Simulation numérique du comportement thermomécanique de systèmes multicouches : application au cas du système barrière thermique

par Maryam Ranjbar-Far

Thèse de doctorat en Procédés et Matériaux Céramiques

Sous la direction de Joseph Absi et de Gilles Mariaux.

Soutenue en 2010

à Limoges , en partenariat avec Université de Limoges. Faculté des sciences et techniques (autre partenaire) .


  • Résumé

    Les barrières thermiques obtenues par procédé de projection plasmasont largement utilisées pour prolonger la durée de vie des composants de la turbine. En raison de la faible conductivité thermique de la couche céramique, la température du substrat peut diminuer de quelques centaines de degrés. Un nouveau modèle par éléments finis a été développé pour évaluer les contraintes induites par le cyclage thermique et le développement des fissures dans un système barrière thermique obtenue par procédé de projection plasma. Un calcul thermomécanique a été réalisé en utilisant une distribution de température non homogène et prend en compte les effets des contraintes résiduelles issues du procédé d’élaboration, les propriétés thermiques et mécaniques, la morphologie de l’interface, l'oxydation et la déformation par fluage sur les contraintes locales qui sont responsables de la propagation des micro-fissures au cours du refroidissement, en particulier, près de l'interface métal/céramique. La propagation de fissures dans le système est simulée en fonction de la morphologie d'interface et de l'épaisseur de la couche d’oxyde, grâce à l'outil de contact "Debond" présent dans le code par éléments finis ABAQUS. Les résultats montrent que le système ayant une interface sinusoïdale uniforme supporte des contraintes plus élevés que celles supportées par un système à interface non-uniforme. En outre, afin de prolonger la durée de vie et d'améliorer la fiabilité des systèmes barrières thermiques, nous devons contrôler la croissance de la couche d'oxyde.

  • Titre traduit

    Numerical simulation of thermo-mechanical behavior of the multi-layers system : application in the thermal barrier system


  • Résumé

    Air plasma sprayed thermal barrier coatings protection is widely used to prolong the lifetime of turbine components. Due to the low thermal conductivity of the top-coat layer, the substrate temperature can decrease by some hundred degrees. A finite element model is developed to evaluate the stresses induced by the thermal cycling and crack development in a typical plasma sprayed thermal barrier coatings system. A new thermo-mechanical model has been designed to function using a non-homogenous temperature distribution andtakes into account the effects of the residual stress generated due to coating process, the thermal and mechanical properties, the morphology of the top-coat/bond-coat interface, oxidation and creep deformation on the local stresses that are responsible of the micro-crack propagation during cooling, especially near the metal/ceramic interface. Crack propagation at the system is simulated as function of interface morphology and oxidation thickness, thanks tothe contact tool “Debond” present in the ABAQUS finite element code. The results show that the system having homogenous and uniform interface supports well the stress in comparison to the one having a non-uniform interface morphology of the interface. In addition, in order to extend the lifetime and to improve the reliability of TBC systems, we have to control the growth of the oxide layer.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (166 p.)
  • Annexes : Bibliog. p. [142]-149

Où se trouve cette thèse ?

  • Bibliothèque : Université de Limoges (Section Sciences et Techniques). Service Commun de la documentation.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.