Modélisation et résolution de problèmes de décision et d'optimisation hiérarchiques en utilisant des contraintes quantifiées

par Jérémie Vautard

Thèse de doctorat en Informatique

Sous la direction de Arnaud Lallouet.

Soutenue le 15-04-2010

à Orléans , dans le cadre de Ecole doctorale Sciences et technologies (Orléans) , en partenariat avec Laboratoire d'informatique fondamentale (Orléans) (laboratoire) .

Le président du jury était Denys Duchier.

Le jury était composé de Arnaud Lallouet, Denys Duchier, Lakhdar Saïs, Christian Bessière, Lucas Bordeaux, François Fages.

Les rapporteurs étaient Lakhdar Saïs, Christian Bessière.


  • Résumé

    Cette thèse s’inscrit dans le cadre de la programmation par contraintes quantifiées, un formalisme étendantla programmation par contraintes classique en ajoutant aux variables des quantificateurs existentiels ouuniversels, ce qui apporte en théorie une expressivité suffisante pour modéliser des problèmes avec adversaireou incertitude sur certains paramètres sous forme de problèmes appelés QCSP (Quantified Constraintsatisfaction Problem).Nous commençons par apporter une réponse aux difficultés de modélisation de problèmes réels dont estfrappée la programmation par contraintes quantifiées en introduisant une extension aux QCSP permettantd’expliciter les actions possibles de l’agent principal et de son adversaire. Puis, nous décrivons différentproblèmes grâce à ce formalisme, et discutons de la place de cette extension parmi les formalismes voisins créésen réponse à cette même difficulté de modélisation. Enfin, nous nous intéressons à la notion d’optimisationdans le cas des contraintes quantifiées, et apportons un formalisme d’optimisation de contraintes quantifiéespermettant d’exprimer des problèmes multi-niveaux non linéaires.

  • Titre traduit

    Decision and hierarchical optimisation problem modeling and solving by use of quantified contraints


  • Résumé

    This thesis presents works in the research area of quantified constraint programming, which extends theconstraint programming framework by setting (existential and universal) quantifiers to the problem’s variables.This framework is theoretically expressive enough to model problems where an opponent or uncertainparameters are involved, under the form of Quantified Constraint Safisfaction Problems (QCSP).QCSPs suffer from a modeling difficulty that we solve by presenting an extension to this framework, in whichpossible moves for the principal agent and its opponent may be explicitely declared. Then, we describe realproblems using this extention, and discuss of its pros and cons against neighbour framework thar were createdto solve the same difficulty. Finally, we focus on quantifies optimization problems, and present a quantifiedoptimization framework thet allows the modeling of nonlinear multi-level problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Orléans (Bibliothèque électronique). Service commun de la documentation.Division des affaires générales.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.