denote
it by limHS .

These "germs" can also be refered to as "functions" provided one retains that a function and
any of its analytic extensions on a connected open set are identi�ed.

In other words this means that one considers the reunion of the sets HS , and then that
F ∈ HS1

, G ∈ HS2
are identi�ed i� there is S3 ∈ F such that S3 ⊂ S1 ∩ S2 and F |S3

= G|S3
.

This de�nition consists precisely in de�ning on the reunion of the sets HS , S ∈ F , the above
equivalence relation. LimHS is stable by di�erentiation and multiplication

∂

∂xi
(LimHS) ⊂ LimHS ∀i,

LimHS × LimHS ⊂ LimHS .

Now let us check that LimHS contains objects that we shall need in the sequel, more precisely
Heaviside and Dirac functions. To this end notice that to any function f ∈ L∞(Rn), we can
associate several elements F ∈ LimHS that "give back" f on Rn considered on the boundary of
S(r, θ, µ) as the following weak limit

∀ψ ∈ C∞c (Rn) lim
ε→0

∫
F (x, ε)ψ(x)dx =

∫
f(x)ψ(x)dx (4.15)
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where C∞c (Rn) is the space of in�nitely di�erentiable functions on Rn with compact support. We
say that f is the real interpretation of F . This can be done by convolution : set for instance the
molli�er

ρ(z) = const
1

((z1)2 + 1)s . . . ((zn)2 + 1)s
, s ∈ N, s ≥ 1 (4.16)

with
∫
ρ(x)dx = 1 in order that the function λ 7−→ 1

εn ρ(λε ) provides an approximation of the
identity by convolution when ε→ 0. Then, we set

F (z, ζ) :=

∫
Rn
f(λ)

1

ζn
ρ(
λ− z
ζ

)dλ. (4.17)

Lemma 4.3.1. ∀f ∈ L∞(Rn) the function F de�ned in (4.17) is in LimHS and has f as real
interpretation. Further, if f is continuous at a point x0, then F (x, ε) → f(x0) when ε → 0 and
x→ x0.

Proof. For simplicity the proof is given in the case n = 1. Then

F (z, ζ) = const.ζ2s−1

∫
f(λ)

[(λ− z)2 + ζ2]s
dλ. (4.18)

Auxiliary calculation : |(λ − z)2 + ζ2| ≥ |Real((λ − z)2 + ζ2)| = (λ − x)2 + ε2 − y2 − η2 ≥
ε2(1−µ2−tan2θ) > ε2

2 from (4.13). Therefore the denominator in (4.18) does not take the value 0
when (z, ζ) ∈ S(r, θ, µ). In the sequel we will use that |(λ−z)2+ζ2| ≥ (λ−x)2+α2ε2 with α = 1√

2
.

If f ∈ L∞, (4.18) gives |F (z, ζ)| ≤ const|ζ|2s−1‖f‖∞
∫

dλ
[(λ−x)2+α2ε2]s ≤ const‖f‖∞, since∫

dλ
[(λ−x)2+α2ε2]s =

∫
dλ

[(λ)2+α2ε2]s = (αε)1−2s
∫

dµ
(µ2+1)s .

The last assertion follows from the formula F (x, ε) =
∫
f(x+ kε)ρ(k)dk.�

As a consequence, if f is the classical Heaviside function, when ε→ 0 one has F (x, ε)→ 0 if
x < 0 and F (x, ε) → 1 if x > 0. Since the space LimHS is stable by di�erentiation, ∂F∂x has the
Dirac δ function as real interpretation.

These results can be easily extended to Rn×]0, T [, considering f null out of Rn×]0, T [. A Hea-
viside function in H is an element of LimHS whose real interpretation is the Heaviside function.
A Dirac function is an element of LimHS whose real interpretation is the Dirac delta distribution.

Besides the concept of solution of equations in the sense of equality in the space LimHS , we
are forced to consider also solutions in a weak sense, for which a natural de�nition is as follows.

De�nition of a concept of weak solution. The "function" U = (U j)j=1,...,m ∈ (LimHS)m

relative to Rn+1 is a weak solution of the system

Ut +

n∑
i=1

Ai(U)
∂U

∂xi
“ =′′ 0 (4.19)
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of m scalar equations i� each component of Ut +
∑n
i=1Ai(U) ∂U∂xi has the null function as real

interpretation, i.e.

∀j = 1, ...,m, ∀ψ ∈ C∞c (Rn+1),

∫
Rn+1

[(U j)t +
n∑
i=1

(Ai(U)
∂U

∂xi
)j(x, t, ε)]ψ(x, t)dxdt→ 0 (4.20)

when ε→ 0+. This is denoted by Ut +
∑n
i=1Ai(U) ∂U∂xi

weak
= 0.

As the usual concept of a weak solution this concept of weak solution su�ers from nonuni-
queness and classical examples show that free manipulation of equations can change the solution
in the case of discontinuous solutions.

4.4 Calculation of a jump condition I.

In section 4.2 it was shown that formal calculations can be wrong in case of nonsmooth so-
lutions. In this section we test in absence of gravitation the idea presented in section 4.2 in case
of nonsmooth solutions and we explicit the jump formulas so obtained. We shall calculate on
discontinuous solutions in one space dimension because this is simple and representative of the
general situation in the case of shock waves. We recall that the equations stated with the strong
equality in our context can be manipulated freely and that the weak equality in our context does
not allow free manipulation of the equations in the case nonsmooth solutions are concerned.

The small parameter ζ is not apparent in the calculations : since they need the context of this
chapter in order to make sense this small parameter is implicit. For the solutions under concern
the equations are reduced to algebraic equations (4.22), (4.23), (4.25), (4.28) that can be satis�ed
at once, thus proving the existence of strong solutions of the �rst two equations in (4.21) from
explicit calculations.

Theorem 4.4.1. The system (4.1)-(4.4) of special-relativistic �uids, with G=0 in one space
dimension admits step functions solutions when stated in the context of this chapter in the fol-
lowing form, where the symbol = in the �rst two equations means one has strong solutions while
the third equation (state law) is satis�ed only in the weak sense

ρt + ((ρ+
p

c2
)u)x = 0, (ρ+

p

c2
)(ut + uux) + px = 0, p

weak
= P(ρ) (4.21)

with P an algebraic function, (4.4) for instance.
The jump conditions are

V =
∆(ρu) + ∆(pu)

c2

∆ρ
, (4.22)

which is the classical jump condition of the conservative �rst equation in (4.21), and, further,
the nonclassical jump condition

V∆p = c2(ρl +
pl
c2

)(V − ul)(exp
V∆u

c2
− 1) (4.23)

which follows from the nonconservative second equation. As a consequence the second equation
in (4.21) can equivalently be stated in the form ut +uux + px

ρ+ p

γ2
= 0 (these two formulations are
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found in texts of cosmology).

The statement (4.21) is physically sound since the state law has a far weaker meaning than
the equations of special relativity from which the �rst two equations in (4.21) follow : these equa-
tions correspond to conservation of mass and momentum in the Newtonian version, as relativistic
extensions in the domain of weak �elds [8] p. 221, [30] pp. 18-19, 24-25, 35-38, 50-51, 464-465.

Role of the state law. In the proof one considers solutions of the form

ω(x, t) = ωl + (ωr − ωr)Hω(x− V t), (4.24)

ω = u, p, ρ and Hω a Heaviside function depending on the physical variable ω. The role of the

state law p
weak
= P(ρ) is simply to state pl = P(ρl) and pr = P(ρr), without any information on

the Heaviside functions of p and ρ involved in the jump. From the de�nition of Y = ρ+ p
c2 one

has ∆Y HY = ∆ρHρ + ∆p
c2 Hp and (4.25) gives the relation ∆ρHρ = −∆p

c2 Hp +
V ∆p

c2
Hp+Yl∆uHu

V−ul−∆uHu
.

Formula (4.28) gives Hp as a function of Hu and (4.25) gives Hρas a function of Hp, Hu. The-
refore both Hρ and Hp are well de�ned functions of Hu. The statement of the state law in the
strong form would impose another relation between Hp and Hρ, for instance Hp = Hρ in case of
the state law p = const.ρ, thus giving a contradiction which is at the origin of the absurd result
shown in section 4.2 from formal calculations.

proof. The proof consists in plugging (4.24) with ω = u, p, ρ and respective Heaviside functions
Hu, Hp and Hρ into the left members of the �rst two equations in (4.21), and seek under what
conditions the results are null. One �nds that this amounts to formulas between Vandtheleft−
rightvaluesul, ur, pl, pr, ρl, ρr (= the jump conditions (4.22)-(4.23)), plus explicit relations bet-
weenHu, Hp andHρ that amount to express two of them in function of the third one (4.25)-(4.28).
We give the calculations in full detail although they are a reproduction in this context of ele-
mentary calculations. For convenience one sets Y = ρ + p

c2 and Y (x, t) = Yl + ∆Y HY (x − V t).
From the formulas ρ = Y − p

c2 and (ρ+ p
c2 )u = Ylul + Yl∆uHu + ul∆Y HY + ∆u∆Y HuHY , the

�rst equation gives

−V∆Y H ′Y + V
∆p

c2
H ′p + Yl∆uH

′
u + ul∆Y H

′
Y + ∆u∆Y (HuHY )′ = 0.

By a mere integration, usingHu(−∞) = HY (−∞) = Hp(−∞) = 0 to �x the integration constant,
one obtains the formula

HY =
V ∆p

c2 Hp + Yl∆uHu

∆Y (V − ul −∆uHu)
. (4.25)

Since Hu(+∞) = HY (+∞) = Hp(+∞) = 1 one obtains the formula

V
∆p

c2
+ Yl∆u = ∆Y (V − ul −∆u)

from which easy calculations give the jump condition (4.22) (which classically follows from the
�rst equation in (4.21) which is in conservative form : this is the reason why a mere integration
has so easily given the result, as done classically to obtain jump conditions for systems in conser-
vative form).
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The second equation in (4.21) is in nonconservative form. It will be more di�cult to obtain
the jump condition. Plugging (4.24) into it with ω = Y, u, p gives

(Yl + ∆Y HY )(−V∆uH ′u + ul∆uH
′
u + (∆u)2HuH

′
u + ∆pH ′p = 0

i.e.
∆pH ′p = ∆uH ′u(Yl + ∆Y HY )(V − ul −∆uHu). (4.26)

Note that H ′u is a Dirac delta function and HY a Heaviside function, therefore one observes
classically unde�ned products H ′uHY , H

′
uHYHu which make sense here as elements of LimHS .

From (4.25) one obtains

Yl + ∆Y HY = Yl +
V ∆p

c2 Hp + Yl∆uHu

V − ul −∆uHu
=
Yl(V − ul) + V ∆p

c2 Hp

V − ul −∆uHu
. (4.27)

Therefore, from (4.26)

∆pH ′p = ∆uH ′u(Yl(V − ul) + V
∆p

c2
Hp)

that can be written in the form

H ′p − (V
∆u

c2
H ′u)Hp −

∆u

∆p
Yl(V − ul)H ′u = 0.

Explicit integration is done by considering that this is an ODE in the unknown function Hp,
following the classical method for the linear ODEs a(x)y′ + b(x)y + c(x) = 0. It makes sense
since the coe�cients a, b, c are classical functions de�ned in some strip S(r, θ, µ) (one chooses
Heaviside functions de�ned and bounded in this strip like those exposed in section 4.3).

First step : homogeneous equation.

H ′p = (V ∆u
c2 H

′
u)Hp, which implies Hp = const. exp(V ∆u

c2 Hu).

Second step : variation of the constant. The full equation becomes

const′. exp(V ∆u
c2 Hu)+const.V ∆u

c2 H
′
u exp(V ∆u

c2 Hu)−V ∆u
c2 H

′
uconst. exp(V ∆u

c2 Hu) = ∆u
∆pYl(V−

ul)H
′
u.

Therefore

const′ = ∆u
∆pYl(V − ul) exp(−V ∆u

c2 Hu)H ′u, i.e.

const = ∆u
∆pYl(V − ul)

−c2
V∆u exp(−V ∆u

c2 Hu) + other const.

Finally the formula for the solutions of the ODE is

Hp =
1

∆p
Yl(V − ul)

−c2

V
+ const. exp(V

∆u

c2
Hu).

Using Hu(−∞) = Hp(−∞) = 0 to �x the integration constant, one obtains
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Hp = −Yl(V − ul)
c2

V∆p
(1− exp(V ∆u

c2
Hu)). (4.28)

The nonclassical jump condition (4.23) follows from setting Hp(+∞) = 1 = Hu(+∞) as boun-
dary conditions. Formulas (4.28), (4.25) amount to state HY and Hp as functions of Hu and
(4.22)-(4.23) ensure that HY and Hp from these formulas are Heaviside functions provided Hu

is. Therefore these formulas (4.22), (4.23), (4.25), (4.28) are equivalent to the existence of a
strong solution in the requested form (4.24) of a shock wave. �

Comments. Theorem 4.4.1 amounts to a choice of �formal� calculations that are proved to be
permitted even in case of step function solutions (those on expressions stated with = in (4.21))
and �formal� calculations that are (unless exception such as linear calculations) forbidden (those

stated with ”
weak
= “), such as the third equation in (4.21).

Consistency with Newtonian mechanics. At the limit c→ +∞ one obtains easily from (4.23)
the jump condition in the Newtonian case : indeed (4.23) gives ∆p = ρl(V − ul)∆u. Inserting
V = ∆(ρu)

∆ρ (from (4.22) with c→ +∞) one obtains the formula

∆p∆ρ = ρrρl(∆u)2. (4.29)

The Newtonian system classically stated (weak classical solutions)

ρt + (ρu)x = 0, (ρu)t + (ρu2)x + px = 0 (4.30)

has the classical jump conditions V = ∆(ρu)
∆ρ and V = ∆(ρu2)+∆p

∆(ρu) . Elimination of V gives (4.29).�

4.5 Calculation of a jump condition II.

Theorem 4.5.1. The system (4.1), (4.5), (4.3), (4.4) of special-relativistic �uids in one space
dimension in absence of gravitation admits step function solutions when stated in the context of
this chapter as

ρt + ((ρ+
p

c2
)u)x = 0, ut + uux +

px + upt
ρ+ p

c2
= 0, p

weak
= P(ρ). (4.31)

As a consequence, formal nonlinear calculations on the �rst two equations are justi�ed. The jump
condition for the second equation is

(ρr +
pr
c2

)c
2

(V − ur)c
2

(1− V ur) = (ρl +
pl
c2

)c
2

(V − ul)c
2

(1− V ul). (4.32)

proof. The calculations given below are similar to those in the proof of Theorem 4.4.1. The �rst
equation has been studied in the proof of Theorem 4.4.1. It gives (4.25) for HY and the jump
condition (4.22). With the above notations the second equation in (4.31) can be stated

Y (ut + uux) + px + upt = 0, (4.33)

Inserting (4.24) with ω = Y, u, p into equation (4.33) gives
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(Yl + ∆Y HY )[(−V + ul)∆uH
′
u + (∆u)2HuH

′
u] + ∆pH ′p + (ul + ∆uHu)(−V∆pH ′p) = 0,

i.e.
∆pH ′p(1− V (ul + ∆uHu)) = (Yl + ∆Y HY )(V − ul −∆uHu)∆uH ′u.

