Algebraic domain decomposition methods for darcy flow in heterogeneous media

par Mikolaj Szydlarski

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Frédéric Nataf.

Soutenue en 2010

à Paris 6 .

  • Titre traduit

    Méthodes de décomposition de domaines algébriques pour les écoulements de Darcy en milieux hétérogènes


  • Pas de résumé disponible.


  • Pas de résumé disponible.


  • Résumé

    Afin de répondre aux besoins de l'industrie pétrolière d'une description plus fine de la géométrie et des propriétés pétrophysiques des bassins et des réservoirs, la simulation numérique des écoulements en milieux poreux doit évoluer vers des algorithmes plus performants et plus robustes vis ˆ vis de la taille des simulations, de la complexité des maillages et des hétérogénéités du milieu poreux. Les méthodes de décomposition de domaine constituent une alternative aux méthodes multigrilles et pourraient permettre de lever les difficultés précédentes en terme de robustesse et d'efficacité sur architectures parallèles. Elles sont par nature plus adaptées au calcul parallèle et sont plus robustes en particulier lorsque les sous domaines sont résolus par des méthodes directes. Elles permettent aussi de traiter dans un cadre unique les couplages de modèles comme les puits ou les failles conductrices et s'étendent au cas des systèmes couplés. Le travail de thse traite plus particulièrement de méthodes définies au niveau algébrique. On ne suppose pas avoir une connaissance préalable du problème continu dont la matrice provient. On n'a pas non plus accès aux matrices avant assemblage. Ce manque d'informations a priori rend plus difficile la construction de méthodes efficaces. On propose deux nouvelles méthodes de construction de méthodes de décomposition de domaine au niveau algébrique: la construction de conditions d'interface optimisées et d'une grille grossière. Ce dernier point est particulièrement important pour avoir des méthodes robustes vis ˆ vis du nombre des sous-domaines. Les méthodes sont adaptatives et basées sur l'analyse de l'espace de Krylov généré durant les premières itérations de la méthode de Schwarz classique. A partir des vecteurs de Ritz correspondant aux plus basses valeurs propres, on construit des conditions d'interface et des grilles grossières qui annihilent l'erreur sur ces composantes. Les méthodes ont été testées sur des calculateurs parallèles pour des matrices issues de la simulation de milieux poreux.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (163 p.)
  • Annexes : Bibliogr. p. 159-163. 58 réf. bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2010 532
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.