Contribution à l'étude des transformations CR des structures de Cauchy-Riemann analytiques réelles

par Jean-Charles Sunyé

Thèse de doctorat en Mathématiques

Sous la direction de Nordine Mir.


  • Pas de résumé disponible.


  • Résumé

    Cette thèse est consacrée à l'étude de l'existence d'applications holomorphes entre des sous-variétés réelles dans des espaces complexes. On s'intéresse plus particulièrement à la convergence et à l'approximation à la Artin d'applications formelles entre sous-variétés réelles. Tout d'abord, on montre la convergence des applications formelles de jacobien non identiquement nul entre une sous-variété générique analytique réelle minimale et une sous-variété générique analytique holomorphiquement non-dégénérée. Grâce à ce résultat, on obtient la convergence de toutes les applications formelles entre une hypersurface analytique réelle minimale non dégénérée et une hypersurface qui ne contient pas de courbe holomorphe. D'autre part, on établit la convergence de l'application de réflexion associée à une application formelle de jacobien non identiquement nul entre hypersurfaces lorsque l'hypersurface source est minimale. Cela nous permet ensuite de montrer un résultat d'approximation à la Artin dans ce même cas. Pour finir, on prouve un théorème artinien pour des applications CR de classe C∞ entre deux sous-variétés dans des espaces complexes de dimensions différentes.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (71 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 31 références

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rouen. Service commun de la documentation. Section sciences site Madrillet.
  • Disponible pour le PEB
  • Cote : 10/ROUE/S037
  • Bibliothèque : Laboratoire de mathématiques Raphae͏̈l Salem. Bibliothèque de recherche en mathématiques.
  • Disponible pour le PEB
  • Cote : 17727 SUNY
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.