From (4.27) (which follows from (4.25) i.e. from the �rst equation in (4.31))

∆pH ′p(1− V (ul + ∆uHu)) = (Yl(V − ul)∆uH ′u + V ∆p
c2 Hp)∆uH

′
u.

Then, the di�erential equation satis�ed by the Heaviside function Hp is :

∆p(1− V (ul + ∆uHu))H ′p − V
∆p
c2 ∆uH ′uHp − Yl(V − ul)∆uH ′u = 0.

First step in solution of this ODE. Homogeneous equation

(1− V (ul + ∆uHu))H ′p = V
c2 ∆uH ′uHp,

whose solution is

Hp = const(−V∆uHu + (1− V ul))−
1
c2 .

Second step : Variation of the constant. One �nds

∆p(1− V ul − V∆uHu)1− 1
c2 const′ = Yl(V − ul)∆uH ′u,

const′ =
Yl(V−ul)∆uH′u

∆p(1−V ul−V∆uHu)
1− 1

c2
, i.e. by integration

const = −Yl(V−ul)
V∆p c2(−V∆uHu + 1− V ul)

1
c2 + const.

Finally one �nds the solution

Hp = −Yl(V−ul)c
2

V∆p + const.(−V∆uHu + 1− V ul)−
1
c2 .

Using Hu(−∞) = Hp(−∞) = 0 to �x the integration constant, one obtains

const = Yl(V−ul)c2
V∆p (1− V ul)

1
c2 . The solution is

Hp = −Yl(V−ul)c
2

V∆p + Yl(V−ul)c2
V∆p ( 1−V ul

−V∆uHu+1−V ul )
1
c2 .

Setting Hp(+∞) = 1 = Hu(+∞) gives the jump condition

V∆p
Yl(V−ul)c2 = −1 + ( 1−V ul

1−V ur )
1
c2 , i.e.

V∆p+ Yl(V − ul)c2

Yl(V − ul)c2
= (

1− V ul
1− V ur

)
1
c2 . (4.34)

The formula following (4.25), i.e. V ∆p
c2 + Yl∆u = ∆Y (V − ur), can be stated as

V∆p+ Ylurc
2 − Ylulc2 = Yr(V − ur)c2 − Yl(V − ur)c2, i.e. V∆p+ Yl(V − ul)c2 = Yr(V − ur)c2.

Inserting this formula into the formula (4.34) gives

Yr(V − ur)c2

Yl(V − ul)c2
= (

1− V ul
1− V ur

)
1
c2 .

Finally, the jump condition for the second equation is

(Yr)
c2(V − ur)c

2

(1− V ur) = (Yl)
c2(V − ul)c

2

(1− V ul). i.e. (4.32).�
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4.6 Numerical approximations of relativistic �uid models.

In this section, we propose a numerical scheme for the solution of the two systems presen-
ted in introduction. It extends at once to two and three space dimension without dimensional
splitting. The systems (4.1)-(4.4) and (4.1), (4.5), (4.3), (4.4) of relativistic �uid dynamics are
in nonconservative form : close numerical schemes can give di�erent discontinuous solutions, so
one cannot be con�dent in the results given by the schemes unless they are validated. Schemes
are given in the genuine physical situation : presence of gravitation, expanding background, two
and three space dimension, in which they give the qualitatively expected results. But there are
no very precise observational data that could validate them from a quantitative viewpoint. The-
refore validation of the schemes is a problematic task. We will use formula (4.22)-(4.23), (4.22)
and (4.32) to validate the respective schemes. Then we will compare them and evaluate their
domain of validity.

In one dimension the space-time cells are rectangles [(i− 1
2 )h, (i+ 1

2 )h]× [nrh, (n+ 1)rh], h=
the space step, i ∈ Z, n ∈ N, r > 0 small enough.

Numerical scheme for system (4.1)-(4.4). Multiply by u equation (4.1), multiply by ρ
ρ+ p

c2

equation (4.2) and add the two equations thus obtained :

(ρu)t + [(ρ+
p

c2
)u2]x =

p

c2
uux −

ρ

ρ+ p
c2
px − ρΦx. (4.35)

This transformation is mathematically allowed from Theorem 4.4.1. Then the state law is
inserted into the equations : this insertion is not permitted since it leads to the inconsistencies
found in section 4.2, but we will test a posteriori from the formulas (4.22)-(4.23) the validity of
the scheme. If one suppresses gravitation as in section 4.4, insertion of the state law (4.4) gives
the system

ρt + [(1 +K)ρu]x = 0, (4.36)

(ρu)t + [(1 +K)ρu2]x = Kρuux −
c2K

1 +K
ρx. (4.37)

We apply a splitting of equations to this system. Let ρni , (ρu)ni , u
n
i i∈Z be given. If a, b ∈ R we

set, formula (1.16),

L(a, b) = length of [0, 1] ∩ [a, b] = max(0,min(1, b)−max(0, a)). (4.38)

• Convection step with the �eld of velocity wni

wni = (1 +K)uni , (4.39)

ρi := ρni−1L(−1 + rwni−1, rw
n
i−1) + ρni L(rwni , 1 + rwni ) + ρni+1L(1 + rwni+1, 2 + rwni+1). (4.40)

When the CFL condition r|wni | ≤ 1 ∀i, n is satis�ed the �rst term multiplied by h represents
the quantity ρ issued from the cell Ii−1 between times tn and tn+1 that lies in the cell Ii at time
tn+1. Indeed the cell [(i − 3

2 )h, (i − 1
2 )h] has been transported according to the vector rwni−1h,

since wni−1 is the numerical velocity and the duration time is rh. The overlap with the �xed cell
[(i − 1

2 )h, (i + 1
2 )h] has length rwni−1h if wni−1 ≥ 0, 0 if wni−1 ≤ 0 (taking into account the CFL

condition |wni−1| ≤ 1). From (4.38) one �nds L(−1 + rwni−1, rw
n
i−1) = rwni−1 if wni−1 ≥ 0, 0 if

wni−1 ≤ 0. Division by h is due to the fact ui, u
n
j are mean values on cells of length h.

The second term in (4.40) multiplied by h represents the quantity ρ issued from the cell Ii that
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remains in Ii at time tn+1. Indeed the cell [(i− 1
2 )h, (i+ 1

2 )h] has been transported by the vector
rwni h. The overlap with the �xed cell [(i − 1

2 )h, (i + 1
2 )h] is h − rwni h if wni ≥ 0, h + rwni h if

wni ≤ 0. From (4.38) one �nds L(rwni , 1 + rwni ) = 1− rwni if wni ≥ 0, 1 + rwni if wni ≤ 0.
The third term in (4.40) is similar to the �rst one : it concerns the quantity ρ issued from the
cell Ii+1 that lies in the cell Ii at time tn+1. Note that ρi depend on n, which is not explicitely
stated to shorten the notation. The same discretization as the one in (4.40) gives

(ρu)i := (ρu)ni−1L(−1 + rwni−1, rw
n
i−1)+

(ρu)ni L(rwni , 1 + rwni ) + (ρu)ni+1L(1 + rwni+1, 2 + rwni+1), (4.41)

ui =
ρui
ρi
. (4.42)

• Averaging step. This step is needed in general to avoid oscillations that can occur in its
absence due to the centered discretization in the third step. Let α ∈ [0, 1

2 [. We set

ρn+1
i := αρi−1 + (1− 2α)ρi + αρi+1, (4.43)

(̃ρu)i := α(ρu)i−1 + (1− 2α)(ρu)i + α(ρu)i+1. (4.44)

The case α = 0 corresponds to the absence of averaging. The presence of α 6= 0 is often needed
to compensate possible oscillations due to the centered discretization in the correction step.

• Correction step (dropping provisionally the gravitation potential).

(ρu)n+1
i = ρ̃ui +

Kr

2
(ρu)i(ui+1 − ui−1)− c2Kr

2(1 +K)
(ρi+1 − ρi−1), (4.45)

un+1
i =

(ρu)n+1
i

ρn+1
i

. (4.46)

The CFL condition is
r(1 +K)‖u‖∞ < 1. (4.47)

If ρ0
i > 0 ∀i then the middle L in (4.40) is nonzero and, by induction on n, one can easily

verify that ρi > 0 and ρn+1
i > 0 ∀n. From formulas (4.40) and (4.43),

∑
i ρ
n
i h =

∑
i ρ

0
ih ∀n,

which is the L1 stability in ρ.

Numerical scheme for system (4.1), (4.5), (4.3), (4.4). One mutiplies equations (4.1) by u
and equation (4.5) by ρ, and add the equations so obtained. This gives

(ρu)t + (1 +K)(ρu2)x = Kρuux −
Kc2

1 +K
ρx +Kc2(ρu)xu− ρΦx. (4.48)

The system thus obtained is the same as the one obtained from (4.1)-(4.4) with the additional
term Kc2(ρu)xu in the Euler equation. We adopt an identical numerical scheme except that
formula (4.45) is replaced by

(ρu)n+1
i = ρ̃ui+

Kr

2
(ρu)i(ui+1−ui−1)− c2Kr

2(1 +K)
(ρi+1−ρi−1)+

c2Kr

2
ui(ρui+1−ρui−1), (4.49)

in which this additional term is treated by a centered discretization. For both systems gravitation
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is treated by a centered discretization.

To validate the schemes one compares their results with the jump formulas (4.22)-(4.23),
(4.22) and (4.32) respectively. One chooses c = 1. Then for each shock in an interval ]a, b[, a < b
with constant values on both sides one computes the quantities

V := (1 +K)
(ρu)(b)− (ρu)(a)

ρ(b)− ρ(a)
, (4.50)

r1 := V K(ρ(b)− ρ(a)), (4.51)

r2 = (1 +K)ρ(a)(V − u(a))[exp(V (u(b)− u(a))− 1], (4.52)

for system(4.1)-(4.4). For system (4.1), (4.5), (4.3), (4.4) one replaces r1 and r2 by

r1 = (1 +K)ρ(a)(V − u(a))(1− V u(a)), (4.53)

r2 = (1 +K)ρ(b)(V − u(b))(1− V u(b)). (4.54)

From the jump formulas (4.22)-(4.23) or (4.22) and (4.32) respectively, one should have r1 =
r2. For each shock wave one computes the relative errors El, Er on the left, right discontinuities
respectively, from the formula

E =
2|r1 − r2|
|r1|+ |r2|

. (4.55)

One chooses K = 1
3 , G = 0, h = 1

2000 , r = 0.1, 6000 iterations, α = 0.05. For each Riemann
problem in the array below one has computed the relative error on each shock wave, �rst on
system (4.1)-(4.4), then on system (4.1), (4.5), (4.3), (4.4) with α = 0.05.

ρl ul ρr ur El, (1, 2, 3, 4) Er, (1, 2, 3, 4) El, (1, 5, 3, 4) Er, (1, 5, 3, 4)
2 0.6 3 0.4 0.002 0.000 0.000 0.000
8 0.5 6 0.3 0.000 0.008 0.000 0.000
5 0.7 3 0.5 0.004 0.013 0.000 0.010
8 0.7 6 0.4 0.001 0.012 0.000 0.019
2 0.9 4 0.1 0.025 0.011 0.000 0.000
2 0.9 9 0.1 0.031 0.000 0.000 0.000
1 0.9 9 0.1 0.031 no jump 0.000 0.000
5 0.9 2 0.1 0.002 0.058 0.000 0.000
9 0.9 1 0.1 no jump 0.124 0.000 0.008

The velocity of light has been chosen =1, so jumps from 0.9 to 0.1 represent extremely strong
variations in the initial data which lie outside of the physical domain of validity of the equations
from the factor (1−v2) (case c = 1) in [42] (2.10.16) p. 49. The conclusion is that the scheme for
system (4.1)-(4.4) works well for relatively moderate jumps such as the �rst four ones (relative
error no more than 1 per cent), but sometimes works very poorly for large jumps such as the last
two ones. For Riemann problems such as (ρl = 9, ul = 0.9, ρr = 1, ur = 0.1) the intermediate
value of the velocity step from the scheme for system (4.1)-(4.4) bypasses the velocity of light
which puts in evidence the inadequacy of the model (4.1)-(4.4) in this case : indeed important
simpli�cations have been done relatively to the Euler equation in [42] p. 49. The scheme for the



< c
2

(ρl, ρr, ur, ul) = (2, 3, 0.2, 0.1)
(4, 3, 0.2, 0.5)
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The scheme can be extended at once to two and three space dimension. For the �rst step this
is done in formulas (1.21-1.27). For the second step the averaging is simply done by considering
the 8 neighbors of a cell in 2-D and the 26 neighbors in 3-D. In 2-D the averaging analog to
(4.43)-(4.44) can be as follows. Let α, 0 < α < 1

20 , be given in the scheme. Set

ρn+1
i,j := α(2ρi−1,j−1 + 2ρi−1,j+1 + 2ρi+1,j−1 + 2ρi+1,j+1 + 3ρi−1,j+

3ρi,j−1 + 3ρi,j+1 + 3ρi+1,j) + (1− 20α)ρi,j . (4.56)

Finally the third step is a mere centered discretization. Let us give the formulas in 2-D. Formula
(1.37) is replaced by

(ρu)t + (1 +K)(ρu2)x = Kρuux − ρvuy −
Kc2

1 +K
ρx, (4.57)

and formula (4.45) is replaced by

(ρu)n+1
i,j = ρ̃ui,j +

Kr

2
ρui,j(ui+1,j − ui−1,j)−

r

2
ρvi,j(ui,j+1− ui,j−1)− c2Kr

2(1 +K)
(ρi+1,j − ρi−1,j),

(4.58)
and similar formulas for ρv. Formulas (4.48) and (4.49) are respectively replaced by

(ρu)t + (1 +K)(ρu2)x = Kρuux − ρvuy −
Kc2

1 +K
ρx +Kc2(ρu)xu, (4.59)

(ρu)n+1
i,j = ρ̃ui,j + Kr

2 ρui,j(ui+1,j − ui−1,j)−

r

2
ρvi,j(ui,j+1 − ui,j−1)− c2Kr

2(1 +K)
(ρi+1,j − ρi−1,j) +

c2Kr

2
ui,j(ρui+1,j − ρui−1,j). (4.60)

Due to the absence of dimensional splitting, the 2-D and 3-D scheme retain the numerical
accuracy of the 1-D scheme as observed in Part I.

The numerical scheme can include the Poisson equation (4.3) from a direct integration in
1-D and from any classical numerical resolution in 2-D and 3-D. Then the partial derivatives of
the gravitation potential are calculated by a centered discretization and inserted into (4.49) and
(4.60).

The applications to cosmology request expanding background. Since this is classical, see
Proposition 1.10.1 in chapter 1, [8] p. 216, p.294, p. 312, [30] p. 462-463, [31] p. 233, we do not
state it explicitely.

4.7 Coexistence of a Newtonian �uid and a relativistic �uid.

Between the epoch of equivalence of matter and radiation and the epoch of decoupling of
baryons and radiation a classical scenario consists in the coexistence of a Newtonian component
(cold dark matter) and a relativistic component (baryons tightly coupled to radiation). It is
considered dark matter perturbations were growing and therefore were creating a gravitational
attraction of baryons counterbalanced by the huge internal pressure from the coupling of baryons
with photons.



∆Φ = 4πGρN + 4πG(ρR + pR
c2 ) ρN ρR, pR

0.9 1.1
G = 1, r = 10, 200 α = 0.05;K = 1

3 , c = 300000
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Chapitre 5

A holomorphic functional space.

