Composition asymptotique de processus d'urne de Pólya et applications à l'algorithmique
Auteur / Autrice : | Réda Sahnoun |
Direction : | Nicolas Pouyanne |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance en 2010 |
Etablissement(s) : | Versailles-St Quentin en Yvelines |
Résumé
Les processus de Pólya sont des marches aléatoires à temps discret dans R^d, généralisations naturelles des urnes de Pólya-Eggenberger. Dans ce dernier modèle, une urne peut contenir des boules de d couleurs différentes, et une matrice (déterministe) à coefficients entiers relatifs décrit les règles de remplacement après chaque tirage. De nombreuses situations issues de l'informatique (structures arborescentes) ou de la physique théorique (percolation, fragmentation) se modélisent par ces objets. Le comportement asymptotique de ces processus fait apparaître une famille de nouvelles lois de probabilité, certaines d'entre elles sont déterminées par leurs moments; tandis que pour d'autre, la série génératrice des moments diverge. Ceci témoigne de la richesse de ce modèle, cependant, les cas étudiés permettent de dégager la combinatoire complexe du cas général.