Méthodes Bayésiennes pour le démélange d'images hyperspectrales

par Olivier Eches

Thèse de doctorat en Signal, Image, Acoustique et Optimisation

Sous la direction de Jean-Yves Tourneret et de Nicolas Dobigeon.

Soutenue le 14-10-2010

à Toulouse, INPT .


  • Résumé

    L’imagerie hyperspectrale est très largement employée en télédétection pour diverses applications, dans le domaine civil comme dans le domaine militaire. Une image hyperspectrale est le résultat de l’acquisition d’une seule scène observée dans plusieurs longueurs d’ondes. Par conséquent, chacun des pixels constituant cette image est représenté par un vecteur de mesures (généralement des réflectances) appelé spectre. Une étape majeure dans l’analyse des données hyperspectrales consiste à identifier les composants macroscopiques (signatures) présents dans la région observée et leurs proportions correspondantes (abondances). Les dernières techniques développées pour ces analyses ne modélisent pas correctement ces images. En effet, habituellement ces techniques supposent l’existence de pixels purs dans l’image, c’est-à-dire des pixels constitué d’un seul matériau pur. Or, un pixel est rarement constitué d’éléments purs distincts l’un de l’autre. Ainsi, les estimations basées sur ces modèles peuvent tout à fait s’avérer bien loin de la réalité. Le but de cette étude est de proposer de nouveaux algorithmes d’estimation à l’aide d’un modèle plus adapté aux propriétés intrinsèques des images hyperspectrales. Les paramètres inconnus du modèle sont ainsi déduits dans un cadre Bayésien. L’utilisation de méthodes de Monte Carlo par Chaînes de Markov (MCMC) permet de surmonter les difficultés liées aux calculs complexes de ces méthodes d’estimation.

  • Titre traduit

    Bayesian methods for hyperspectral image unmixing


  • Résumé

    Hyperspectral imagery has been widely used in remote sensing for various civilian and military applications. A hyperspectral image is acquired when a same scene is observed at different wavelengths. Consequently, each pixel of such image is represented as a vector of measurements (reflectances) called spectrum. One major step in the analysis of hyperspectral data consists of identifying the macroscopic components (signatures) that are present in the sensored scene and the corresponding proportions (concentrations). The latest techniques developed for this analysis do not properly model these images. Indeed, these techniques usually assume the existence of pure pixels in the image, i.e. pixels containing a single pure material. However, a pixel is rarely composed of pure spectrally elements, distinct from each other. Thus, such models could lead to weak estimation performance. The aim of this thesis is to propose new estimation algorithms with the help of a model that is better suited to the intrinsic properties of hyperspectral images. The unknown model parameters are then infered within a Bayesian framework. The use of Markov Chain Monte Carlo (MCMC) methods allows one to overcome the difficulties related to the computational complexity of these inference methods.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national polytechnique. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.