Propriétés physico-chimiques, fonctionnelles et applicatives des éthers courts d’isosorbide

par Morgan Durand

Thèse de doctorat en Chimie

Sous la direction de Jean-Marie Aubry.


  • Résumé

    Depuis quelques années, une prise de conscience accrue des risques associés aux solvants a abouti à durcir la réglementation et à optimiser leur mise en œuvre. Cette évolution a entrainé un intérêt croissant pour les biosolvants, i.e. les solvants d’origine naturelle et respectueux des critères sanitaires et environnementaux. Dans ce contexte, l’isosorbide, un diol issu de la filière amidon par double déshydratation du sorbitol, constitue un synthon intéressant à partir duquel une grande variété de molécules ou de polymères peuvent être développés. Les diéthers courts d’isosorbide (≤ 5 carbones par chaine alkyle), bio-sourcés et liquides à température ambiante, présentent un intérêt potentiel comme solvants et ont donc été étudiés. Les monométhyle isosorbides (formes -endo et -exo) ont également été évalués puisqu’ils constituent l’impureté principale du Diméthyle Isosorbide commercial (DMI), le candidat le plus prometteur de cette famille de solvants. Les propriétés physicochimiques, fonctionnelles et applicatives nécessaires à la caractérisation et à l’utilisation de nouveaux solvants ont été déterminées : les propriétés thermo-physiques (pression de vapeur,enthalpie de vaporisation), optiques et électriques (indice de réfraction, constante diélectrique, moment dipolaire), fonctionnelles (viscosité, coefficient de partage, paramètres de Kamlet et Taft) ont ainsi été mesurées. Le profil hygiène, sécurité et environnement du DMI a été déterminé et comparé à des solvants usuels, permettant d’évaluer son caractère "vert". Le DMI étant miscible à l’eau en toutes proportions, les propriétés physicochimiques en solutions aqueuses ont également été étudiées et ont permis de mettre en évidence un phénomène d’auto-agrégation du DMI sur une large gamme de concentrations.Une procédure de type "solvent design" a ensuite été développée afin d’estimer le potentiel d’utilisation de ces solvants. Une nouvelle approche pour la classification des solvants a tout d’abord été proposée, basée exclusivement sur la structure moléculaire des solvants et dérivée de l’approche COSMO-RS ("COnductor-like Screening MOdel for Real Solvents") dans laquelle les solvants sont considérés dans leur état liquide. Cette approche a permis la classification de 152 solvants dans 10 classes distinctes sans nécessiter de données expérimentales. A partir de cette classification, la proximité inter-solvants a pu être quantitativement exprimée. La méthode a été appliquée au DMI et a permis de dégager un certain nombre d’applications potentielles qui ont été ensuite évaluées, parmi lesquelles l’utilisation du DMI comme fluxant pour bitumes, agent de coalescence pour peintures hydrodiluables, solvant pour le décapage de peintures, solvant pour le nettoyage d’encres d’imprimerie ou encore agent de couplage pour la formulation de détergents liquides.

  • Titre traduit

    Physicochemical, functional and applicative properties of short isosorbide ethers


  • Résumé

    In the last past years, an increasing awareness of the hazards linked to the use of solvents has strengthened the regulation and forced to optimize their use. This evolution entailed an increasing interest for bio-solvents, i.e. solvents from renewable materials and with good health and environmental properties. In this context, isosorbide, a diol obtained by the double deshydratation of sorbitol, might be valuable synthon for the design of a wide range of molecules and polymers. The short isosorbide diethers (_ 5 carbones per alkyl chain), as they are biosourced and liquid at ambient temperature, are potentialy promising solvents, that is why they have been studied. The monomethyl isosorbides (-endo et -exo forms) have also been evaluated, as they are the main impurities of the commercial dimethyl isosorbide (DMI), the most promising compound of this solvents family. The physicochemical, functional and applicative properties that are necessary to the characterization and the use of new solvents have been assessed : the thermo-physical properties (vapor pressure, vaporization enthalpy), the optical and electrical properties (refractive index, dielectric constant, dipole moment), the functional properties (viscosity, partition coefficient, Kamlet et Taft solvatochromic parameters) have been measured. The environmental, health and safety profile of DMI has been determined and compared to common solvents, allowing the evaluation of its "greenness". As DMI is fully miscible with water, its physicochemical properties in aqueous solutions have been studied as well, and have enlightened a self-aggregation of DMI within a large concentration range.A solvent design process has then been developped in order to estimate the potential use of these new solvents. A novel approach for the classification of solvents has been proposed, based solely on the solvent molecular structure and relying on the "COnductor-like Screening MOdel for Real Solvents" (COSMO-RS) in which solvents are considered in their liquid state. This approach has allowed the classification of 152 solvents into 10 classes without requiring the knowledge of any experimental data. The approach has been applied to DMI and allowed to find some potential applications that have been evaluated, among which the use of DMI as fluxing agent for bitumen composition, coalescing agent for water-borne paints, solvent for paint strippers, solvent for ink removal, or coupling agent for the formulation of liquid detergents.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.