Contributions à l'analyse convexe sequentielle

par Olivier Lopez

Thèse de doctorat en Mathématiques appliquées et applications des mathématiques

Sous la direction de Lionel Thibault.

Le président du jury était Michel Volle.

Le jury était composé de Lionel Thibault, Hedy Attouch.

Les rapporteurs étaient Marco Antonio Lopez, Abderrahim Jourani.


  • Résumé

    Les premiers résultats en analyse convexe ne nécessitant aucune condition de qualification datent à peu près d'une quinzaine d'années et constituent le début de l'analyse convexe séquentielle. Ils concernaient essentiellement: la somme d'un nombre fini de fonctions convexes, la composition avec une application vectorielle convexe, et les problèmes de programmation mathématique convexe. Cette thèse apporte un ensemble de contributions à l'analyse convexe séquentielle. La première partie de la thèse est consacrée à l'obtention sans condition de qualification de règles de calcul sous-differentiel exprimées séquentiellement. On considère les cas suivants:l'enveloppe supérieure d'une famille quelconque de fonctions convexes semi-continues inférieurement définies sur un espace de Banach; une fonctionnelle intégrale convexe générale définie sur un espace de fonctions intégrales;la somme continue (ou intégrale) de fonctions convexes semi-continues inférieurement définies sur un espace de Banach séparable. Dans la deuxième partie on établit sans hypothèse de qualification sur les données du problème, des conditions nécessaires et suffisantes d'optimalité séquentielle pour divers types de problèmes d'optimisation et de contrôle optimal discret ou continu.

  • Titre traduit

    Contributions to the sequential convex analysis


  • Résumé

    The first results in convex analysis without any qualificationcondition have been established fifteen years ago, and one may say thatsequential convex analysis began with those results. They essentially concerned:The finite sum of convex functions, the composition with a vectorvaluedconvex mapping, and convex mathematical programming. The firstpart of this dissertation provides several contibutions to sequential convexanalysis. The following cases are considered: the upper envelop of a familyof lower semicontinuous convex functions; the integral functional overan integral space; the continuous sum of lower semicontinuous convex functions.In the second part, necessary and sufficient optimality conditions areestablished in sequential form for many types of programming problems anddicrete or continuous optimal control problems.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.