Quelques méthodes numériques en optimisation de formes

par Katarzyna Szulc (Queffeulou)

Thèse de doctorat en Mathématiques

Sous la direction de Jan Sokolowski et de Andrzej Nowakowski.

Soutenue le 08-06-2010

à Nancy 1 , dans le cadre de IAEM Lorraine , en partenariat avec IECN (laboratoire) .

Le président du jury était Michel Pierre.

Le jury était composé de Jan Sokolowski, Andrzej Nowakowski, Michel Pierre, Alain Brillard, Michael Hintermüller, Zakaria Belhachmi, Dorin Bucur, Antoine Henrot.

Les rapporteurs étaient Alain Brillard, Michael Hintermüller.


  • Résumé

    La dérivée topologique évaluée pour une fonctionnelle d'énergie définie dans un domaine et dépendante d'une solution d'un problème aux limites, est l'outil principal de l'optimisation de formes. Elle représente le taux de variation de la fonctionnelle d'énergie quand le domaine est modifié par une création de trou. La forme de la dérivée topologique est fournie par une analyse asymptotique d'un problème aux dérivées partielles et d'une fonctionnelle d'énergie. La définition de la dérivée topologique a été introduite dans [4] et [5]. Quelques notions d'analyse asymptotique qui permetent d'évaluer la forme de la dérivée topologique, ont été évoquées dans [2], [3]. Une méthode numérique pour calculer la solution du problème d'optimisation de forme, utilisant la dérivée topologique et la méthode des courbes de niveaux (levelset) a été présentée dans [1]. L'objet de ce travail de thèse est de développer des méthodes pour déterminer la dérivée topologique. Dans la première partie, on fait l'analyse d'un problème elliptique d'équation aux dérivées partielles non-linéaire. On commence par l'approximation de la solution du problème aux limites et ensuite on obtient le développement asymptotique d'une fonctionnelle de forme, dont le terme de premier ordre est la dérivée topologique. Par la suite, on considère une approximation numérique de la dérivée topologique en utilisant une méthode d'éléments finis et on démontre sa convergence. Les résultats théoriques sont illustrés par les calculs numériques. Dans la deuxième partie, on adapte la méthode de courbes de niveau à un problème d'optimisation de formes et de topologie. On applique la dérivée topolo- gique trouvée dans la première parie pour trouver l'endroit de modification du domaine afin de minimiser une fonctionnelle de coût. Dans la troisième partie, on considère le système de l'élasticité défini dans un domaine avec une fissure. Dans ce cas, on regarde le comportement asymptotique de la solution et de la fonctionnelle d'énergie par rapport aux perturbations singulières du domaine géométrique. Dans ce chapitre la dérivée topologique de l'énergie est donnée pour des domaine fissurés en dimension deux et trois.

  • Titre traduit

    Numerical methods in shape optimization with the topological derivatives


  • Résumé

    The dissertation concerns numerical methods of shape optimization for nonlinear elliptic boundary value problems. Two classes of equations are considered. The first class are semilinear elliptic equations. The second class are elasticity problems in domains weakened by nonlinear cracks. The method proposed in the dissertation is known for linear problems. The framework includes the topological derivatives [2]-[5], and the levelset method [1]. It is shown, that the method can be applied in order to find numerical solutions for the shape optimization problems in the case of nonlinear elliptic equations. There are three parts of the dissertation. In the first part the topological derivatives for semilinear elliptic equation are determined by the compound asymptotic expansions. The expansion of solutions with respect to the small parameter which describes the size of the hole or cavity created in the domain of integration is established and justified. There are two problems considered in details. The first problem in three spatial dimensions with the Dirichlet boundary conditions on the hole. The complete proof of asymptotic expansion of the solution in the weighted Holder spaces is given. The order of the remainder is established by the Banach fixed point theorem in the weighted Holder spaces. The expansion of the solution is plug into the shape functional, and the first order term with respect to small parameter, is obtained. The second boundary value problem in two spatial dimensions enjoys the Neumann boundary conditions on the hole. The numerical results for the topological derivatives are given in twwo spatial dimensions by the finite element method combined with the Newton method for the nonlinear problems. The error estimates for the finite element method are also established. In the second part numerical method of shape optimization is proposed , justified and tested for a semilinear elliptic problem in two spatial dimensions. The forms of the shape gradient and of the topological derivative for the tracking type shape functional are given. The existence of an optimal domain under standard assumptions on the family of admissible domains is shown. Finally, numerical results are presented, which confirm the efficiency of the proposed method. In the third part of dissertation the elasticity boundary value problems in a body weakened by cracks is introduced. The variational formulations of the problem are recalled, including the smooth domain formulation. The domain decomposition method with the Steklov-Poincaré operator is analysed, with respect to the singular perturbation by creation of a small opening. The difficulty of the analysis is due to the fact that there are nonpenetration conditions prescribed on the crack lips, which make the problem nonlinear. The asymptotics of the energy functional are introduced and justified. As a result, the form of the topological derivative of the energy functional is obtained.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.