Caracterisation des suspensions par des methodes optiques. modelisation par reseaux de neurones

par Juilien Bongono

Thèse de doctorat en Sciences et Génie des Matériaux

Sous la direction de Pierre Gaudon.

Soutenue le 03-09-2010

à Saint-Etienne, EMSE , dans le cadre de ED SIS 488 , en partenariat avec École nationale supérieure des techniques industrielles et des mines (Alès) (laboratoire) .

Le président du jury était Frédéric Gruy.

Le jury était composé de Yves Holl, Nathalie Azema, Anne Johannet.

Les rapporteurs étaient Bernard Cuq, Philippe Blanchart.


  • Résumé

    La sédimentation des suspensions aqueuses de particules minérales microniques, polydisperses et concentrées a été analysée à l’aide du Turbiscan MA 2000 fondé sur la diffusion multiple de la lumière, en vue d’établir la procédure qui permet de déceler la présence d’une morphologie fractale, puis de déduire les règles de comportements des suspensions fractales par la modélisation avec les réseaux de neurones. Le domaine des interactions interparticulaires physicochimiques (0 à 10% volumique en solide) a été privilégié.La méthodologie de détermination de la structure multifractale des agglomérats et de la suspension a été proposée. La modification structurale des agglomérats qui est à l’origine de comportements non linéaires des suspensions et qui dépend des propriétés cohésives des particules primaires, est interprétée par la variation de la mobilité électrophorétique des particules en suspension. Une approche d’estimation de ces modifications structurales par les réseaux de neurones, à travers la dimension fractale, a été présentée. Les limites du modèle à assimiler ces comportements particuliers ont été expliquées comme résultant du faible nombre d’exemples et de la grande variabilité des mesures aux faibles fractions volumiques en solide.

  • Titre traduit

    Characterization of suspensions using optical methods. neural networks modeling.


  • Résumé

    The sedimentation of aqueous suspensions of micron-sized mineral particles, polydisperses and concentrated, was analyzed using the Turbiscan MA 2000 based on the multiple light scattering in order to establish the procedure to detect the presence of a fractal morphology, and then to deduce the set of laws of fractal behavior of suspensions by modeling with neural networks. The methodology for determining the multifractal structure of agglomerates and the suspension was proposed. The structural modifications of the agglomerates at the origin of the nonlinear behavior of suspensions and which depends on cohesive properties of primary particles, is interpreted by the change of the electrophoretic mobility of suspended particles. The estimation by neural networks of these structural changes, through the fractal dimension has been presented. The limits of the model to learn these specific behaviors have been explained as resulting from the low number of examples and the great variability in the measurements at low volume fractions of solid.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole nationale supérieure des mines. Centre de documentation et d'information.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.