An analysis of singular shock solutions of the Key�tz-Kranzer system suggests a regularization
of singular shocks in a functional space of classical germs of holomorphic functions. In this
functional space a sequence of approximate solutions can converge to a well de�ned limit which
can be a singular shock solution of the equations in a natural sense similar to the classical concept
of a weak solution. In this context we obtain compactness and an analog of the classical result
"consistency and stability imply convergence".

5.1 Introduction.

Singular shocks have been put in evidence by Key�tz-Kranzer in a study of their model system
[22], [21]. M. Sever [36] has shown families of equations that admit singular shock waves as solu-
tions. The singular shocks have been observed from di�erent numerical techniques : Dafermos-Di
Perna viscosity in [22], [21], usual viscosity in [33], [35], and a unique solution to the Riemann
problem has been obtained in [22], [21]. The work in this chapter has been motivated by the
Cauchy problem.

We introduce a functional space in which a L1-stable sequence of approximate step-function
solutions can converge to a solution of the equations, even when such a solution involves singular
shocks or delta shocks. This convergence is obtained from a compactness argument in a functional
space of holomorphic functions having the usual space R×R+ on the boundary of their domain.
The singular shocks or delta shocks appear as "boundary values" of holomorphic functions. These
boundary values have properties close to those of the classical weak solutions. Such sequences of
approximate solutions are provided by a numerical scheme in chapter 6, valid in particular for
the Key�tz-Kranzer system

ut + (u2 − v)x = 0, (5.1)

vt + (
1

3
u3 − u)x = 0, (5.2)

and for the system

ut + (u2)x = 0, (5.3)

vt + (uv)x = 0, (5.4)
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The explanation proposed in this chapter consists in a distinction between the "genuine solu-
tion", denoted by U , which is not a distribution and carries the "small, but basically important"
singularities observed in �gure 5.1.1, and the aspect of U in the sense of distributions : a simple
discontinuity which is not solution and is only the interpretation of the solution in the sense of
distributions.

5.2 Mathematical context.

This context originated in the introduction of a regularizing small parameter in chapter 4
section 4.3 for calculations on equations of cosmology. At �rst a function f = f(x) was regularized
as a function f(x, ξ), where ξ is a > 0 regularizing parameter, such that f(x, ξ) → f(x) in the
sense of distributions when ξ → 0, i.e.

∀ψ ∈ C∞c (Rn)

∫
f(x, ξ)ψ(x)dx→

∫
f(x)ψ(x)dx

when ξ → 0. Then we intended to use the property that the functions (x, ξ) → f(x, ξ) are
analytic in (x, ξ), which amounts, using their extension to the complex domain, to transform
them into f(z, ζ), z = x+ iy ∈ Cn, ζ = ξ + iη ∈ C.

Since ξ, η, y are arbitrarily small our functional space is a kind of space of germs of holomor-
phic functions located on the space Rn (variable x), i.e. these functions are de�ned in variable
open sets in Cn×C (variables z = x+ iy, ζ = ξ+ iη) having the real space Rn on their boundary.
Although these holomorphic germs are de�ned in a slightly original way concerning the domains
of the functions (z, ζ) 7−→ f(z, ζ), nevertheless they are very classical mathematical objects. The
classical theory of normal families of holomorphic functions provides the needed compactness
property, even in case of singular shock waves. Now let us give details.

The letters r, θ, µ will always denote real numbers such that

0 < r < 1, 0 < θ <
π

6
, 0 < µ <

1

2
. (5.5)

The values r, θ, µ will be as small as needed. One considers the open strip in R2n+2 parallel to
the real space Rn of variable x de�ned by

S(r, θ, µ) =

{(z, ζ) ∈ Cn × C / x ∈ Rn, 0 < |ζ| < r, −θ < argζ < θ, |yi| < µξ ∀i = 1, ..., n}. (5.6)

The real space Rn lies on the boundary of S(r, θ, µ) by letting ζ = ξ + iη tend to 0 (therefore
from (5.6) y → 0). Let F be the set of all strips S(r, θ, µ), when r, θ, µ → 0. The set F is a net
for the inclusion :

∀ S1, S2 ∈ F ∃S3 ∈ F / S3 ⊂ S1 ∩ S2.

We denote by const a positive real number which may not be the same from an expression
to the following. If S ∈ F , i.e. S = S(r, θ, µ) for some r, θ, µ, one de�nes
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HS := {holomorphic functions F : S 7−→ C, (z, ζ) 7−→ F (z, ζ)}.

If S′ ⊂ S the restriction map HS 7−→ HS′ , F 7−→ F |S′ , is injective from the uniqueness of
analytic continuation. In the reunion of the sets HS one considers the equivalence relation

(F1, S1) ≡ (F2, S2)⇔ ∃S3 ⊂ S1 ∩ S2 / F1|S3 = F2|S3 .

The set of all equivalence classes is by de�nition our space of germs of holomorphic functions
on Rn in the x-variable. Since this space is also classically refered to as an inductive limit we
denote it by LimHS . We introduce normed spaces contained in LimHS .

Hr,θ,µ,N := {holomorphic germs that have a representative which is a holomorphic function
F : S(r, θ, µ) 7−→ C such that

|F (z, ζ)| = O(
1

|ζ|N
) ∀(z, ζ) ∈ S(r, θ, µ)}

with the norm

‖F‖r,θ,µ,N = sup(z,ζ)∈S(r,θ,µ)|ζ|N |F (z, ζ)|. (5.7)

Lemma 5.2.1. (Hr,θ,µ,N , ‖‖r,θ,µ,N ) is a Banach space.

Proof. Since a Cauchy sequence (Fn) is bounded it satis�es the inequality |F (z, ζ)| ≤ const
|ζ|N

uniformly in n. Let K be a compact subset of S(r, θ, µ). Since K is at a strictly positive distance
from the boundary of S(r, θ, µ) there exists ε > 0 such that (z, ζ) ∈ K ⇒ |ζ| > ε, since from (5.6)
(z, ζ = 0) 6∈ S(r, θ, µ). Therefore a Cauchy sequence is a normal family of holomorphic functions
[32]. Therefore the pointwise limit is a holomorphic function. Then the standard proof works. �

Lemma 5.2.2. If r′ ≤ r, θ′ ≤ θ, µ′ < µ, N ′ > N, then any partial derivative in the x-variable
is a continuous linear map from Hr,θ,µ,N into Hr′,θ′,µ′,N ′ .

Proof. It follows at once from Cauchy's integral formula. Indeed if (z0, ζ) ∈ S(r, θ, µ−ε), ε > 0
small enough, then, |z − z0| < εξ ⇒ (z, ζ) ∈ S(r, θ, µ). Indeed |y0,i| < (µ− ε)ξ and |yi − y0,i| <
εξ ⇒ |yi| < µξ. Cauchy's inequality then gives | ∂∂xi f(z0, ζ)| ≤ const

|ζ|N
1
εξ = const

|ζ|N+1 .�

Lemma 5.2.3. If (Fn)n is a bounded sequence in the normed space Hr,θ,µ,N then there is a
subsequence (Fn(p))p and a germ of holomorphic function F ∈ Hr,θ,µ,N such that Fn(p) → F
when p→ +∞ uniformly on the compact subsets of the strip S(r, θ, µ).

Proof. From the proof of lemma 5.2.1 the family (Fn) is a normal family of holomorphic
functions on the open set S(r, θ, µ) [32].�

We denote by H(Rn) the inductive limit of the spaces Hr,θ,µ,N directed by inclusions, when
r, θ, µ→ 0 and N →∞. Now let us check that H(Rn) contains many objects that can represent
the usual irregular functions and distributions. To this end notice that to any function f ∈
Lp(Rn), 1 ≤ p ≤ ∞, we can associate several elements F ∈ H(Rn) that "give back" f on Rn
considered on the boundary of S(r, θ, µ) in the following way

∀ψ ∈ C∞c (Rn) lim
ξ→0

∫
F (x, ξ)ψ(x)dx =

∫
f(x)ψ(x)dx. (5.8)
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When (5.8) holds we say that f is the real interpretation of F . This can be done by convolution :
set for instance the molli�er

ρ(z) = const
1

((z1)2 + 1)s . . . ((zn)2 + 1)s
, s ∈ N, s ≥ 1 (5.9)

and de�ne

F (z, ζ) :=

∫
Rn
f(λ)

1

ζn
ρ(
λ− z
ζ

)dλ. (5.10)

Lemma 5.2.4. ∀f ∈ Lp(Rn), 1 ≤ p ≤ ∞, the function F de�ned in (5.10) is in H(Rn) and
it has f as real interpretation. Further, if f is continuous at a point x0 then F (x, ξ) → f(x0)
when ξ → 0 and x→ x0.

Proof. For simplicity the proof is given in the case n = 1. Let r, θ, µ satisfying (5.5) be given.
From (5.10)

F (z, ζ) = const.ζ2s−1

∫
R

f(λ)

[(λ− z)2 + ζ2]s
dλ. (5.11)

Auxiliary calculation : |(λ − z)2 + ζ2| ≥ |Real((λ − z)2 + ζ2)| = (λ − x)2 + ξ2 − y2 − η2 ≥
(λ−x)2 +ξ2(1−µ2−tan2θ) > (λ−x)2 + ξ2

2 from (5.5)-(5.6). Therefore the denominator in (5.11)
does not take the value 0 when (z, ζ) ∈ S(r, θ, µ) ; this is the motivation for the last inequalities

in (5.5)-(5.6). We will use that |(λ− z)2 + ζ2| ≥ (λ− x)2 + α2ξ2 with α = 2−
1
2 > 0.�

• If f ∈ L∞, (5.11) gives |F (z, ζ)| ≤ const|ζ|2s−1‖f‖∞
∫

dλ
[(λ−x)2+α2ξ2]s ≤ const‖f‖∞, since∫

dλ
[(λ−x)2+α2ξ2]s =

∫
dλ

[(λ)2+α2ξ2]s = (αξ)1−2s
∫

dµ
(µ2+1)s .

• If f ∈ L1 the auxiliary calculation gives

|F (z, ζ)| ≤ const1
ξ
‖f‖L1 . (5.12)

More generally if f ∈ Lp, 1 ≤ p <∞, one obtains
|F (z, ζ)| ≤ const|ζ|2s−1‖f‖Lp(

∫
dλ

[(λ−x)2+α2ξ2]qs )
1
q ≤ const|ζ|−

1
p ‖f‖Lp , 1

p + 1
q = 1.

The last assertion is classical from the formula F (x, ξ) =
∫
f(x + kξ)ρ(k)dk and the fast de-

crease of ρ at ∞.�

These results can be easily extended to Rn×]0, T [, considering f null out of Rn×]0, T [. A
Heaviside function H ∈ H(R) is a germ whose real interpretation is the Heaviside function ; it
su�ces to take as f in (5.10) the Heaviside function. A Dirac function δ in H(R) is a germ whose
real interpretation is the Dirac delta distribution. To obtain a Dirac function it su�ces to take
the derivative of a Heaviside function H ∈ H(R).

Besides the concept of solution of equations in the sense of equality in H(R×]0, T [), we
consider also solutions in a weak sense, for which a natural de�nition (in the case n = 1 for
simpli�cation) is as follows. Let Φ : Rm → Rm be a set of m polynomials in m variables, for
instance Ut + ∂

∂xΦ(U) = 0 can be (5.1)-(5.2) or (5.3)-(5.4).
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De�nition of a concept of weak solution. U = (U j)j=1,...,m, where each U
j ∈ H(R×]0, T [), is

a weak solution of the system Ut + ∂
∂xΦ(U)“ =′′ 0 of m scalar equations i� each component of

Ut + ∂
∂xΦ(U) has the null function as real interpretation i.e.

∀j = 1, ...,m, ∀ψ ∈ C∞c (R×]0, T [),

∫
R×]0,T [

[(U j)t +
∂

∂x
(Φ(U))j ](x, t, ξ)ψ(x, t)dxdt→ 0 (5.13)

when ξ → 0+. This is denoted by Ut + ∂
∂x (Φ(U))

weak
= 0.

As the usual concept of a weak solution this concept of weak solution su�ers from nonuni-
queness and classical examples show it does not allow free manipulation of equations.

5.3 Consistency and stability imply convergence.

One assumes the existence of sequences (un), (vn) of step functions R×]0, T [) 7−→ R, constant
on rectangles ](i− 1

2 )hn, (i+ 1
2 )hn[×](j− 1

2 )kn, (j+ 1
2 )kn[, where hn → 0, kn ≤ hn when n→∞.

We assume the sequences (un), (vn) satisfy the following properties :

(i) Consistency in the sense of distributions : ∀ψ ∈ C∞c (R×]0, T [)∫
[unψt + (u2

n − vn)ψx]dxdt→ 0, (5.14)

∫
[vnψt + (

(un)3

3
− un)ψx]dxdt→ 0, (5.15)

when n→ +∞, in the case (1,2), and similar properties in the case (5.3)-(5.4).

(ii) Stability : there exists a real number const > 0, independent on n and t, such that∫
R
|un(x, t)|dx ≤ const,

∫
R
|vn(x, t)|dx ≤ const (5.16)

for almost all t ∈]0, T [. Of course this implies∫
R×]0,T [

|un(x, t)|dxdt ≤ const,
∫
R×]0,T [

|vn(x, t)|dxdt ≤ const (5.17)

and

‖un‖∞ ≤
const

hn
, ‖vn‖∞ ≤

const

hn
(5.18)

in the interior of the rectangles of sides hn, kn where these functions are constant (consider the
extreme case in which these functions are null except in one rectangle only, and apply (5.16)).

It follows from (5.17) that the sequences (un), (vn) are bounded in L1(R×]0, T [). There-
fore by *weak compactness one can extract subsequences that converge * weakly in the space
Mb(R×]0, T [) of bounded Radon measures to some elements u, v ∈Mb(R×]0, T [). From now on
we simplify the notation by considering that the whole sequences (un), (vn) are convergent.

Theorem 5.3.1. Under the above assumptions (i) and (ii) of consistency and stability the
scheme converges in the sense :
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there exists a subsequence of the sequence (un, vn), still denoted (un, vn) to simplify the notation,
two sequences (Un), (Vn) of elements of H(R×]0, T [) and a pair U, V of elements of H(R×]0, T [)
such that
i)∀n, Un, Vn have the real interpretations un, vn respectively,
ii) U, V have the real interpretation u, v respectively,
iii) Un → U, Vn → V uniformly on any compact set of a strip S(r, θ, µ),
iv) the pair (U, V ) is a weak solution in the sense (5.13) of the equations (5.1)-(5.2) (respectively
(5.3)-(5.4) if (5.14)-(5.15) are adapted to (5.3)-(5.4)).

Proof. The letter t can represent a complex number when coupled with z or a real number
when coupled with x. This will not create any confusion. We use a holomorphic molli�er

ρ(z, t) :=
const

(1 + z2)s(1 + t2)s
, (5.19)

where z = x+ iy, t = τ+ iτ ′ ∈ C, x, y, τ, τ ′ ∈ R. The real value const is such that
∫
ρ(x, τ)dxdτ =

1, for some s ∈ N, s > 1 to be �xed later. We set ρε1,ε2(z, t) := 1
ε1.ε2

ρ( zε1 ,
t
ε2

) where ε1, ε2 ∈ C.

