Invariants asymptotiques en géométrie conforme et géométrie CR

par Benoît Michel

Thèse de doctorat en Mathématiques

Sous la direction de Marc Herzlich.

Le président du jury était Paul Gauduchon.

Le jury était composé de Marc Herzlich, Zindine Djadli, Vincent Minerbe.

Les rapporteurs étaient Erwann Delay.


  • Résumé

    Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green de l'opérateur de Yamabe CR au voisinage de sa singularité,dans le cas CR sphérique, et en dimension 3 dans une carte CR-normale au sens de Jerison et Lee, lorsque la constante de Yamabe-CR est strictement positive. Nous montrons la covariance pseudo-conforme du terme constant sous les changements de cartes respectivement CR-sphériques et CR-normales.La troisième partie donne une explication formelle à une annulation algébrique sur laquelle repose la définition de plusieurs invariants à l'infini de type masse ADM, qui n'avait pu jusqu'à présent qu'être constatée par un calcul direct.

  • Titre traduit

    Asymptotic invariants in conformal and CR geometry


  • Résumé

    In this thesis we study the use of some asymptotic invariants in conformal and CR geometry.The first chapter is devoted to conformal geometry. We compute an asymptotic expansion ofthe Green function of GJMS operators near the diagonal, for a normal conformal factorin the sense of Lee and Parker. We show that the constant term in this expansion is covariant through achange of normal conformal factor. We relate it to an invariant at infinity of the type of the ADM massof a non-compact metric obtained by some kind of stereographic projection.In the second chapter we study CR geometry. We compute the first terms of the asymptotic expansion of the Greenfunction of the Yamabe-CR operator near its singularity, when the Yamabe-CR constant is positive, in the CR-sphericalcase, and in dimension 3 in a CR-normal chart in the sense of Jerison and Lee.We show the pseudo-conformal covariance of the constant term in this asymptotic expansion through a change of spherical chart andof CR-normal chart respectively.In the third chapter we give a formal explanation to an algebraic cancellationon which the defintion of some invariants at infinity such as the ADM mass relies.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.