Combinatorial optimization and Markov decision process for planning MRI examinations

par Na Geng

Thèse de doctorat en Génie industriel

Sous la direction de Xiaolan Xie.

Soutenue le 29-04-2010

à Saint-Etienne, EMSE en cotutelle avec Shanghai Jiao Tong University , dans le cadre de École doctorale Sciences Ingénierie Santé (Saint-Etienne) , en partenariat avec Département Génie Industriel Hospitalier (laboratoire) et de Centre Ingénierie et Santé (laboratoire) .

Le président du jury était Alexandre Dolgui.

Le jury était composé de Xiaobo Zhao, Zhibin Jiang.

Les rapporteurs étaient Maria Di Mascolo, Liming Liu.

  • Titre traduit

    Planification des examens IRM à l'aide de processus de décision markovien et optimisation combinatoire


  • Résumé

    Cette thèse propose un nouveau processus de réservation d'examens IRM (Imagerie par Résonance Magnétique) afin de réduire les temps d’attente d’examens d'imagerie des patients atteint d'un AVC (Accident Vasculaire Cérébral) soignés dans une unité neurovasculaire. Le service d’imagerie réserve chaque semaine pour l'unité neurovasculaire un nombre donné de créneaux d'examens IRM appelés CTS afin d’assurer un diagnostic rapide aux patients. L'unité neurovasculaire garde la possibilité de réservations régulières appelées RTS pour pallier les variations des flux de patients.Nous donnons d'abord une formulation mathématique du problème d'optimisation pour déterminer le nombre et la répartition des créneaux CTS appelée contrat et une politique d'affectation des patients entre les créneaux CTS ou les réservations RTS. L'objectif est de trouver le meilleur compromis entre le délai d'examens et le nombre de créneaux CTS non utilisés. Pour un contrat donné, nous avons mis en évidence les propriétés et la forme des politiques d'affectation optimales à l'aide d'une approche de processus de décision markovien à coût moyen et coût actualisé. Le contrat est ensuite déterminé par une approche d'approximation Monté Carlo et amélioré par des recherches locales. Les expérimentations numériques montrent que la nouvelle méthode de réservation permet de réduire de manière importante les délais d'examens au prix des créneaux inutilisés.Afin de réduire le nombre de CTS inutilisé, nous explorons ensuite la possibilité d’annuler des créneaux CTS un ou deux jours en avance. Une approche de processus de décision markovien est de nouveau utilisée pour prouver les propriétés et la forme de la politique optimale d’annulation. Les expérimentations numériques montrent que l'annulation avancée des créneaux CTS permet de réduire de manière importante les créneaux CTS inutilisés avec une augmentation légère des délais d'attente.


  • Résumé

    This research is motivated by our collaborations with a large French university teaching hospital in order to reduce the Length of Stay (LoS) of stroke patients treated in the neurovascular department. Quick diagnosis is critical for stroke patients but relies on expensive and heavily used imaging facilities such as MRI (Magnetic Resonance Imaging) scanners. Therefore, it is very important for the neurovascular department to reduce the patient LoS by reducing their waiting time of imaging examinations. From the neurovascular department perspective, this thesis proposes a new MRI examinations reservation process in order to reduce patient waiting times without degrading the utilization of MRI. The service provider, i.e., the imaging department, reserves each week a certain number of appropriately distributed contracted time slots (CTS) for the neurovascular department to ensure quick MRI examination of stroke patients. In addition to CTS, it is still possible for stroke patients to get MRI time slots through regular reservation (RTS). This thesis first proposes a stochastic programming model to simultaneously determine the contract decision, i.e., the number of CTS and its distribution, and the patient assignment policy to assign patients to either CTS or RTS. To solve this problem, structure properties of the optimal patient assignment policy for a given contract are proved by an average cost Markov decision process (MDP) approach. The contract is determined by a Monte Carlo approximation approach and then improved by local search. Computational experiments show that the proposed algorithms can efficiently solve the model. The new reservation process greatly reduces the average waiting time of stroke patients. At the same time, some CTS cannot be used for the lack of patients.To reduce the unused CTS, we further explore the possibility of the advance cancellation of CTS. Structure properties of optimal control policies for one-day and two-day advance cancellation are established separately via an average-cost MDP approach with appropriate modeling and advanced convexity concepts used in control of queueing systems. Computational experiments show that appropriate advance cancellations of CTS greatly reduce the unused CTS with nearly the same waiting times.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole nationale supérieure des mines. Centre de documentation et d'information.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.