We set
Un(z, t, ζ) := [un ∗ ρε1,ε2 ](z, t), ε1 = ζ.(hn)α, ε2 = ζ.(kn)α, (5.20)

for some α > 0 to be �xed later. We use the same formula for Vn, replacing un by vn.

It follows from (5.17) and lemma 5.2.4, that Un, Vn are de�ned on the strip S(r, θ, µ) in (x, t)
variable in R×]0, T [ ∀(r, θ, µ) satisfying (5.5), and that they admit un, vn as real interpretations
respectively. The families {Un}, {Vn} are bounded in the normed space Hr,θ,µ,1 from (5.12),
which permits to apply lemma 5.2.3. We denote again by (Un), (Vn) the convergent sequences
thus obtained and by U, V their respective limits in H(R×]0, T [). The main part of the proof
consists in proving that for s and α large enough (independent on ψ) one has∫

[Un(x, t, ξ)ψt(x, t) + (U2
n − Vn)(x, t, ξ)ψx(x, t)]dxdt→∫

[un(x, t)ψt(x, t) + (u2
n(x, t)− vn(x, t))ψx(x, t)]dxdt (5.21)

uniformly in n when ξ → 0, as well as

∫
[Vn(x, t, ξ)ψt(x, t) + (

1

3
U3
n − Un)(x, t, ξ)ψx(x, t)]dxdt→

∫
[vnψt + (

1

3
u3
n − un)ψx]dxdt

for (5.2). Similar formulas are proved for the two equations (5.3)-(5.4). This convergence is ob-
tained at once in linear terms such as

∫
(Un − un)ψt : indeed in one dimension to simplify the

notation, one has |
∫

(un ∗ ρε − un)ψ| = |
∫
un(x)ρ(µ)[ψ(x + εµ) − ψ(x)]dµdx| ≤ const.ε‖un‖L1 .

In the case of nonlinear terms this will be proved in the next section. Assume (5.21) holds. Then
consider the following diagram∫

[Unψt + (U2
n − Vn)ψx]dxdt

ξ→0,fixed n−→
∫

[unψt + (u2
n − vn)ψx]dxdt

n→∞ ↓ �xed ξ n→∞ ↓
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∫
[Uψt + (U2 − V )ψx]dxdt

ξ→0−→ 0.

From (5.21) the limit in the top horizontal arrow is uniform in n. The left vertical arrow is a
simple limit for �xed ξ from the de�nition of U as limit of the Un's uniformly on compact subsets
of S(r, θ, µ). The right vertical arrow is the limit (5.14). Therefore since the top horizontal arrow
is uniform in n then the bottom horizontal arrow holds as a limit when ξ → 0, the double limit
holds and the diagram is commutative. �

5.4 Proof of the uniform convergence.

In this section we prove the uniform convergence in the top horizontal line of the diagram,
i.e. (5.21). In the proof we intend to use compactness of the support of the molli�er, which is
impossible since the molli�er ρ is analytic. Therefore the proof is based on a cut-o� of the (po-
sitive for real variables) molli�er into a "main part of integral close to 1" which is compactly
supported in [−ξ−βh−1, ξ−βh−1] × [−ξ−βk−1, ξ−βk−1], β ∈]0, 1[ given and a "minor part", of
integral close to 0, supported in the complement of this rectangle.

To simplify the formulation the quantity
∫
f(un, vn)ψxdxdt is replaced by a quantity

∫
f(un)ψdxdt

where f is a function of one variable (f(u) = u2, u3 for (5.1)-(5.3), f(u, v) = uv in (5.4) is treated
in the same way) and where we use (5.16)-(5.18) on un.

We aim at proving that∫
f(Un(x, t, ξ))ψ(x, t)dxdt→

∫
f(un(x, t))ψ(x, t)dxdt (5.22)

uniformly in n when ξ → 0. We set

ρ(z, t) =
const

(1 + z2)s(1 + t2)s
, ρε1,ε2(z, t) =

1

ε1.ε2
ρ(
z

ε1
,
t

ε2
), (5.23)

s ∈ N to be chosen later. For given n we replace hn, kn by h, k respectively to shorten the
notation. We set

Un(z, t, ζ) = (un ∗ ρζhα,ζkα)(z, t), (5.24)

α > 0 to be chosen later. Then, it follows from (5.12) and (5.16) that Un ∈ Hr,θ,µ,1 for any r, θ, µ
satisfying (5.5). In systems (5.1)-(5.2) and (5.2)-(5.3) there exists N such that

|f(u)| ≤ const.|u|N , |f ′(u)| ≤ const.|u|N−1, (5.25)

for |u| large enough. Let β ∈]0, 1[ be given. As explained above the function ρ is cut-o� into

ρ = ρχξ−βh−1,ξ−βk−1 + (ρ− ρχξ−βh−1,ξ−βk−1) (5.26)

where χµ,ν denotes the characteristic function of the rectangle ] − µ, µ[×] − ν, ν[, µ > 0, ν > 0.
For large µ, ν we will use the following bound from (5.23) :∫ +∞

µ
1

(1+x2)s dx ≤ const
∫ +∞
µ

dx
x2s = const.µ−2s+1, with const independent on s since s ≥ 1.

Therefore
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∫ +∞

ξ−βh−1

1

(1 + x2)s
dx ≤ const.ξβ(2s−1)h2s−1. (5.27)

Proposition 5.4.1. For s ≥ 1+N
2 and α ≥ 2+N then |

∫
[f(Un(x, t, ξ))−f(un(x, t))]ψ(x, t)dxdt| →

0 uniformly in n when ξ → 0.

Proof. First decompose
∫

[f(Un(x, t, ξ))− f(un(x, t))]ψ(x, t)dxdt = I + I1 + I2 + I3 where

I =

∫
{f [un ∗ (ρχξ−βh−1,ξ−βk−1,)ξhα,ξkα ]− f(un) ∗ (ρχξ−βh−1ξ−βk−1)ξhα,ξkα}(x, t)ψ(x, t)dxdt,

(5.28)

I1 = −
∫

[f(un) ∗ (ρ− ρχξ−βh−1,ξ−βk−1)ξhα,ξkα ](x, t)ψ(x, t)dxdt, (5.29)

I2 =
∫
{f [un ∗ (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα + un ∗ (ρ− ρχξ−βh−1,ξ−βk−1)ξhα,ξkα ]−

f [un ∗ (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα ]}(x, t)ψ(x, t)dxdt, (5.30)

I3 =

∫
[(f(un) ∗ ρξhα,ξkα)(x, t)− f(un)(x, t))]ψ(x, t)dxdt. (5.31)

Functions f(Un(x, t, ξ)) and f(un(x, t)) are respectively the �rst term in I2, see (5.24) and (5.26),
and the second term in I3. Simpli�cations occur between the �rst term in I and the second term
in I2, the second term in I and the second term from the parenthesis in I1, the �rst term inside
the ρ parenthesis in I1 and the �rst term in I3. We will give separate bounds for I, I1, I2 and I3.

• Bound of I. The un's are step functions constant on the rectangles Ri,j :=](i − 1
2 )h, (i +

1
2 )h[×](j − 1

2 )k, (j + 1
2 )k[. Let us state

l :=

∫
ρχξ−βh−1,ξ−βk−1dxdt =

∫ ξ−βh−1

−ξ−βh−1

∫ ξ−βk−1

−ξ−βk−1

ρ(x, t)dxdt. (5.32)

From (27) and
∫
ρ(x, t)dxdt = 1,

l = (1− const.ξβ(2s−1)h(2s−1))(1− const.ξβ(2s−1)k(2s−1)) = 1− const.ξβ(2s−1)h(2s−1). (5.33)

Since ξ and h are small and since −β+1 > 0, α−1 > 0, the support of (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα ,
namely [−ξ−β+1hα−1, ξ−β+1hα−1]× [−ξ−β+1kα−1, ξ−β+1kα−1], is small for ξ, h, k small, so it is
contained in [−h2 ,

h
2 ]× [−k2 ,

k
2 ]. In the central parts

[(i−1

2
)h+ξ−β+1hα−1, (i+

1

2
)h−ξ−β+1hα−1]×[(j−1

2
)k+ξ−β+1kα−1, (j+

1

2
)k−ξ−β+1kα−1] (5.34)

of the rectangles Ri,j the functions

f [un ∗ (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα ] (5.35)

and
f(un) ∗ (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα (5.36)
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are respectively equal to f(lun) and lf(un), since un is constant on the rectangles Ri,j and from
the small size of the support [−ξ−β+1hα−1, ξ−β+1hα−1]× [−ξ−β+1kα−1, ξ−β+1kα−1] of the mol-
li�er in (5.35) and (5.36).

In the vertical strip Si := [(i + 1
2 )h − ξ−β+1hα−1, (i + 1

2 )h + ξ−β+1hα−1] × R and in the
horizontal strips R × [(j + 1

2 )k − ξ−β+1kα−1, (j + 1
2 )k + ξ−β+1kα−1] centered at the interfaces

of the rectangles Ri,j the two functions un ∗ (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα and (5.36) both present a
mere junction due to the convolution by the positive function (ρχξ−βh−1,ξ−βk−1)ξhα,ξkα , between
the constant values un and lf(un) respectively considered above in the central parts of the rec-
tangles. Therefore from (5.18) and (5.25) each of the two functions (5.35) and (5.36) has absolute
values less than const.h−N (recall hn = h) on these strips.

Taking into account these two kinds of domains : the union of the rectangles in the centers
of the cells and the union of the strips, formula (5.28) gives

|I| ≤
∫
|f(lun(x, t))− lf(un(x, t))||ψ(x, t)|dxdt+

∫
⋃
strips

const.h−N |ψ(x, t)|dxdt. (5.37)

From (5.33) setting ε = const.ξβ.(2s−1)h2s−1, then l = 1− ε. Therefore
f(l.un(x))− lf(un(x)) = f [(1− ε)un(x)]− (1− ε)f(un(x)) = −εf ′(. . .)un(x) + εf(un(x)). From
(5.18) and (5.25)

|f(lun(x))− lf(un(x))| ≤ const.ε.h−(N−1)h−1 + const.εh−N ≤ const.ξβ.(2s−1)h2s−1h−N .

The number of horizontal strips Si is less than
const
h from the compactness of the support of

ψ, and each one has width 2ξ−β+1hα−1. Therefore the whole area of the domain of integration
of the union of the vertical strips

⋃
Si is less than

const
h .2ξ−β+1hα−1. The same bound with k

in place of h holds for the union of the horizontal strips. Therefore the second integral in (37) is
less than const

h ξ−β+1hα−1h−N since k ≤ h and since we will choose α ≥ 2 +N.
One obtains

|I| ≤ const.ξβ(2s−1)h2s−1−N +
const

h
ξ−β+1hα−1h−N ,

which implies

|I| ≤ const.max(ξβ(2s−1), ξ1−β).max(h2s−1−N , hα−2−N ). (5.38)

Since β has been chosen in ]0, 1[, 0 < ξ < 1, 0 < h < 1 the choices

s ≥ 1 +N

2
, α ≥ 2 +N. (5.39)

imply that I → 0 uniformly in h when ξ → 0.

• Bound of I1. From (5.29), I1 = −
∫

(f(un))(x, t).(ρ − ρχξ−βh−1,ξ−βk−1)ξhα,ξkα(y, τ).ψ(x +
y, t+ τ)dxdydtdτ, which, from (5.25) and (5.23), implies

|I1| ≤ const(1 + ‖un‖∞)N 1
ξhα.ξkα

∫
|(ρ− ρχξ−βh−1,ξ−βk−1)( y

ξhα ,
τ
ξkα )|dydτ.

From (5.18),
|I1| ≤ const.h−N

∫
(ρ− ρχξ−βh−1,ξ−βk−1)(λ)dλ ≤ const.h−Nξβ(2s−1)h2s−1 from (5.33), i.e.
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|I1| ≤ const.h2s−1−Nξβ(2s−1). (5.40)

Therefore in order that I1 → 0 uniformly in h, i.e. uniformly in h, when ξ → 0 we choose

s ≥ 1 +N

2
. (5.41)

• Bound of I2. From (5.30), the mean value theorem gives

|I2| ≤
∫
|f ′(. . .)|.|un ∗ (ρ− ρχξ−βh−1,ξ−βk−1)ξhα,ξkα(x, t)ψ(x, t)|dxdt.

From (5.18) and (5.25),

|I2| ≤ const.h−(N−1)
∫
|un(x, t)(ρ− ρχξ−βh−1,ξ−βk−1)ξhα,ξkα(y, τ)ψ(x+ y, t+ τ)|dxdydtdτ.

Therefore, using the bound obtained above for I1 with un instead of f(un), i.e. one line be-
fore (5.40) with a bound h−1 instead of h−N , we obtain

|I2| ≤ h−(N−1)const.h−1ξβ(2s−1)h2s−1, (5.42)

which is same as (5.40). Finally, I2 → 0 uniformly in h when ξ → 0 provided s ≥ N+1
2 .

• Bound of I3. We have
∫

[(f(un) ∗ ρξhα,ξkα)(x, t)]ψ(x, t)dxdt =
∫
f(un)(x, t)ρ(λ, µ)ψ(x +

ξhαλ, t+ ξkαµ)dxdλdtdµ.
Therefore, since

∫
ρ(λ, µ)dλdµ = 1, it follows from (5.31) that

I3 =
∫
f(un(x, t))ρ(λ, µ)[ψ(x+ ξhαλ, t+ ξkαµ)− ψ(x, t)]dxdλdtdµ

≤ const.h−Nξhα
∫
|λµ|ρ(λ, µ)dλdµ

from (5.18)-(5.25) and since k ≤ h. Then I3 ≤ const.ξ.hα−N . It su�ces to have α ≥ N .�

5.5 Applications.

The consistency in the sense of distributions of the numerical scheme in Part I and chapter 6
provides examples of sequences of approximate solutions for which one can apply the theorem :
a solution of the equations is exhibited by compactness as limit of a sequence of approximate
solutions. This permits to put in evidence a solution of the Cauchy problems involving singular
shocks if one admits that the properties to be checked to apply the theorem in chapter 6 for the
Key�tz-Kranzer system go on to hold inde�nitely when h→ 0. Concerning delta shocks solutions
of system (5.3)-(5.4) a full proof of consistency is given in chapter 6 ; then one can apply the
theorem : ∀u0 ∈ L1(R) ∩ L∞(R),∀v0 ∈ L1(R) ∃U, V ∈ H(R × R+) which are solutions of the
equations in the sense (5.13) and are limits of the numerical scheme in chapter 6. The problem
of �nding criteria for uniqueness of these solutions remains open : one can only argue that they
correspond to the limit of the scheme and it has always been observed that this limit is the
correct known solution. The singular shocks show clearly that the classical functional spaces are
inadequate in general to provide solutions of equations. This has justi�ed the introduction of a
new functional space. The results in this chapter as well as the numerical scheme in chapter 6
and its consistency proof extend clearly to 2-D and 3-D. These results show that in the context
of the functional space of holomorphic germs weak asymptotic methods [12] can give rise to a
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solution of the equations by compactness as limit of a subsequence extracted from the family of
approximate solutions and can be applied to the syustems of �uid dynamics in Part I. In order
to get closer to uniqueness the use of a stronger concept of weak solution could be useful : we
could state (5.13) in the stronger form

∀j = 1, ...,m, ∀ψ ∈ C∞c (R×]0, T [),

∫
R×]0,T [

[(U j)t +
∂

∂x
(Φ(U))j ](x, t, ζ)ψ(x, t)dxdt→ 0 (5.43)

when ζ → 0 in the sector |arg(ζ)| < θ. We do not know if the theorem holds with this stronger
formulation.

