Contribution à la modélisation du magnétisme statique et dynamique pour le génie électrique

par Romain Marion

Thèse de doctorat en Génie électrique

Sous la direction de Laurent Krähenbühl et de Marie-Ange Raulet.

Soutenue le 13-12-2010

à Lyon 1 , dans le cadre de École Doctorale Electronique, Electrotechnique, Automatique (Lyon) , en partenariat avec Laboratoire AMPERE (Ecully, Rhône) (laboratoire) .

Le président du jury était Afef Kedous-Lebouc.

Le jury était composé de Noël Burais, Hervé Fraisse, Nelson Sadowski.

Les rapporteurs étaient Patrick Dular.


  • Résumé

    De nos jours, la modélisation numérique constitue un outil indispensable pour le prototypage de convertisseurs électromagnétiques. Les matériaux magnétiques jouent un rôle essentiel dans la conversion de l’énergie, il est donc nécessaire de maîtriser leur comportement et leur représentation. L’objectif de ce travail s’inscrit dans ce cadre et s’attache à élaborer des lois réalistes de comportement de matériaux afin de les inclure dans des simulateurs de circuits. Concernant le comportement statique, le modèle de Jiles-Atherton a été implémenté puis adapté, simplifié et modifié afin d’en améliorer la précision et l’implémentation. La modélisation dynamique du matériau a été effectuée grâce au modèle DWM élaboré au laboratoire Ampère. Ce modèle intègre les effets dynamiques excédentaires grâce à une loi « dynamique de matériau » implémentée au sein de l’équation de diffusion magnétique. Ce modèle a été ensuite homogénéisé afin d’en améliorer son implémentation future dans un simulateur de circuit. Chacun des différents modèles a été testé et validé sur plusieurs échantillons.

  • Titre traduit

    Contribution of static and dynamic magnetism modelings for electrical engineering


  • Résumé

    Nowadays, numerical modeling is an indispensable tool for the prototyping of electromagnetic converters. Magnetic materials play an essential role into the energy conversion so it is necessary to control their behavior as well as their modeling. The objective of this work is to develop realistic laws of material behavior for circuit simulators use. Regarding the static behavior, the Jiles-Atherton model has been implemented and adapted, simplified and modified to improve accuracy and implementation. Dynamic modeling of the material was performed using the model DWM developed into the Ampere laboratory. This model incorporates the excedentary dynamic effects thanks to a "dynamical material law" implemented into the magnetic diffusion equation. Then this model was homogenized to improve its future implementation in a circuit simulator. Each of the different models has been tested and validated on several samples.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.