Infinite dimensional stochastic calculus via regularization with financial perspectives

par Cristina Di Girolami

Thèse de doctorat en Mathématiques

Sous la direction de Francesco Russo.

Soutenue en 2010

à Paris 13 .

  • Titre traduit

    Calcul stochastique via régularisation en dimension infinie avec perspectives financières


  • Résumé

    Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de -variation quadratique, où  est un sous-espace du dual d'un produit tensioriel B  B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-, 0],  > 0. Une classe de résultats de stabilité de classe C1 pour des processus ayant une -variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C [ -, 0] est le dénommé processus fenêtre Xt(. )où Xt(y)= Xt+y, y∈[-, 0]. Soit T > 0. Si X est un processus dont la variation quadratique vaut [X]t = t et h = H (XT(. )) où H : C([ -T, 0])  ℝ est une fonction de classe C3 Fréchet par rapport à L2([ -T, 0] ou H dépend d'un numéro fini d'intégrales de Wiener, il est possible de représenter h comme un nombre réel H0 plus une intégrale progressive du type ∫0T d – X où  est un processus donné explicitement. Ce résultat de représentation de la variable aléatoire h sera lié strictement à une fonction u : [0,T] x C([ -T; 0])  ℝ qui en géneral est une solution d'une équation aux dérivées partielles en dimension infinie ayant la propriété H0 = u(0, X0(. )), t = D° u(t,Xt(. )):= Dut,Xt(. ))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif sous-jacent n'est pas une semimartingale.


  • Résumé

    This thesis develops some aspects of stochastic calculus via regularization to Banach valued processes. An original concept of -quadratic variation is introduced, where  is a subspace of the dual of a tensor product B  B where B is the values space of some process X process. Particular interest is devoted to the case when B is the space of real continuous functions defined on [-, 0], > 0. Itô formulae and stability of finite -quadratic variation processes are established. Attention is deserved to a finite real quadratic variation (for instance Dirichlet, weak Dirichlet) process X. The C [ -, 0] -valued process X(. ) defined by Xt(y)= Xt+y, where y∈[-, 0], is called window process. Let T > 0. If X is a finite quadratic variation process such that [X]t = t and h = H (XT(. )) où H : C([ -T, 0])  ℝ is L2([ -T, 0]-smooth or H non smooth but finitely based it is possible to represent h as a sum of a real H0 plus a forward integral of type ∫0T d – X où H0 et  are explicitly given. This representation result will be strictly linked with a function u : [0,T] x C([ -T; 0])  ℝ which in general solves an infinite dimensional partial differential equation with the property H0 = u(0, X0(. )), t = D° u(t,Xt(. )):= Dut,Xt(. ))({0}). This decomposition generalizes important aspects of Clark-Ocone formula which is true when X is the standard Brownian motion W. The financial perspective of this work is related to hedging theory of path dependent options without semimartingales.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (192 p.)
  • Annexes : Bibliogr. p.183-189. Annexes

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire. Section Sciences.
  • PEB soumis à condition
  • Cote : PARIS 13 2010 DIG
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.