In the section below we give two examples in which some uniqueness holds at the level of
explicit calculations (from chapter 4). In chapter 7 we give examples of existence-uniqueness of
a di�erent nature.

5.6 Examples from explicit calculations.

These examples are simpli�ed versions of the contents of chapter 4 in order to make clear
that some results of uniqueness could be possible in the context of holomorphic germs presented
in this chapter. We did not succeed to extend them to the Cauchy problem in absence of explicit
calculations.

• First example : shock waves for nonconservative systems. Consider the nonconservative
system

ut + (u2)x = vx, (5.44)

vt + uvx
weak
= ux, (5.45)

in which the �rst equation is stated with the equality in LimHS while the second one is stated
with the weak equality. Let us seek a solution in the form of a discontinuity moving with constant
speed V , i.e. of the form

u(x, t) = ul + ∆uHu(x− V t), (5.46)

v(x, t) = vl + ∆vHv(x− V t), (5.47)

where Hu, Hv ∈ LimHS are Heaviside functions. Inserting (5.46)-(5.47) into (5.44) gives

∆uHv = (−V + 2ul)∆uHu + (∆u)2(Hu)2,

i.e.

Hv(z, ζ) = −(V + 2ul)
∆u

∆v
Hu(z, ζ) +

(∆u)2

∆v
(Hu)2(z, ζ) (5.48)

as well as the classical relation obtained by setting Hu(x, ξ) = 1, Hv(x, ξ) = 1 in the formula
above, which is nothing else than the classical jump condition of the conservative system (5.44).
Equation (5.45) gives

−V∆vH ′v + (ul + ∆uHu)∆vH ′v
weak
= ∆uH ′u,
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i.e.

∀ψ ∈ C∞c (R)

∫
{−V∆vH ′v(x, ξ) + (ul + ∆uHu(x, ξ))∆vH ′v(x, ξ)−∆uH ′u(x, ξ)}ψ(x)dx→ 0

(5.49)
when ξ → 0. We recall that inserting (5.48) into (5.49), integrating in x and letting ξ → 0 gives
the second jump condition for system (5.44)-(5.45) which is in nonconservative form (see chapter
4).

The formula (5.48) and the two jump conditions imply that (5.44)-(5.45) is satis�ed in its
mixed strong-weak form. The interesting point is that this mixed strong-weak form �x the jump
conditions which is some kind of existence-uniqueness limited to solutions of the form (5.46)-
(5.47), presumably because of the limitations inherent to explicit calculations.

• Second example : shock waves for the system of isothermal �uid dynamics. Consider the
system of isothermal �uid dynamics stated in the form (see chapter 4 for a justi�cation)

ρt + (ρu)x = 0, (5.50)

(ρu)t + (ρu2)x + px = 0, (5.51)

p
weak
= Kρ. (5.52)

where K is a constant. We seek shock waves solutions of the usual form

ρ = ρl + ∆ρHρ(x− V t), (5.53)

ρu = (ρu)l + ∆(ρu)Hρu(x− V t), (5.54)

p = pl + ∆pHp(x− V t). (5.55)

Insertion of (5.53)-(5.54) into the continuity equation (5.50) gives

Hρu = Hρ (5.56)

and the classical jump condition for (5.50). Insertion of into the Euler equation (5.51) gives

Hp(z, ζ) = V∆(ρu)Hρ(z, ζ)− (ρu)2
l + 2(ρu)l∆(ρu)Hρ(z, ζ)(∆(ρu))2(Hρ(z, ζ))2

ρl + ∆ρHρ(z, ζ)
+ const. (5.57)

Setting that the Heaviside functions are 0 for x < 0 and 1 for x > 0 gives the value of constant
and the classical jump condition for (5.51). The last equation is stated in the weak sense as
explained in chapter 4 since its statement in the strong sense would have led to inconsistencies.
Then one has obtained that the two classical jump formulas, plus the relations (5.56)-(5.57)
between the three Heaviside functions (that �x Hp and Hρu as a function of Hρ), plus the two
formulas pl = Kρl, pr = Kρr from (5.52) �nally provide a solution of the system (5.50)-(5.52)
where the �rst two equations are stated in the strong sense similarly as the result obtained in
the �rst example.

Remark on the elimination of unstable discontinuities. The Heaviside functions H(x, ξ) are
analytic functions of the real variable x for each ξ > 0. Therefore they do not have an "in�nite"
slope at x = 0 as usual when H is considered in the space L∞ (think at the function 1

ξarctan(xξ )

which can be used to create Heaviside functions). Therefore unstable discontinuities from Hea-
viside functions are automatically eliminated at least concerning solutions in the (strong) sense
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with = in the space of holomorphic germs since their slope is already prepared in the initial
condition with H(x, ξ), ξ 6= 0. However we have been unable to transfer this remark into a
general uniqueness result, perhaps because of the nonuniqeness of viscous solutions [1].

5.7 Conclusion.

These two examples give the impression that strong solutions do exist to some extent pro-
vided the system of N equations is well behaved (as this is the case for the equations of �uid
dynamics considered above), with the statement of N − 1 equations with the strong equality.
Therefore results far stronger than the general existence of weak solutions shown in this section
could presumably be obtained in particular cases.



Chapitre 6

Construction of approximate

solutions.

In this chapter we present a numerical scheme for the approximation of singular shock solu-
tions of the Key�tz-Kranzer model system and many other systems of conservation laws. Consis-
tency in the sense of distributions is studied. As long as some numerical properties are veri�ed
when the space step tends to 0, we prove that the scheme provides a numerical solution that
satis�es the equations in the sense of distributions with an approximation that tends to 0 when
h → 0. We also show that this scheme adapts to degenerate systems. This is illustrated by two
examples : the system presenting delta wave solutions originally studied by Korchinski and ano-
ther system studied by Key�tz-Kranzer that models elasticity. Consistence of the scheme in the
sense of distributions is fully proved in the case of the Korchinski model.

6.1 Introduction.

Singular shocks have been discovered and investigated by di�erent authors, see [22], [21],
[33], [36], [35]. They have been observed from various viscosity techniques : Dafermos-Di Perna
viscosity in [22], [21], usual viscosity in [33], [35]. In the case of singular shocks, viscosity solu-
tions converge so weakly that their pointwise limits do not satisfy the classical Rankine-Hugoniot
conditions. Besides this fact a unique entropic solution to the Riemann problem has been obtai-
ned in [22] for arbitrarily large data. In this chapter we propose a numerical scheme based on a
splitting technique that captures the singular shocks. We observe results exactly similar to those
obtained in [22], [33] with their respective viscosity techniques. Studies have shown the relevance
of this scheme for other systems presenting irregular solutions. In our study of irregular shocks
we consider two standard �rst order model systems of two equations whose solutions of the Rie-
mann problem involve singular shocks and delta shocks. We also notice that this scheme provides
neat results for the Key�tz-Kranzer system of elasticity [23] for which the intrinsic di�culty is
di�erent from those in the two systems above.

This chapter focusses on the Key�tz-Kranzer system

ut + (u2 − v)x = 0, (6.1)

vt + (
1

3
u3 − u)x = 0, (6.2)

111
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which produces singular shocks, and the system

ut + (u2)x = 0, (6.3)

vt + (uv)x = 0, (6.4)

originally considered by Korchinski [24] who discovered and investigated delta shocks in the so-
lution of the Riemann problem.

Let uh, vh be the sequence of approximate solutions from the scheme. Under simple numerical
properties to be rigorously proved, or to be admitted from numerical tests, we prove that the
scheme is consistent in the sense of distributions in the following sense : ∀(φ, ψ) ∈ (C∞c (R×R+))2,∫

[uhφt + ((uh)2 − vh)φx]dxdt→ 0,

∫
[vhψt + (

1

3
(uh)3 − uh)ψx]dxdt→ 0, (6.5)

respectively
∫

[uhφt + ((uh)2)φx]dxdt→ 0,
∫

[vhψt + (uhvh)ψx]dxdt→ 0,

when the space step h → 0. This means that the functions uh, vh tend to satisfy the equa-
tions when h→ 0.

For system (6.1)-(6.2) we check numerically that the needed assumptions are satis�ed for
values of h as small as possible. We rigorously prove that, in the case of system (6.3)-(6.4),
for any initial condition u0 ∈ L1(R) ∩ L∞(R) and v0 ∈ L1(R), these assumptions are satis�ed.
Therefore the scheme is consistent in the above sense. Of course, in the �rst case, from a rigorous
point of view, one cannot be sure that these numerical assumptions always hold for every h
when h → 0. The proof in this chapter shows that, for any given family of test functions with
uniformly bounded support and uniformly bounded �rst and second derivatives, then a numerical
solution satis�es the equations in the sense of distributions within a small deviation depending
on h whenever these assumptions remain valid.

6.2 A numerical scheme.

The singular shocks of the Key�tz-Kranzer equations are unbounded which makes the ela-
boration of numerical schemes di�cult : in the scheme below the numerical velocity u in system
(6.1)-(6.2) can be unbounded when the space step h tends to 0 which forces us to accept that the
CFL coe�cient r tends to 0 when h → 0 in order to preserve the CFL condition r‖u‖L∞ ≤ 1.
Therefore r = rh depends on h and also on time so that rh‖uh‖L∞ ≤ 1.

If rh tends to 0 ( i.e. if ‖uh‖L∞ tends to ∞) slowly enough, then one can nevertheless obtain
a convenient numerical scheme, although of an order less than one, on condition that for each
iteration the assumptions are veri�ed when h→ 0. This ensures consistence of the scheme in the
sense of distributions, although the limit is not a distribution in general : it can be a singular
shock in the case of the Key�tz-Kranzer equations. Numerical results are given to prove that the
set of assumptions is satis�ed in representative situations of singular shocks. In the case of the
Key�tz-Kranzer equations the scheme consists in a splitting of equations into the two subsystems

ut + (u2)x = 0, (6.6)

vt + (vu)x = 0, (6.7)
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which is treated by transport with velocity u, and

ut = vx, (6.8)

vt = (vu− u3

3
+ u)x, (6.9)

which is treated by a centered discretization. In between, we introduce an average step in u, v
which is needed in general to avoid oscillations due to the centered discretization. More generally
the method applies to systems

ut + [uΦ(u, v)]x = [A(u, v)]x, (6.10)

vt + [vΦ(u, v)]x = [B(u, v)]x, (6.11)

which are split into the two subsystems

ut + [uΦ(u, v)]x = 0, (6.12)

vt + [vΦ(u, v)]x = 0, (6.13)

where Φ(u, v) plays the role of numerical velocity and

ut = [A(u, v)]x, (6.14)

vt = [B(u, v)]x. (6.15)

Systems (6.12)-(6.13) is a family of degenerate systems. In particular the scheme in this chap-
ter gives neat results for the system (4) in [23] which models an elastic string problem.

The numerical scheme. The real line is divided into intervals Ii =]ih− 1
2h, ih+ 1

2h[, i ∈ Z.
We set tn = nrh for r small enough. We will construct step functions u(x, t), v(x, t) depending
on h, which are constant on the rectangles Ii×]tn, tn+1[, whose step values are denoted uni , v

n
i

respectively. The indices h are often skipped to simplify the notation : u stands for uh, .... If
a < b one sets

L(a, b) := length of [0, 1] ∩ [a, b], (6.16)

i.e.
L(a, b) = max(0,min(1, b)−max(0, a)). (6.17)

The notation L allows a synthetic formulation of the transport, without being forced to distin-
guish several cases depending on the signs of the numerical velocities. By induction we assume
that the set of values {uni , vni }i∈Z is known. We obtain the set of values {un+1

i , vn+1
i }i∈Z as follows.

• First step : transport with velocity Φ during time rh

Φni := Φ(uni , v
n
i ), (6.18)

ui := uni−1L(−1 + rΦni−1, rΦ
n
i−1) + uni L(rΦni , 1 + rΦni ) + uni+1L(1 + rΦni+1, 2 + rΦni+1), (6.19)

vi := vni−1L(−1 + rΦni−1, rΦ
n
i−1) + vni L(rΦni , 1 + rΦni ) + vni+1L(1 + rΦni+1, 2 + rΦni+1). (6.20)
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When the CFL condition r|Φni | ≤ 1 ∀i, ∀n is satis�ed, the �rst terms in (6.19)-(6.20), when
multiplied by h, represent the quantities u, v issued from the cell Ii−1 between times tn and tn+1

that lie in the cell Ii at time tn+1. Indeed, the cell Ii−1 = [(i − 3
2 )h, (i − 1

2 )h] has been trans-
ported according to the vector rΦni−1h, since Φni−1 is the numerical velocity and the duration
time is rh. The overlap with the �xed cell Ii = [(i − 1

2 )h, (i + 1
2 )h] has a length of rΦni−1h if

Φni−1 ≥ 0, 0 if Φni−1 ≤ 0, taking into account the CFL condition r|Φni−1| ≤ 1. From (6.16) one
�nds L(−1 + rΦni−1, rΦ

n
i−1) = rΦni−1 if Φni−1 ≥ 0, 0 if Φni−1 ≤ 0. Division by h is due to the fact

that ui, u
n
j are mean values on cells of length h.

The second terms in (6.19)-(6.20), when multiplied by h, represent the quantities u, v issued
from the cell Ii that remain in Ii at time tn+1. Indeed, the cell [(i− 1

2 )h, (i+ 1
2 )h] has been trans-

ported by the vector rΦni h. The overlap with the �xed cell [(i− 1
2 )h, (i+ 1

2 )h] is h−rΦni h if Φni ≥ 0,
h+rΦni h if Φni ≤ 0. From (6.16) one �nds L(rΦni , 1+rΦni ) = 1−rΦni if Φni ≥ 0, 1+rΦni if Φni ≤ 0.

The third terms are similar to the �rst ones : they concern the quantities u, v issued from
the cell Ii+1 that lie in the cell Ii at time tn+1, with the same veri�cation as above. Note that
ui, vi depend on n, which is not explicitely stated to shorten the notation.

• Averaging step. For a value α, 0 ≤ α < 0.5, to be chosen, we set

ũi := αui−1 + (1− 2α)ui + αui+1, (6.21)

ṽi := αvi−1 + (1− 2α)vi + αvi+1. (6.22)

In the case A = 0, B = 0 the averaging step is useless. Indeed, the idea underlying the elabo-
ration of the scheme is that the �rst step works well without averaging, and that the numerical
defects of the centered discretization in the last step should be compensated by the averaging
step performed before it. The splitting should be chosen so as to minimize the importance of the
terms involved in the last step.

• Last step : centered discretization

un+1
i := ũi +

r

2
[A(uni+1, v

n
i+1)−A(uni−1, v

n
i−1)], (6.23)

vn+1
i := ṽi +

r

2
[B(uni+1, v

n
i+1)−B(uni−1, v

n
i−1)]. (6.24)

The scheme works well for singular shocks and delta shocks. The theorem below shows that
it gives an approximate solution of the equations.

