Problèmes inverses et simulations numériques en viscoélasticité 3D

par Maya de Buhan

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Pascal Frey et de Axel Esteban Osses Alvarado.


  • Résumé

    Dans cette thèse, nous abordons plusieurs problèmes mathématiques et numériques relatifs aux équations de la viscoélasticité en trois dimensions. Dans la première partie, nous considérons le système linéaire et nous nous intéressons au problème inverse de récupération d'un coefficient viscoélastique. Pour ce système, nous démontrons une inégalité de Carleman (Chapitre 1) et un résultat de stabilité dans le prolongement unique (Chapitre 2). Nous utilisons ensuite ces résultats pour prouver deux inégalités de stabilité pour le problème inverse, l'une relative à une unique mesure interne et l'autre à une unique mesure sur une partie arbitrairement petite de la frontière (Chapitre 3). Finalement, nous proposons une méthode pour résoudre ce problème numériquement et présentons une application en imagerie médicale (Chapitre 4). Dans la deuxième partie, nous étudions le système de la viscoélasticité non linéaire. Nous présentons des méthodes numériques pour le résoudre et l'implémentation de ces dernières en trois dimensions sur des géométries complexes (Chapitre 5). Une application biomédicale à la simulation des déformations des structures cérébrales est ensuite décrite (Chapitre 6). Enfin, nous abordons une question de modélisation en proposant un modèle couplé viscoélastique/viscoplastique en grandes déformations (Chapitre7).

  • Titre traduit

    Inverse problems and numerical simulations 3D viscoelasticity


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (158 p.)
  • Annexes : Bibliogr. p. 153-157. [93] réf. bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2010
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 07219
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.