Familles à un paramètre de surfaces en genre 2

par Olivier Rodriguez

Thèse de doctorat en Mathématiques

Sous la direction de Robert Silhol.

Le président du jury était Emmanuel Royer.

Le jury était composé de Robert Silhol, Ivan Babenko, Frédéric Mangolte.

Les rapporteurs étaient Antonio Costa, Pascal Hubert.


  • Résumé

    Cette thèse porte sur certaines familles à un paramètre de surfaces de Riemann compactes de genre 2 définies par des surfaces de translation. Les familles que nous considérons constituent des géodésiques de Teichmüller dans l'espace des modules.Nous nous attachons en particulier à décrire ces surfaces par leurs matrices des périodes et par les équations des courbes algébriques associées.Nous étudions notamment les automorphismes admissibles par les surfaces de certaines de ces familles.Le principal résultat consiste en une caractérisation explicite des matrices des périodes des courbes réelles à trois composantes réelles appartenant à la famille obtenue par projection dans l'espace des modules de la SL(2,R)-orbite de la surface de translation en «L» pavée par trois carreaux.Nous montrons enfin, grâce à une interprétation en termes de transformations de Schwarz-Christoffel, comment calculer numériquement une équation de la courbe algébrique définie par une surface de translation en «L».

  • Titre traduit

    One parameter families of surfaces in genus 2


  • Résumé

    In this thesis we study some one parameter families of compact Riemann surfaces of genus 2 defined by translation surfaces.The families we consider are Teichmüller geodesics in the moduli space.We mainly describe these surfaces by means of period matrices and equations of the associated algebraic curves.We study admissible automorphisms for surfaces in some of those families.The main result is an explicit characterisation of period matrices of real curves with three real components belonging to the family obtained by projecting the SL(2,R)-orbit of the «L»-shaped translation surface tiled by three squares into the moduli space.We finally show, using an interpretation in terms of Schwarz-Christoffel transformations, how to numerically compute an equation of the algebraic curve defined by a «L»-shaped translation surface.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.