Sur l'approximation rationnelle pour le semi-groupe de transport

par Mohamed Amine Cherif

Thèse de doctorat en Mathématiques et leurs interactions

Sous la direction de Hassan Emamirad et de Maher Mnif.

Soutenue en 2010

à Poitiers en cotutelle avec Sfax .


  • Résumé

    La notion de l'approximation rationnelle est normalement conçue pour la discrétisation en temps. Dans cette thèse nous mélangeons cette notion avec la notion de la convergence au sens de Kato qui découle d'une discrétisation en espace pour l'équation de transport neutronique. Nous appliquons cette procedure aux schémas d'Euler explicite et implicite, Crank-Nicolson et Prédicateur-Correcteur qui ont le degré de convergence 1,2 et 3 au sens de l'approximation rationnelle. Pour démontrer la convergence nous utiliserons le théorème de Cherno et nous donnons aussi des illustrations numérique pour justifier ces degrés de convergence. Dans le dernier chapitre nous donnons quelques nouvelles généralisations des théorèmes de point fixe de type Schauder et de type Krasnoselskii qui se basent sur la notion de la compacité faible sur des espaces Fréchet ayant la propriété de Dunford- Pettis et sur la notion de la U-équicontraction.

  • Titre traduit

    Rational approximation for transport semi groups


  • Résumé

    In this thesis we mix the rational approximation procedure, which is a time approximation with approximation in the sense of Kato, which is a space approximation for neutron transport equation. We apply this procedure for explicit and implicit Euler, Crank-Nicolson and Predictor-Corrector schemes which have the rate 1,2 and 3 in the sense of rational approximation. By using Cherno's Theorem, we prove the convergence and we construct also the numerical illustration for justifying the above rate of convergence. In the last chapter, we give some generalization of Schauder and Krasnoselskii fixed point theorems in Dunford-Pettis Frechet spaces and which based on the notion of weakly compactness and U-equicontraction.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (96 p.)
  • Annexes : Bibliogr. 38 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Section Sciences, Techniques et Sport.
  • Non disponible pour le PEB
  • Bibliothèque : Université de Poitiers. Département de mathématiques. Bibliothèque.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.