Reconnaissance automatique des émotions par données multimodales : expressions faciales et des signaux physiologiques

par Faiza Abdat

Thèse de doctorat en Automatique

Sous la direction de Alain Pruski et de Choubeila Maaoui.

Le président du jury était Guy Bourhis.

Le jury était composé de François Cabestaing, Isabelle Magnin, Norbert Noury.


  • Résumé

    Cette thèse présente une méthode générique de reconnaissance automatique des émotions à partir d’un système bimodal basé sur les expressions faciales et les signaux physiologiques. Cette approche de traitement des données conduit à une extraction d’information de meilleure qualité et plus fiable que celle obtenue à partir d’une seule modalité. L’algorithme de reconnaissance des expressions faciales qui est proposé, s’appuie sur la variation de distances des muscles faciaux par rapport à l’état neutre et sur une classification par les séparateurs à vastes marges (SVM). La reconnaissance des émotions à partir des signaux physiologiques est, quant à elle, basée sur la classification des paramètres statistiques par le même classifieur. Afin d’avoir un système de reconnaissance plus fiable, nous avons combiné les expressions faciales et les signaux physiologiques. La combinaison directe de telles informations n’est pas triviale étant donné les différences de caractéristiques (fréquence, amplitude de variation, dimensionnalité). Pour y remédier, nous avons fusionné les informations selon différents niveaux d’application. Au niveau de la fusion des caractéristiques, nous avons testé l’approche par l’information mutuelle pour la sélection des plus pertinentes et l’analyse en composantes principales pour la réduction de leur dimensionnalité. Au niveau de la fusion de décisions, nous avons implémenté une méthode basée sur le processus de vote et une autre basée sur les réseaux Bayésien dynamiques. Les meilleurs résultats ont été obtenus avec la fusion des caractéristiques en se basant sur l’Analyse en Composantes Principales. Ces méthodes ont été testées sur une base de données conçue dans notre laboratoire à partir de sujets sains et de l’inducteur par images IAPS. Une étape d’auto évaluation a été demandée à tous les sujets dans le but d’améliorer l’annotation des images d’induction utilisées. Les résultats ainsi obtenus mettent en lumière leurs bonnes performances et notamment la variabilité entre les individus et la variabilité de l’état émotionnel durant plusieurs jours

  • Titre traduit

    Automatic emotion recognition from multimodal data : facial expressions and physiological signals


  • Résumé

    This thesis presents a generic method for automatic recognition of emotions from a bimodal system based on facial expressions and physiological signals. This data processing approach leads to better extraction of information and is more reliable than single modality. The proposed algorithm for facial expression recognition is based on the distance variation of facial muscles from the neutral state and on the classification by means of Support Vector Machines (SVM). And the emotion recognition from physiological signals is based on the classification of statistical parameters by the same classifier. In order to have a more reliable recognition system, we have combined the facial expressions and physiological signals. The direct combination of such information is not trivial giving the differences of characteristics (such as frequency, amplitude, variation, and dimensionality). To remedy this, we have merged the information at different levels of implementation. At feature-level fusion, we have tested the mutual information approach for selecting the most relevant and principal component analysis to reduce their dimensionality. For decision-level fusion we have implemented two methods; the first based on voting process and another based on dynamic Bayesian networks. The optimal results were obtained with the fusion of features based on Principal Component Analysis. These methods have been tested on a database developed in our laboratory from healthy subjects and inducing with IAPS pictures. A self-assessment step has been applied to all subjects in order to improve the annotation of images used for induction. The obtained results have shown good performance even in presence of variability among individuals and the emotional state variability for several days


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.