Statement of the theorem. Let T > 0 be given. Let us seek a solution on R × [0, T ].
The initial conditions u0, v0 are discretized as usual by mean values in the cells since they are
supposed to be L1 functions. Let us apply the scheme under the assumptions (6.25)-(6.29) below :
there exists a sequence of values h, h→ 0, a corresponding sequence of values r, r > 0, and real
numbers β, γ ∈ [0, 1[ such that when h→ 0

h

r
→ 0 (6.25)
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∀n ≤ T

rh
∀i r|Φni | ≤ 1, (6.26)

which is the CFL condition,

∀n ≤ T

rh
∀i hβ |Φni | = O(1), (6.27)

which is a constraint on the numerical velocity allowing it to tend to in�nity,

∀n ≤ T

rh
∀i

∑
i

|uni |h = O(1),
∑
i

|vni |h = O(1), (6.28)

which is the L1-stability in u, v,

∀n ≤ T

rh
∀i

∑
i

|A(uni , v
n
i )|h1+γ = O(1),

∑
i

|B(uni , v
n
i )|h1+γ = O(1). (6.29)

Theorem 6.3.1. Consistency of the scheme. As long as (6.25)-(6.29) are satis�ed then the
scheme is consistent on R×]0, T [ in the sense of distributions, i.e. if uh, vh, are the step functions
from the scheme, then, ∀ψ ∈ C∞c (R×]0, T [),∫

[uhψt + uhΦ(uh, vh)ψx −A(uh, vh)ψx]dxdt→ 0, (6.30)

∫
[vhψt + vhΦ(uh, vh)ψx −B(uh, vh)ψx]dxdt→ 0, (6.31)

when h→ 0. More precisely the integrals in (30,31) are equal to

O(
h

r
) +O(h1−β) +O(h1−γ). (6.32)

The scheme will be of order one in the usual cases in which r is constant, β = γ = 0, but of
an order strictly less than one for singular shocks from the fact that the values of the numerical
velocity increase when h→ 0, which forces r → 0 and β > 0.

6.3 Proof of the theorem.

One has
∫
uψtdxdt =

∑
i,n u

n
i

∫
celli,n

ψtdxdt =
∑
i,n u

n
i [(ψt)

n
i +O(h)]rh2 =

∑
i,n u

n
i
ψni −ψ

n−1
i

rh rh2+∑
i,n u

n
i O(rh)rh2 +

∑
i,n u

n
i O(h)rh2.

Since |
∑
i,n u

n
i O(h)rh2| ≤

∑
n rh

∑
i |uni ||O(h)|h ≤ const.T |O(h)| from (6.28), one obtains∫

uψtdxdt =
∑
i,n

(uni − un+1
i )hψni +O(h). (6.33)

Similarly∫
Φ(u, v)uψxdxdt =

∑
i,n Φni u

n
i

∫
celli,n

ψxdxdt =
∑
i,n Φni u

n
i (ψx)ni rh

2 +
∑
i,n Φni u

n
i O(h)rh2 =∑

i,n Φni u
n
i
ψni+1−ψ

n
i

h rh2 +
∑
i,n Φni u

n
i O(h)rh2 +

∑
i,n Φni u

n
i O(h)rh2.
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From (6.27)-(6.28) |
∑
i,n Φni u

n
i O(h)rh2| ≤

∑
n rh

∑
i |Φni ||uni ||O(h)|h ≤ const.Th−βh ≤ const.h1−β .

Finally ∫
Φ(u, v)uψxdxdt = −h

∑
i,n

(Φni u
n
i − Φni−1u

n
i−1)rψni +O(h1−β). (6.34)

Similarly∫
A(u, v)ψxdxdt =

∑
i,nA(uni , v

n
i )

∫
celli,n

ψxdxdt =
∑
i,nA(uni , v

n
i )(ψx)ni rh

2+
∑
i,nA(uni , v

n
i )O(h)rh2 =∑

i,nA(uni , v
n
i )

ψni+1−ψ
n
i

h rh2 +
∑
i,nA(uni , v

n
i )O(h)rh2.

From (6.29) |
∑
i,nA(uni , v

n
i )O(h)rh2| ≤

∑
n rh

∑
i |A(uni , v

n
i )||O(h)|h ≤ const.T.h−γh ≤

const.h1−γ . Therefore∫
A(u, v)ψxdxdt =

∑
i,n

rh[A(uni−1, v
n
i−1)−A(uni , v

n
i )]ψni +O(h1−γ). (6.35)

Setting

I :=

∫
[uψt + uΦ(u, v)ψx −A(u, v)ψx]dxdt, (6.36)

one �nally obtains from (6.33)-(6.36)

I = −h
∑
i,n

[un+1
i − uni + r(uni Φni − uni−1Φni−1)−

r(A(uni , v
n
i )−A(uni−1, v

n
i−1))]ψni +O(h) +O(h1−β) +O(h1−γ). (6.37)

Up to this point the formulas of the scheme have not yet been used. From (6.23) and (6.21)

un+1
i = ui + α(ui−1 − 2ui + ui+1) + r

2 [A(uni+1, v
n
i+1)−A(uni−1, v

n
i−1)].

Therefore, from (6.37)

I = I1 + I2 + I3 +O(h) +O(h1−β) +O(h1−γ), (6.38)

where
I1 = −h

∑
i,n

[ui − uni + r(uni Φni − uni−1Φni−1)]ψni , (6.39)

I2 = −hα
∑
i,n

(ui−1 − 2ui + ui+1)ψni , (6.40)

I3 = −1

2

∑
i,n

hr{A(uni+1, v
n
i+1)−A(uni−1, v

n
i−1)− 2[A(uni , v

n
i )−A(uni−1, v

n
i−1)]}ψni . (6.41)

We are going to prove successively bounds for I1, I2, I3.

• Bound for I1. In I1 �x an index i0 and consider successively the two cases Φni0 ≤ 0 and
Φni0 ≥ 0.

If Φni0 ≤ 0 then, from (6.16) and the CFL condition (6.26), L(rΦni0 , 1 + rΦni0) = 1 + rΦni0 ,
L(1 + rΦni0 , 2 + rΦni0) = −rΦni0 and L(−1 + rΦni0 , rΦ

n
i0

) = 0 . Therefore from (6.19)
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ui0 = uni0(1 + rΦni0)+terms not involving uni0 ,

ui0−1 = −uni0rΦ
n
i0
+terms not involving uni0 ,

ui0+1 does not involve uni0 .

From the CFL condition the other terms ui do not involve u
n
i0
. Therefore, in the sum

∑
i uiψ

n
i

the term uni0 occurs in (and only in)

uni0(1 + rΦni0)ψni0 − u
n
i0rΦ

n
i0ψ

n
i0−1.

Consequently in the sum
∑
i[ui − uni + r(uni Φni − uni−1Φni−1)]ψni , the term involving uni0 is

uni0(1 + rΦni0)ψni0 − u
n
i0rΦ

n
i0ψ

n
i0−1 − uni0ψ

n
i0 + runi0Φni0ψ

n
i0 − ru

n
i0Φni0ψ

n
i0+1 (6.42)

where the �rst two terms come from ui0 and ui0−1. The sum (6.42) is equal to runi0(Φni0)[ψni0−
ψni0−1 + ψni0 − ψ

n
i0+1] = runi0Φni0O(h2) from Taylor's formula applied to ψ.

If Φni0 ≥ 0 then, an analogous reasoning involving ui0 and ui0+1 instead of ui0 and ui0−1 gives
the value 0. Therefore from (6.39)

|I1| ≤ h
∑
i0,n

uni0rΦ
n
i0
O(h2) =

∑
n rh

∑
i Φni u

n
i hO(h), i.e. from (6.27)-(6.28)

I1 = O(h1−β). (6.43)

• Bound for I2. From (6.40) I2 = −hα
∑
i,n ui(ψ

n
i+1−2ψni +ψni−1) = α

∑
n rh

1
r

∑
i uiO(h2) =

αT h
rO(1) since one has

∑
i |ui|h ≤

∑
i |uni |h = O(1). Indeed, (6.19) implies the formula

|ui| ≤ |uni−1|L(−1 + rΦni−1, rΦ
n
i−1) + |uni |L(rΦni , 1 + rΦni ) + |uni+1|L(1 + rΦni+1, 2 + rΦni+1). (6.44)

The de�nition (6.16) of L implies L(−1 + a, a) + L(a, 1 + a) + L(1 + a, 1 + 2a) = 1. Therefore
from (6.44)

∑
i |ui| ≤

∑
i |uni |. This implies

I2 = O(
h

r
). (6.45)

• Bound for I3. I3 = −hr2
∑
i,n{A(uni , v

n
i )ψni−1−A(uni , v

n
i )ψni+1−2A(uni , v

n
i )ψni +2A(uni , v

n
i )ψni+1} =

− 1
2

∑
n rh

∑
iA(uni , v

n
i )[ψni−1 − 2ψni + ψni+1] = const.Th−γO(h) from Taylor's formula in ψ and

. Therefore

I3 = O(h1−γ). (6.46)

Finally from (6.38), (6.43), (6.45), (6.46)

I = O(h1−β) +O(h1−γ) +O(
h

r
), (6.47)

which ends the proof.�
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6.4 Approximation of the Key�tz-Kranzer system.

We consider successively the three di�erent typical solutions of Riemann problems in �gures 8,
7, 6 in [33] : singular shock, intermediate overcompressive shock and usual shocks. The numerical
solutions obtained from the scheme are identical to those shown in [33] even in absence of
additional viscosity. We �rst consider the Riemann problem in �gure 8 in [4], which shows a
singular shock. The initial data is (ul, vl, ur, vr) = (1.5, 0,−2.065426, 1.410639). We adopt the
values α = 0.2, β = 0.5, γ = 0.4. One chooses the value of rh close to the maximum value of r
that satis�es the CFL condition (6.26). For simplicity we denote

”(27)” := hβmaxi,n|uni |,

”(28)” := maxn(
∑
i

|uni |h,
∑
i

|vni |h),

”(29)” := maxn(
∑
i

|A(uni , v
n
i )|h1+γ ,

∑
i

|B(uni , v
n
i )|h1+γ)

for the values in the assumptions of the theorem.

In order to check the consistence theorem, we present the values of h
r that must tend to 0

from (6.25), and the values "27","28", "29" that must be bounded. Results of a test for T = 5
with the interval [−4, 4] are given in the table below.

h r h
r ”(27)” ”(28)” ”(29)”

0.0400 0.300 0.1333 0.6289 14.97 3.62
0.0200 0.240 0.0833 0.5830 14.97 2.84
0.0100 0.170 0.0588 0.5309 14.96 2.26
0.0050 0.132 0.0379 0.5271 14.93 1.84
0.0025 0.095 0.0263 0.5178 14.90 1.53
0.00125 0.065 0.0192 0.5021 14.87 1.29
0.00062 0.040 0.0156 0.4326 14.85 1.10
0.00031 0.025 0.0125 0.4024 14.83 0.96

Now we choose T = 1 and the interval [−0.5, 0.5] in order to reach smaller values of h. The
values of the parameters are again α = 0.2, β = 0.5, γ = 0.4

h r h
r ”(27)” ”(28)” ”(29)”

0.0020 0.18 0.0111 0.2444 1.9232 0.1791
0.0010 0.13 0.0077 0.2337 1.9170 0.1480
0.0005 0.09 0.0056 0.2225 1.9109 0.1252
0.00025 0.06 0.0042 0.2090 1.9054 0.1081
0.000125 0.043 0.0029 0.2070 1.8999 0.0973
0.0000833 0.035 0.0024 0.2051 1.8972 0.0926
0.0000625 0.030 0.0021 0.2028 1.8955 0.0898
0.0000500 0.026 0.0019 0.1979 1.8944 0.0874
0.0000333 0.021 0.0016 0.1955 1.8923 0.0848
0.0000250 0.019 0.0013 0.2010 1.8907 0.0847
0.0000166 0.015 0.0011 0.1957 1.8891 0.0829
0.0000125 0.012 0.0010 0.1847 1.8884 0.0803



r
r‖u‖∞ ≤ 1 h

r → 0
√
h

|u| r r
β = 0.5, γ = 0.4 h

1√
h

‖Φni ‖∞ Φni = uni

v 3700
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h
r

h → 0
h

ψ

(ul, vl, ur, vr) = (1.5, 0,�1.895644, 1.343466)
α = 0.2, β = 0, γ = 0

h r h
r ”(27)” ”(28)” ”(29)”



u
h→ 0

h

(ul, vl, ur, vr) = (1.5, 0,�1.725862, 1.276293)

• 2 × 2 v
Φ(u, v) = u, A = B = 0 α = 0

un+1
i = ui, v

n+1
i = vi α > 0∑

i |ui| ≤
∑
i |uni |

n
∑
i |u

n+1
i | ≤

∑
i |u0

i | v u0, v0 L1

u

rmaxi|u0
i | ≤ 1

2 u

i
uni�1, u

n
i , u

n
i+1

min(uni�1, u
n
i , u

n
i+1) ≤ ui = un+1

i ≤ max(uni�1, u
n
i , u

n
i+1)

n n
rmaxi|u0

i | ≤ 1
2 rmaxi|uni | ≤ 1

2 n+ 1
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• Case (+,+,+). Formula (6.19) with Φ = u gives

ui = uni−1ru
n
i−1 + uni (1− runi ) = uni + r(uni−1 − uni )(uni−1 + uni ). (6.48)

First note that ui ≥ 0 because 1 − runi ≥ 0 from the property rmaxi|uni | ≤ 1
2 . We consider

successively the two cases uni ≥ uni−1 and uni ≤ uni−1. If u
n
i ≥ uni−1 then (6.48) gives ui ≤ uni . If

uni ≤ uni−1 then ui − uni−1 = (uni − uni−1)[1 − r(uni + uni−1)] ≤ 0 since the last factor is ≥ 0 by
induction. We have checked that

0 ≤ ui ≤ max(uni−1, u
n
i ).

• Case (+,+,-). Formula (6.19) gives

ui = uni−1ru
n
i−1 + uni (1− runi ) + uni+1(−runi+1). (6.49)

First, let us prove that ui ≥ uni+1. The properties u
n
i−1 ≥ 0, uni ≥ 0, runi ≤ 1

2 imply that

ui ≥ uni+1(−runi+1) ≥ uni+1 since 0 ≤ −runi+1 ≤ 1
2 and uni+1 ≤ 0.

Now let us check that ui ≤ max(uni−1, u
n
i ). Formula (6.49) and uni+1 ≤ 0 imply ui ≤

uni−1ru
n
i−1 + uni (1− runi ). From this inequality the proof is the same as in the case (+,+,+).

• Case (-,+,+). Formula (6.19) gives ui = uni (1− runi ) which implies ui ≤ uni since 0 ≤ runi ≤ 1
2

and, ui ≥ 0.

• Case (-,+,-). Formula (6.19) gives

ui = uni (1− runi ) + uni+1(−runi+1) = uni + r[−(uni+1)2 − (uni )2] ≤ uni .

Now ui − uni+1 = uni − uni+1 − r[(uni+1)2 + (uni )2]. Since uni u
n
i+1 ≤ 0, (uni )2 + (uni+1)2 ≤ (uni )2 +

(uni+1)2 − 2uni u
n
i+1 = (uni − uni+1)2. Therefore ui − uni+1 ≥ uni − uni+1 − r(uni − uni+1)2 = (uni −

uni+1)[1− r(uni − uni+1)] ≥ 0 since the second factor is positive, which implies ui ≥ uni+1.

In the four cases in which uni ≤ 0 the veri�cations are similar.

