Un modèle d'apprentissage multimodal pour un substrat distribué d'inspiration corticale

par Thomas Girod

Thèse de doctorat en Informatique

Sous la direction de Frédéric Alexandre.

Soutenue le 10-11-2010

à Nancy 1 , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec LORIA - Laboratoire lorrain de Recherche en Informatique et Applications - UMR 7503 (laboratoire) .

Le président du jury était Sylvain Contassot-Vivier.

Le jury était composé de Hugues Berry, Vincent Chevrier, Philippe Gaussier, Hélène Paugam-Moisy.


  • Résumé

    Le domaine des neurosciences computationnelles s'intéresse à la modélisation des fonctions cognitives à travers des modèles numériques bio-inspirés. Dans cette thèse, nous nous intéressons en particulier à l'apprentissage dans un contexte multimodal, c'est à dire à la formation de représentations cohérentes à partir de plusieurs modalités sensorielles et/ou motrices. Notre modèle s'inspire du cortex cérébral, lieu supposé de la fusion multimodale dans le cerveau, et le représente à une échelle mésoscopique par des colonnes corticales regroupées en cartes et des projections axoniques entre ces cartes. Pour effectuer nos simulations, nous proposons une bibliothèque simplifiant la construction et l'évaluation de modèles mésoscopiques. Notre modèle d'apprentissage se base sur le modèle BCM (Bienenstock-Cooper-Munro), qui propose un algorithme d'apprentissage non-supervisé local (une unité apprend à partir de ses entrées de manière autonome) et biologiquement plausible. Nous adaptons BCM en introduisant la notion d'apprentissage guidé, un moyen de biaiser la convergence de l'apprentissage BCM en faveur d'un stimulus choisi. Puis, nous mettons ce mécanisme à profit pour effectuer un co-apprentissage entre plusieurs modalités. Grâce au co-apprentissage, les sélectivités développées sur chaque modalité tendent à représenter le même phénomène, perçu à travers différentes modalités, élaborant ainsi une représentation multimodale cohérente dudit phénomène

  • Titre traduit

    A model of multimodal learning for a cortically inspired distributed substrate


  • Résumé

    The field of computational neurosciences is interested in modeling the cognitive functions through biologically-inspired, numerical models. In this thesis, we focus on learning in a multimodal context, ie the combination of several sensitive/motor modalities. Our model draws from the cerebral cortex, supposedly linked to multimodal integration in the brain, and modelize it on a mesoscopic scale with 2d maps of cortical columns and axonic projections between maps. To build our simulations, we propose a library to simplify the construction and evaluation of mesoscopic models. Our learning model is based on the BCM model (Bienenstock-Cooper-Munro), which offers a local, unsupervized, biologically plausible learning algorithm (one unit learns autonomously from its entries). We adapt this algorithm by introducing the notion of guided learning, a mean to bias the convergence to the benefit of a chosen stimuli. Then, we use this mecanism to establish correlated learning between several modalities. Thanks to correlated leanring, the selectivities acquired tend to account for the same phenomenon, perceived through different modalities. This is the basis for a coherent, multimodal representation of this phenomenon


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.