Structures multi-contextuelles et logiques modales intuititionnistes et hybrides

par Yakoub Salhi

Thèse de doctorat en Informatique

Sous la direction de Didier Galmiche.

Soutenue le 03-12-2010

à Nancy 1 , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec LORIA - Laboratoire lorrain de Recherche en Informatique et Applications - UMR 7503 (laboratoire) .

Le président du jury était Stéphane Demri.

Le jury était composé de Andreas Herzig, Dominique Larchey-Wendling, Valeria De Paiva, Patrick Blackburn.


  • Résumé

    En informatique, les logiques formelles ont une place centrale dans la représentation et le traitement des connaissances. Elles sont utilisées pour la modélisation et la vérification de systèmes informatiques et de leurs propriétés ainsi que pour la formalisation de différents types de raisonnement. Dans ce contexte il existe un large spectre de logiques non-classiques parmi lesquelles les logiques modales jouent un rôle important. Alors que les logiques modales classiques ont été largement étudiées, nous nous focalisons dans cette thèse sur les logiques modales intuitionnistes et aussi hybrides floues en abordant un certain nombre de questions principalement du point de vue de la théorie de la démonstration. Nous proposons pour ces logiques de nouveaux systèmes de preuve, notamment suivant les formalismes de déduction naturelle et de calcul des séquents, qui sont fondés sur de nouvelles structures multi-contextuelles généralisant la structure standard de séquent

  • Titre traduit

    Multi-contextual structures and intuitionistic modal and hybrid logics


  • Résumé

    In computer science, formal logics are central for studying the representation and the treatment of knowledge. Indeed, they are widely used for modeling and verifying computer systems and their properties and also for formalizing different kinds of reasoning. In this context there exist many non-classical logics and among them modal logics play a key role. As classical modal logics have been deeply studied, we focus in this thesis on the intuitionistic modal logics and also on fuzzy hybrid logics by studying some important questions mainly from the viewpoint of proof theory . We define for these logics new proof systems, following natural deduction and sequent calculus formalisms, that are based on new multi-contextual structures generalizing the standard sequent structure


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.