Sur la théorie des excursions pour des processus de Lévy symétriques stables d'indice α ϵ ]1,2], et quelques applications

par Fernando Cordero

Thèse de doctorat en Mathématiques

Sous la direction de Frédérique Petit et de Marc Yor.

Soutenue en 2010

à Paris 6 .


  • Résumé

    ALe chapitre 1 est divisé en deux parties; la première autour des généralités sur les processus de Lévy et la deuxième sur le cas particulier des processus symétriques stables. Le chapitre 2 porte sur la théorie des fluctuations dans le cas stable et concentre la plupart des résultats originaux de cette thèse. Dans ce chapitre, on s'intéresse premièrement à la loi conjointe du premier temps de passage au-dessus d'une barrière et de la position du processus en cet instant ainsi qu'à des questions autour de l'absolue continuité de la loi du supremum. Dans un deuxième temps, dans le cas stable, on s'intéresse à la loi conjointe du processus au temps t, de son supremum avant t et du dernier temps d'atteinte du supremum avant. Le chapitre 3 est aussi constitué des deux parties, une partie sur les temps locaux et une autre partie sur la théorie des excursions. Les deux parties sont traitées dans le cas des processus symétriques stables d'indice supérieur à 1. Concernant les temps locaux, on rappelle leur définition et leurs principales propriétés. Concernant la théorie des excursions, on présente la théorie de façon semblable aux cas classiques en passant entre autres par les définitions d'excursion normalisée et de méandre, et en donnant des constructions simples pour ces objets. On présente aussi quelques développements récents de la théorie dus à K. Yano, Y. Yano et M. Yor. Les chapitres 4 et 5 portent sur des applications (dans le cas symétrique stable) de la théorie des excursions à l'étude respectif des temps passés positif et négatif et des valeurs principales généralisées.

  • Titre traduit

    On the excursion theory for the symmetric stable Lévy processes α ϵ ]1,2] with index and some applications


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (101 p.)
  • Annexes : Bibliogr. p. 99-101. 48 réf. bibliogr.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2010 158

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2010PA066158
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.