Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités

par Pauline Klein

Thèse de doctorat en Mathématiques

Sous la direction de Xavier Antoine et de Christophe Besse.

Soutenue le 03-11-2010

à Nancy 1 , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec IECN - Institut Elie Cartan de Nancy - UMR 7502 (laboratoire) .

Le président du jury était Patrick Gérard.

Le jury était composé de Eric Cances, Rémi Carles, Jérémie Szeftel, Marius Tucsnak.


  • Résumé

    L'équation de Schrödinger est une équation fondamentale de la physique, qui fait intervenir une fonction appelée potentiel, linéaire ou non linéaire, pouvant prendre différentes expressions selon le contexte physique. Pour résoudre numériquement cette équation, il faut se restreindre à un domaine borné en espace, en précisant sur la frontière de ce domaine de calcul des conditions aux limites artificielles (CLA) appropriées. En dimension un et pour un potentiel nul, la condition aux limites exacte est connue. L'objectif de cette thèse est de généraliser ces résultats en construisant des CLA approchées dans le cas d'un potentiel, linéaire ou non linéaire. A cette fin, nous proposons une recherche détaillée de méthodes permettant de tenir compte du potentiel, sans distinction selon ses propriétés mathématiques. Cette construction repose sur l'analyse microlocale et les règles du calcul symbolique associé aux opérateurs pseudodifférentiels. Les CLA obtenues se prêtent alors à une discrétisation et une implémentation numérique effective à l'aide d'un schéma de Crank-Nicolson suivi d'une méthode éléments finis linéaires. Dans ce travail, nous avons élaboré des familles de CLA pour l'équation en dimension un ou deux d'espace avec un potentiel linéaire ou non linéaire, ainsi que pour le problème stationnaire en dimension un. Dans chaque cas, de nombreuses simulations numériques ont été effectuées afin de comparer l'efficacité des conditions aux limites proposées par rapport aux autres méthodes existantes, ainsi que pour comparer entre elles les différentes familles de conditions aux limites construites suivant différentes stratégies

  • Titre traduit

    Construction and analysis of artificial boundary conditions for Schrödinger equations with potentials or nonlinearities


  • Résumé

    The Schrödinger equation is a fundamental equation involved in many physical domains. It deals with a linear or nonlinear function called potential, which can appear under various different expressions depending on the physical context. In order to solve the equation numerically, one has to restrict to a bounded spatial domain, and to add appropriate artificial boundary conditions (ABC) on the boundary of the computational domain. For the free-potential equation in one dimension, the exact boundary condition is known. The aim of this thesis is to generalize these results thanks to the construction of approximate ABC in the case of a linear or nonlinear potential. To this end, we propose a detailed research of methods taking the potential into account in the artifical boundary condition, without considering the mathematical properties of the considered potential. The construction of these CLA relies on microlocal analysis and the rules of symbolic calculus associated to pseudodifferential operators. These approximate boundary conditions can then be discretized and numerically computed, using a Crank-Nicolson scheme and a linear finite element method. In this work, we have derived families of ABCs for the Schrödinger equation in dimension one and two, with a linear or nonlinear potential, and for the stationary one-dimensional problem. In each case, many numerical simulations have been implemented in order to compare the efficiency of the new boundary conditions with respect to existing methods, and also in order to compare with one another the different families of boundary conditions developed following different strategies


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.