Finally, we have proved properties (6.25)-(6.28), with r independent of h, β = 0 and γ = 0
since A = B = 0. Therefore from the theorem the scheme converges in the sense of distributions
and is of order one in h. It has been checked numerically that its real interpretation is the well
known solution.

6.6 Conclusion.

We have presented a numerical scheme which captures the singular shock solutions of the
Key�tz-Kranzer model without recourse to a vanishing viscosity method. We have observed
numerically exactly the same results previously observed by the various authors. The consistency
of the scheme for this system has been checked numerically up to very small values of h. The
theorem states that the approximate solutions from the scheme tend to satisfy the equations
in the sense of distributions. This scheme adapts to degenerate systems such as the Korchinski
model system and the Key�tz-Kranzer system of elasticity. In the case of the Korchinski system
consistency in the sense of distributions has been fully proved.
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Chapitre 7

Extension of Sobolev spaces.

Motivated by the need to �nd strong solutions in the setting of holomorphic germs for the
Poisson equations involved in the systems of self-gravitating �uids, we introduce Lp spaces and
Sobolev spaces in this setting. In contrast with their classical analogs, they contain very irregular
distributions but as their classical analogs they permit to apply the Lax-Milgram theorem. This
section is only sketched to show that the setting of germs is compatible with the classical linear
results needed for a deeper future study. For simpli�cation the results are given in one space
dimension. It is clear that a large part of the classical theory can extend to the setting of
holomorphic germs even in several space dimension, although this extension is not studied here.

7.1 The Dirichlet problem in the whole space.

The letters r, θ, µ will always denote real numbers such that

0 < r < 1, 0 < θ <
π

2
, 0 < µ < 1. (7.1)

If ζ ∈ C, z ∈ C, one sets ζ = ξ + iη, z = x+ iy, ξ, η ∈ R, x, y ∈ R. One sets

S(r, θ, µ) = {(z, ζ) ∈ C× C; 0 < |ζ| < r, −θ < argζ < θ, |y| < µRe(ζ)}. (7.2)

Lemma 7.1.1. Let 1 ≤ p ≤ ∞, N ∈ N and let {Fα} be a family of holomorphic functions on an
open set Ω ⊂ C× C such that ∫

Ω

|ζNFα(z, ζ)|pdxdydξdη ≤ C1 (7.3)

where C1 is a constant independent on α. Let K be a compact subset of Ω. Then there exists a
constant C2 independent on α such that

∀(z, ζ) ∈ K |ζNFα(z, ζ)| ≤ C2. (7.4)

proof. Let us start by proving that (7.3) for some p implies (7.3) for p = 1 when integration
is restricted to a compact set. Let K ′ be a compact set in Ω containing K in its interior. If
1
p + 1

q = 1, Hölder's formula gives :∫
K′
|ζNF (z, ζ)| ≤ (

∫
K′

1)
1
q (

∫
Ω

|ζNF (z, ζ)|p)
1
p ≤ const.

123
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The bound (7.4) will follow from the mean formula

|f(z0, ζ0)| ≤ 1

π2ε4

∫
|z−z0|≤ε,|ζ−ζ0|≤ε

|f(z, ζ)|dxdydξdη

for a holomorphic function f in a neighborhood of the polydisc |z − z0| ≤ ε, |ζ − ζ0| ≤ ε. We
apply this formula with (z0, ζ0) ∈ K, ε < the distance from K to the complement of K ′ and
f(z, ζ) = ζNF (z, ζ).�

If S := S(r, θ, µ) and if N ∈ N one de�nes SS,N as the set of all F : S 7−→ C, holomorphic
such that

∀n ∈ N ∃const > 0 | ∀ (z, ζ) ∈ S, |F (z, ζ)| ≤ const

|ζ|N
1

(1 + |x|n)
. (7.5)

SS,N is an in�nite dimensional vector space. Indeed consider functions F (z) which are in the

image of C∞c (R) through the Fourier transform. One can also consider ρ(z) = exp(−z2)√
π

and

F (z, ζ) = 1
ζ ρ( zζ ) : for r, θ, µ small enough one can check that F ∈ SS,1 and is a Dirac delta

function. In SS,N one considers the sesquilinear form

< F,G >L2
S,N

:=

∫
S

|ζ|2NF (z, ζ)G(z, ζ)dxdydξdη (7.6)

which is a Hermitian scalar product on SS,N . Let L2
S,N be the completion of SS,N for this scalar

product. Therefore L2
S,N is a (complex) Hilbert space and SS,N is dense in L2

S,N .

Proposition 7.1.1. L2
S,N is made with holomorphic functions on S.

proof. If F ∈ L2
S,N , from a property of the completion, there is a sequence (Fn)n in SS,N which

converges to F for the norm ‖ ‖L2
S,N

in the Hilbert space L2
S,N . Therefore ‖Fn‖L2

S,N
is bounded

uniformly in n. Applying Lemma 7.1.1 to transform an integral bound into a sup. bound one
obtains that {Fn} is a normal family [32]. Therefore there is a subsequence that converges uni-
formly on compact subsets of S. Therefore F is holomorphic in S.�

One de�nes an analog of the classical Sobolev space H1 by stating : H1
S,N is the set of all

maps F : S 7−→ C such that F ∈ L2
S,N and dF

dx ∈ L
2
S,N . H1

S,N is equipped with the scalar product

< F,G >H1
S,N

:= < F,G >L2
S,N

+ <
dF

dx
,
dG

dx
>L2

S,N
. (7.7)

Proposition 7.1.2. H1
S,N is a Hilbert space.

proof. Let (Fn)n be a Cauchy sequence in H1
S,N . Since L2

S,N is complete there are F,G ∈ L2
S,N

such that Fn → F, ∂Fn
∂x → G in L2

S,N . Using the same proof as in Proposition 7.1.1 (Fn)n is a

normal family, therefore, from [32], G = ∂F
∂x .�

One de�nes the subspace H0,1
S,N of H1

S,N as the closure of SS,N in H1
S,N . H

0,1
S,N is a Hilbert

space for the scalar product induced by H1
S,N . If u, v ∈ H

0,1
S,N the classical integration by parts
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formula < ∂u
∂x , v >L2

S,N
= − < u, ∂v∂x >L2

S,N
holds by continuation of the same formula in SS,N .

Lemma 7.1.2. The map j : L2
S,N 7−→ (H0,1

S,N )′, f 7−→ (u 7→< f, u >L2
S,N

) is linear continuous

and injective.

proof. | < f, u >L2
S,N
| ≤ ‖f‖L2

S,N
‖u‖L2

S,N
therefore j(f) ∈ (H0,1

S,N )′ with operator norm ≤
‖f‖L2

S,N
. Therefore the linear map j has norm ≤ 1. It is injective from the density of SS,N into

L2
S,N .�

Denoting this map as an inclusion one has the sequence of continuous inclusions :

SS,N ⊂ H0,1
S,N ⊂ L

2
S,N = (L2

S,N )′ ⊂ (H0,1
S,N )′. (7.8)

The following spaces are de�ned as inductive limits in the category of vector spaces

L2(R) := lim
→
L2
S,N , H0,1(R) := lim

→
H0,1
S,N (7.9)

when r → 0, θ → 0, µ→ 0, N → +∞. One has

H0,1(R) ⊂ L2(R). (7.10)

As in the classical setting one can use the Lax-Milgram theorem (here in the complex case
[16]).

A standard model equation. Consider the model equation

−u′′(x) + c(x)u(x) = f(x), u(−∞) = 0 = u(+∞) (7.11)

where f ∈ L2(R) . For instance f can be a Dirac delta function : this space L2(R) is very di�erent
from the classical space of square integrable functions since it contains objects such as the Dirac
delta function and its derivatives. The function c is assumed to be holomorphic and bounded on
some set S and have some positiveness property ; it can be a step function representing Heaviside
functions).

Lemma 7.1.3. cu is in L2
S,N .

proof. There exists a sequence (un) in SS,N such that ‖un−u‖L2
S,N
→ 0 since u ∈ L2

S,N and SS,N
is dense in L2

S,N . cun ∈ SS,N from the assumption that c is bounded on S. ‖cun − cu‖2L2
S,N

=∫
S
|ζ|2N |cun− cu|2 ≤ ‖c‖2∞‖un− u‖2L2

S,N
→ 0, therefore cu ∈ L2

S,N from the de�nition of L2
S,N .�

Let V := H0,1
S,N equipped with the scalar product of H1

S,N . If u, v ∈ V set

a(u, v) =< u′, v′ >L2
S,N

+ < cu, v >L2
S,N

, L(v) =< f, v >L2
S,N

. (7.12)

One has the familiar bounds

|a(u, v)| ≤ const‖u‖V ‖v‖V , |L(v)| ≤ const‖v‖V . (7.13)

It su�ces to use the assumption that c is bounded on S.
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From (7.12) and (7.6)

a(u, u) =
∫
S
|ζ|2N |u′(z, ζ)|2dxdydξdη +

∫
S
|ζ|2Nc(z, ζ)|u(z, ζ)|2dxdydξdη.

One adopts a positiveness assumption on c :

∃γ > 0, Re(c(z, ζ)) ≥ γ ∀(z, ζ) ∈ S. (7.14)

This implies that
|a(u, u)| ≥ const‖u‖2V . (7.15)

Therefore one can apply the Lax Milgram theorem in the complex case [16] :

∃!u ∈ V ; a(u, v) = L(v) ∀v ∈ V (7.16)

i.e. from the validity of the integration by parts in L2
S,N , < −u′′+cu−f, v >L2

S,N
= 0 ∀v ∈ H0,1

S,N ,

which is equivalent to u′′ = cu − f in (H0,1
S,N )′. Since cu − f ∈ L2

S,N = (L2
S,N )′ ⊂ (H0,1

S,N )′, then

u′′ = cu− f in L2
S,N . Is such a u unique ?

Let u1, u2 ∈ H0,1(R) be such that u′′i = cui − f in L2(R), i = 1, 2. From the de�nitions (7.9)
as inductive limits ∃ S,N such that u1, u2 ∈ H0,1

S,N . Choosing S small enough and N large enough

c satis�es (7.14) on S and is bounded on S, f ∈ L2
S,N . Setting V := H0,1

S,N , both u1, u2 satisfy

(7.16), therefore they are equal in H0,1
S,N , therefore in L2(R). One has proved :

Theorem 7.1.1.Under the above boundedness and positiveness assumptions on c, for any
f ∈ L2(R) there is a unique u ∈ H0,1(R) such that −u′′ + cu = f in L2(R).

7.2 Periodic problems.

Let the period T be given. Here we set SperS,N := {F : S 7−→ C, holomorphic, periodic of period
T in x, such that

∃const > 0 ; |F (z, ζ)| ≤ const

|ζ|N
∀ (z, ζ) ∈ S}. (7.17)

In SperS,N one considers the sesquilinear form

< F,G >L2,per
S,N

:=

∫
S∩{x∈[0,T ]}

|ζ|2NF (z, ζ)G(z, ζ)dxdydξdη (7.18)

which is an Hermitian scalar product on SperS,N .

Let L2,per
S,N be the completion of SperS,N for this scalar product. Therefore L2,per

S,N is a (complex)

Hilbert space and SperS,N is dense in L2,per
S,N .

Proposition 7.2.1. L2,per
S,N is made of holomorphic functions on S.
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proof. It is the same as the proof of Proposition 7.1.1.�

One de�nes H1,per
S,N as the closure of SperS,N in L2,per

S,N for the scalar product

< F,G >H1,per
S,N

:= < F,G >L2,per
S,N

+ <
dF

dx
,
dG

dx
>L2,per

S,N
.

Therefore H1,per
S,N is a Hilbert space. One has the inclusions

SperS,N ⊂ H
1,per
S,N ⊂ L2,per

S,N

with dense inclusions. Therefore as usual one has the inclusions :

SperS,N ⊂ H
1,per
S,N ⊂ L2,per

S,N = (L2,per
S,N )′ ⊂ (H1,per

S,N )′. (7.19)

The following spaces are de�ned as inductive limits in the category of vector spaces

L2,per(R) := lim
→
L2,per
S,N , H1,per(R) := lim

→
H1,per
S,N (7.20)

when r → 0, θ → 0, µ→ 0, N → +∞. One has

H1,per(R) ⊂ L2,per(R). (7.21)

As in the classical setting one can use the Lax-Milgram theorem in the complex case [16]. This
yields results of existence and uniqueness of solutions of equations without classical solutions.

A standard model equation. Consider the model equation

−u′′(x) + c(x)u(x) = f(x), u(−∞) = 0 = u(+∞) (7.22)

where f ∈ L2,per(R) is periodic with period T . The statement of the periodic problem is : �nd v
holomorphic on some strip S, periodic with period T , such that

−v′′ + cv = f. (7.23)

The variational formulation∫
S∩{x∈[0,T ]}

|ζ|2N (v′w′ + cvw) =

∫
S∩{x∈[0,T ]}

|ζ|2Nfw ∀w ∈ L2,per
S,N (7.24)

follows from the integration by parts formula
∫ T

0
v′′w = [v′w]T0 −

∫ T
0
v′w′ =

∫ T
0
v′w′ from the

periodicity. We set

a(u, v) =

∫
S∩{x∈[0,T ]}

|ζ|2N (u′v′ + cuv), L(u, v) =

∫
S∩{x∈[0,T ]}

fv. (7.25)

Under the boundedness and positiveness assumptions on c (7.14) one has again existence and
uniqueness of a solution of (7.23) similarly as in Theorem 7.1.1.

Theorem 7.2.1 : periodic problem. Under the boundedness and positiveness above as-
sumptions on c, for any f ∈ L2,per(R) which is periodic of period T there is a unique u ∈
H1,per(R), periodic with period T solution of -u�+cu=f.
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7.3 Dirichlet problem on a �nite interval [a,b].

Let a, b ∈ R, a < b,N ∈ N and

S(r, θ, µ) = {(z, ζ) ∈ C× C such that

a < x < b, 0 < |ζ| < r, −θ < argζ < θ, |y| < µRe(ζ)}. (7.26)

Let Σ = {(y, ζ) 0 < |ζ| < r, −θ < argζ < θ, |y| < µRe(ζ)}. We set (with abusively same notation
as in section 7.1 since a, b are omitted there).

SS = {F : S −→ C, (z, ζ) → F (z, ζ) holomorphic, continuous on the set {(z, ζ); a ≤ x ≤
b, 0 < |ζ| < r, −θ < argζ < θ, |y| < µRe(ζ)}, such that i), ii) and iii) below hold} :

i) sup(z,ζ)∈S |F (z, ζ)| < +∞ (7.27)

ii) F (a+ iy, ζ) = F (b+ iy, ζ) ∀(y, ζ) ∈ Σ (7.28)

iii) limr→0,θ→0,µ→0(
1

mes(Σ)

∫
(y,ζ)∈Σ

F (a+ iy, ζ)dydξdη) = 0, (7.29)

where mes(Σ) denotes the Lebesgue measure of the set Σ ; the same formula with b in the place
of a follows from ii). With a=0,b=π polynomials in sin(z) with null constant term show that
this space is in�nite dimensional.

The properties (7.28)-(7.29) replace here the classical statement of null values at the points
a and b. Let N ∈ N be given. On SS we de�ne the sesquilinear form

< F,G >L2
S,N

:=

∫
S

|ζ|2NF (z, ζ)G(z, ζ)dxdydξdη. (7.30)

This sesquilinear form is a Hermitian scalar product : < F,F >L2
S,N

= 0⇒ F = 0. We note SS,N
the preHilbert space thus obtained.

