Tabulation de la cinétique chimique pour la modélisation et la simulation de la combustion turbulente

par Ronan Vicquelin

Thèse de doctorat en combustion

Sous la direction de Olivier Gicquel et de Benoît Fiorina.

Soutenue le 17-06-2010

à Châtenay-Malabry, Ecole centrale de Paris , dans le cadre de Sciences pour l'ingénieur , en partenariat avec Laboratoire Énergétique Moléculaire et Macroscopique, Combustion (laboratoire) .

Le président du jury était Christophe Bailly.

Le jury était composé de Olivier Gicquel, Michel Champion, Thierry Poinsot, Benoît Fiorina.


  • Résumé

    Cette thèse se situe dans le cadre de la simulation numérique de la combustion turbulente à l’aide de méthodes de tabulation de la cinétique chimique. En approximant la structure fine des flammes turbulentes, ces méthodes prennent en compte des effets fins de cinétique chimique pour un faible coup dans les calculs numériques. Ceci permet de prédire les champs de température et d’espèces chimiques incluant les polluants. Le champ d’application de la chimie tabulée a d’abord été réservé à la simulation des écoulements moyens (RANS) dans une hypothèse de faible nombre de Mach pour une combustion dite "conventionnelle". Cependant, le développement actuel de nouvelles technologies de combustion ainsi que celui de modèles numériques plus avancés que les approches RANS nécessite d’étendre ce champ d’application. Les travaux de cette thèse ont mené au développement de nouveaux modèles de chimie tabulée afin de répondre à ces nouvelles exigences. L’émergence de nouvelles technologies comme la combustion sans flamme nécessite le développement de modèles dédiés. Ce mode de combustion présente en effet des structures de flamme mixtes. C’est pourquoi un modèle de tabulation de la cinétique chimique nommé UTaC (Unsteady flamelets Tabulated Chemistry) est proposé pour prédire la combustion diluée à haute température qui caractérise la combustion sans flamme. Le modèle est basé sur la tabulation de solutions instationnaires de flammelettes non-prémelangées qui s’auto-allument. Les pertes thermiques et la dilution variable des gaz brûlés sont négligés dans le cadre de cette thèse par soucis de simplification et de clarté de la validation du modèle. Le modèle est appliqué au cas d’un jet de combustible dilué dans un environnement de gaz vicié qui favorise l’auto-allumage comme moyen de stabilisation d’une flamme liftée. Plusieurs simulations RANS sont réalisées en faisant varier le combustible utilisé. Enfin, une simulation aux grandes échelles (LES) est aussi conduite pour le mélange méthane/air. Plusieurs codes numériques dédiés à la LES sont basés sur une formulation compressible des équations de Navier-Stokes. Cependant les méthodes de tabulation ne permettent pas directement de prendre en compte les effets acoustiques. Un modèle appelé TTC (Tabulated Thermo-chemistry for Compressible flows) a été créé afin d’introduire les méthodes de chimie tabulée dans les codes numériques compressibles. Pour cela, le calcul de la température est reformulé ainsi que le traitement des conditions aux limites à l’aide d’ondes caractéristiques. Enfin, l’application de modèle RANS de tabulation de la cinétique chimique à la LES est souvent faite sans tenir compte des spécificités de la simulation aux grandes échelles. Ainsi, les fonctions de densité de probabilités de type ß qui traduisent l’interaction de la combustion avec la turbulence en RANS sont utilisées telles quelles en LES. Nous montrerons que cette hypothèse est mauvaise car elle ne conserve pas l’intégrale du terme source dans une flamme prémélangée. Un nouveau modèle de chimie tabulée nommé F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) est alors développé spécifiquement pour la simulation aux grandes échelles de la combustion parfaitement prémélangée. Le modèle est basé sur le filtrage de flammes laminaires de prémélange mono-dimensionelles.

  • Titre traduit

    Tabulated chemistry for turbulent combustion modeling and simulation


  • Résumé

    The thesis subject is located in the domain of numerical simulation of turbulent combustion through tabulated chemistry methods. These methods allow to include detailed chemistry effects at low cost in numerical simulation by approximating the fine scales structure of turbulent flames. Prediction of temperature and chemical species including pollutants becomes then possible. Tabulated chemistry models were first dedicated to low Mach-number RANS approaches for "conventional" combustion applications. However, the current uprising of new combustion configurations and of more precise numerical modeling than RANS approach requires to widen these range of applications. For that purpose, this thesis led to the development of new tabulated chemistry models. Flameless combustion is one of these new combustion technology that requires dedicated models. Indeed, complex flame structures are encountered in this combustion mode. That is why a tabulated chemistry model called UTaC (Unsteady flamelets Tabulated Chemistry) is derived to simulate high temperature diluted combustion which characterizes flameless combustion. The model lies on the tabulation of laminar unsteady non-premixed flamelets that auto-ignite. Heat losses and variation of dilution with burnt gases are neglected in the topic of this thesis for brevity and simplification of the model validation. The investigated configuration is a fuel jet diluted in a vitiated coflow. The hot coflow promotes auto-ignition in the lifted flame stabilization mechanism. Several RANS computations are performed by changing the fuel composition. Finally, a Large Eddy Simulation (LES) is also realized using a methane/air mixture as the impinging fuel stream. Several numerical codes for LES use a fully compressible formulation of Navier-Stokes equations. However, tabulated chemistry techniques do not take into account acoustic perturbations. A model called TTC (Tabulated Thermo-chemistry for Compressible flows) formalism is therefore developed in order to include tabulated chemistry in compressible CFD codes. TTC formalism consists in reformulating both temperature computation inside the numerical code and the characteristic boundary treatment. Finally, application of tabulated chemistry model to LES is usually done by a straightforward derivation from its RANS version without taking into account LES requirements. Indeed, ß-probability density functions which accounts for turbulence-chemistry interaction in RANS are used in LES although this technique does not conserve the source terms integral in premixed flames. A new model, F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation), is then derived specifically for LES of perfectly premixed combustion. This model is based on filtering of 1D laminar premixed flamelets.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.