De�nition 7.3.1. L2
S,N :=the completion of the preHilbert space (SS , < F,G >L2

S,N
).

Proposition 7.3.1. L2
S,N is made of holomorphic functions on S.

The proof follows from the lemma 1 as the proof of Proposition 7.1.1.�

De�nition 7.3.2. H1
S,N := {F : S → C such that F and ∂F

∂x ∈ L
2
S,N} equipped with the scalar

product

< F,G >H1
S,N

:=< F,G >L2
S,N

+ <
∂F

∂x
,
∂G

∂x
>L2

S,N
. (7.31)

Proposition 7.3.2. H1
S,N is complete, i.e. it is a Hilbert space.

proof. It is the same as the proof of Proposition 7.1.2.�
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Proposition 7.3.3. If v ∈ H1
S,N the map V :]a, b[→ C,

x→ V (x) =

∫
|ζ|<r,|argζ|<θ,|y|<µξ

ζNv(x+ iy, ζ)dydξdη (7.32)

can be continuously extended to [a, b]. Further,

supx∈[a,b]

∫
|ζ|<r,|argζ|<θ,|y|<µξ

|ζNv(x+ iy, ζ)|dydξdη ≤ const‖v‖H1
S,N

. (7.33)

proof. Let V (x) =
∫
y,ζ

∫ x
t= a+b

2
ζN ∂v

∂x (t+ iy, ζ)dtdydξdη.

The map V is de�ned if x ∈ [a, b] since
∫
y,ζ

∫ x
t= a+b

2
|ζN ∂v

∂x (t+iy, ζ)|dtdydξdη ≤ (
∫
S

12)
1
2 (
∫
S
|ζNv|2)

1
2 ≤

const.‖v‖L2
S,N

.

Then, again from the Cauchy-Schwarz inequality,
|V (x1) − V (x2)| = |

∫
y,ζ

∫ x1

t=x2
ζN ∂v

∂x (t + iy, ζ)dtdydξdη| ≤ const|x1 − x2|
1
2 (
∫
y,ζ

∫ x1

t=x2
|ζN ∂v

∂x (t +

iy, ζ)|2dtdydξdη)
1
2 ≤ const|x1 − x2|

1
2 ‖ ∂v∂x‖L2

S,N
.

Therefore V is (uniformly) continuous on [a, b]. The functions V and V are de�ned on ]a, b[
and have the same x-derivatives. Therefore their di�erence is constant. Since V is de�ned and
continuous on [a, b], so is V . Now let us prove the bound (7.32). The formula v(x1 + iy, ζ) =
v(x2 + iy, ζ) +

∫ x2

x1

∂v
∂x (t+ iy, ζ)dt implies that

|v(x1 + iy, ζ)| ≤ |v(x2 + iy, ζ)|+
∫ x2

x1
| ∂v∂x (t+ iy, ζ)|dt.

Integration gives :∫
y,ζ
|ζNv(x1 + iy, ζ)|dydξdη ≤

∫
y,ζ
|ζNv(x2 + iy, ζ)|dydξdη +

∫
S
|ζN ∂v

∂x (t+ iy, ζ)|dtdydξdη.

Applying the Cauchy-Schwarz inequality in the last integral we obtain∫
y,ζ
|ζNv(x1+iy, ζ)|dydξdη ≤

∫
y,ζ
|ζNv(x2+iy, ζ)|dydξdη+(

∫
S

1dtdydξdη)
1
2 (
∫
S
|ζN ∂v

∂x (t+iy, ζ)|2dtdydξdη)
1
2 .

The last integral is equal to const‖ ∂v∂x‖L2
S,N

. Integration in x2 on [a, b] of the inequality so obtai-

ned and use of the Cauchy-Schwarz inequality in the �rst integral in second member give

(b− a)
∫
y,ζ
|ζNv(x1 + iy, ζ)|dydξdη ≤ const‖v‖L2

S,N
+ const‖ ∂v∂x‖L2

S,N
≤ const‖v‖H1

S,N
.�

De�nition 7.3.3. H0,1
S,N denotes the closure of SS in H1

S,N .

Therefore H0,1
S,N is a Hilbert space for the scalar product <,>H1

S,N
and SS is dense in H0,1

S,N .

Proposition 7.3.3. If F ∈ H0,1
S,N then 1

mes(Σ)

∫
(y,ζ)∈Σ

ζNF (a+ iy, ζ)dydξdη → 0 when r, θ, µ→ 0,

and same result with b in place of a.

proof. Let F ∈ H0,1
S,N and let (Fn)n be a sequence of functions in SS such that Fn → F in

H1
S,N . Obviously
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1
mes(Σ) |

∫
(y,ζ)∈Σ

ζNF (a + iy, ζ)dydξdη| ≤ 1
mes(Σ)

∫
(y,ζ)∈Σ

|ζNF | ≤ 1
mes(Σ)

∫
(y,ζ)∈Σ

|ζN (Fn −
F )|+ 1

mes(Σ)

∫
(y,ζ)∈Σ

|ζNFn| ≤ 1
mes(Σ)const.‖Fn − F‖H1

S,N
+ 1

mes(Σ)

∫
(y,ζ)∈Σ

|ζNFn|

from Proposition 7.3.3. If ε > 0 is given ∃n0 n ≥ n0 ⇒ ‖Fn − F‖H1
S,N
≤ ε

2 . Choose n ≥ n0

and r, θ, µ small enough such that such that the second term is ≤ ε
2 from (7.29).�

Proposition 7.3.4. If F ∈ H0,1
S,N then F (a+ iy, ζ) = F (b+ iy, ζ) if 0 < |ζ < r, |argζ| < θ, |y| < µξ.

proof. If v ∈ H1
S,N from Proposition 7.3.3,∫

(y,ζ)∈Σ
|ζN [v(a+b

2 + x1 + iy, ζ) − v(a+b
2 − x1 + iy, ζ)]| ≤ const.‖v‖H1

S,N
. Since by de�ni-

tion SS is dense in H0,1
S,N there is a sequence (Fn) in SS such that ‖Fn − F‖H1

S,N
→ 0. Using

F = (F − Fn) + Fn,∫
(y,ζ)∈Σ

|ζN [F (a+b
2 + x1 + iy, ζ) − F (a+b

2 − x1 + iy, ζ)]| ≤
∫

(y,ζ)∈Σ
|ζN [(F − Fn)(a+b

2 + x1 +

iy, ζ)− (F − Fn)(a+b
2 − x1 + iy, ζ)]|+

∫
(y,ζ)∈Σ

|ζN [Fn(a+b
2 + x1 + iy, ζ)− Fn(a+b

2 − x1 + iy, ζ)]|.

Set x1 := b−a
2 ; then a+b

2 + x1 = b, a+b
2 − x1 = a. Therefore∫

(y,ζ)∈Σ
|ζN [F (b+ iy, ζ)−F (a+ iy, ζ)]| ≤

∫
(y,ζ)∈Σ

|ζN [(F −Fn)(b+ iy, ζ)− (F −Fn)(a+ iy, ζ)]|+∫
(y,ζ)∈Σ

|ζN [Fn(b+ iy, ζ)− Fn(a+ iy, ζ)]|.

The last integral is nul from (7.28). From Proposition 7.3.3,∫
(y,ζ)∈Σ

|ζN [F (b+ iy, ζ)− F (a+ iy, ζ)]| ≤ const.‖F − Fn‖H1
S,N

.

Since ‖F − Fn‖H1
S,N
→ 0 it follows that∫

(y,ζ)∈Σ

|ζN [F (b+ iy, ζ)− F (a+ iy, ζ)]| = 0

therefore F (b+ iy, ζ) = F (a+ iy, ζ).�

As a consequence the integration by parts formula

∫ b

a

∫
y,ζ

ζN
∂u

∂x
.v = −

∫ b

a

∫
y,ζ

ζNu.
∂v

∂x

is valid since the two boundary terms simplify.

In the sequel H0,1
S,N will be equipped with the scalar product from H1

S,N . Let j : L2
S,N 7−→

(H0,1
S,N )′ de�ned by j(F ) : H0,1

S,N 7−→ C, u 7−→ j(F )(u) :=< F, u >L2
S,N

. The map j is linear

continuous :

|j(F )(u)| ≤ | < F, u >L2
S,N
| ≤ ‖F‖L2

S,N
‖u‖H1

S,N
.
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The map j is injective : j(F ) = 0 ⇒< F, u >L2
S,N

= 0 ∀u ∈ H0,1
S,N , i.e. ∀u ∈ SS and SS is

dense in L2
S,N . From now on we note L2

S,N ⊂ (H0,1
S,N )′ through the map j. Therefore we have the

sequence of inclusions

SS ⊂ H0,1
S,N ⊂ L

2
S,N = (L2

S,N )′ ⊂ (H0,1
S,N )′. (7.34)

The spaces H0,1
S,N ,H1

S,N ,L2
S,N are made of holomorphic functions on S. To pass to the setting of

germs we consider the inductive limits

L2(a, b) = lim→ L2
S,N ,H1(a, b) = lim→H1

S,N ,H0,1(a, b) = lim→H0,1
S,N ,

when r, θ, µ→ 0 and N → +∞. We have

H0,1(a, b) ⊂ H1(a, b) ⊂ L2(a, b).

Now let us give an example of use of the Lax-Milgram theorem in this context. We consider the
model equation

−u′′(x) + c(x)u(x) = f(x), u(a) = 0, u(b) = 0, (7.35)

where f ∈ L2(a, b) and c is a bounded holomorphic function on S (c can be a germ whose real
interpretation is a Heaviside function or f can be a Dirac delta measure). We choose S small
enough such that f ∈ L2

S,N , for some N large enough. Let V := H0,1
S,N with ‖‖V := ‖‖H1

S,N
. If

u, v ∈ V we set

a(u, v) =<
∂u

∂x
,
∂v

∂x
>L2

S,N
+ < cu, v >L2

S,N
, L(v) :=< f, v >L2

S,N
. (7.36)

lemma 7.3.1. u ∈ L2
S,N ⇒ cu ∈ L2

S,N .

proof. Since SS is dense in L2
S,N there exists a sequence (un) of elements of SS that tends

to u, i.e. ‖u − un‖L2
S,N
→ 0. The product cun is an element of SS since c is bounded, and

‖cun − cu‖L2
S,N
→ 0. Apply the de�nition of L2

S,N .�

We have :

|a(u, v)| ≤ ‖∂u∂x‖L2
S,N

.‖ ∂v∂x‖L2
S,N

+‖c‖∞‖u‖L2
S,N
‖v‖L2

S,N
≤ const(‖∂u∂x‖L2

S,N
+‖u‖L2

S,N
)(‖ ∂v∂x‖L2

S,N
+

‖v‖L2
S,N

) ≤ const‖u‖V ‖v‖V ,

|L(v)| ≤ ‖f‖L2
S,N
‖v‖L2

S,N
≤ ‖f‖L2

S,N
‖v‖V ,

a(u, u) = ‖∂u∂x‖
2
L2
S,N

+
∫
S
|ζ|2Nc(z, ζ)|u(z, ζ)|2dxdydξdη,

We assume that
∀(z, ζ) ∈ S Re(c(z, ζ)) ≥ α > 0. (7.37)

Then

Re(
∫
S
|ζ|2Nc(z, ζ)|u(z, ζ)|2dxdydξdη) ≥ α‖u‖2L2

S,N
. This implies that

a(u, u) ≥ ‖∂u
∂x
‖2L2

S,N
+ α‖u‖2L2

S,N
≥ const‖u‖2V .
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One can apply the Lax-Milgram theorem in the complex case : there exists a unique u ∈ V such
that

a(u, v) = L(v) ∀v ∈ V, (7.38)

i.e. ∫
S

|ζ|2N ∂u
∂x

∂v

∂x
+

∫
S

|ζ|2Ncuv =

∫
S

|ζ|2Nfv,

which implies < −∂
2u
∂x2 +cu−f, v >L2

S,N
= 0 ∀v ∈ H0,1

S,N . Therefore −
∂2u
∂x2 +cu−f = 0 in (H0,1

S,N )′.

Since cu− f ∈ L2
S,N and L2

S,N ⊂ (H0,1
S,N )′, ∂2u

∂x2 ∈ L2
S,N .

We have found u ∈ H0,1(a, b) such that ∂2u
∂x2 = cu − f in L2(a, b). Such a u is unique : let

u1, u2 ∈ H0,1(a, b) such that ∂2ui
∂x2 = cu− f, i = 1, 2. There exists S,N such that u1, u2 ∈ H0,1

S,N

and f ∈ L2
S,N . Both u1 and u2 are solutions of (7.38). From the uniqueness in the Lax-Milgram

theorem one has u1|S = u2|S i.e. u1 = u2 as germs. The following has been proved

Theorem 7.3.1 : Dirichlet problem in a �nite interval. For all f ∈ L2(a, b) and all c

satisfying (7.36) there exists a unique u ∈ H0,1(a, b) such that −∂
2u
∂x2 + cu = f .

7.4 An example of minimization of a nonlinear functional.

Let us consider the functional F : H0,1
S,N 7−→ R,

v 7−→ F (v) =
1

2

∫
S

|ζ|2N (|∂v
∂x
|2 + |v|2)dxdydξdη −Re

∫
S

|ζ|2Nfvdxdydξdη,

with given f ∈ L2
S,N . Let V := H0,1

S,N . Then

F (v) =
1

2
‖v‖2V −Re < f, v >L2

S,N
.

The map F is continuous on V , and strictly convex since the quadratic form is issued from a
scalar product. The map F is coercive since ‖v‖2V dominates the linear term when ‖v‖V → +∞.
As a consequence there exists a unique u0 ∈ V such that F (u0) = minv∈V F (v).

Further F is Gateaux-di�erentiable on V and

dF (v).w = Re(< −d
2v

dx2
+ v − f, w >L2

S,N
).

Since u0 minimizes F , dF (u0).w = 0 ∀w ∈ V . Therefore Re(< − ∂2v
∂x2 + v − f, w >L2

S,N
) =

0 ∀w ∈ H0,1
S,N . The change of w into iw gives the nullness of the imaginary part and therefore

< −∂
2u0

∂x2 + u0 − f, w >L2
S,N

= 0 ∀w ∈ H0,1
S,N .

Therefore

−∂
2u0

∂x2
+ u0 − f = 0

in (H0,1
S,N )′. Since u0 − f ∈ L2

S,N ⊂ (H0,1
S,N )′,

∂2u0

∂x2
= u0 − f (7.39)



L2
S,N u0 ∈ H0,1(a, b)

w

∂2

∂x2
(EI

∂2w

∂x2
)� ∂

∂x
(N

∂w

∂x
) = p

p N E
I

p
x0 w ∂w

∂x

x0
∂2w
∂x2 x0 EI

x0 EI ∂
2w
∂x2

�a(x)u′′(x) + u(x) = f(x) f
a f

u
u′

a(x)u′′(x)

u



�a(x)u′′(x) + u(x) = f(x)
[0, 1] a(x) = 1 0 < x < 0.5, a(0.5) = 1.5, a(x) = 2 0.5 < x < 1

f
a x = 0.5 u

h = 50�1, 100�1, 1000�1, 5000�1

f
x = 0.5

au′′
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