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- 2010 -



Analyse, Structure et Organisation des
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Analysis, Structure and Organization of Complex Networks

Abstract :

Network science has emerged as a fundamental field of study to model many physical
and real world systems around us. The discovery of small world and scale free properties
of these real world networks has revolutionized the way we study, analyze, model and
process these networks. In this thesis, we are interested in the study of networks having
these properties often termed as complex networks. In our opinion, research conducted in
this field can be grouped into four categories, Analysis, Structure, Processes-Organization
and Visualization. We address problems pertaining to each of these categories throughout
this thesis.

The initial chapters present an introduction and the necessary background knowledge
required for readers. Chapters (3, 4, 5, 6, 7) all introduce a specific problem leading up
to its solution. In Chapter 3, we present a visual analytics method to analyze complex
networks. Based on this method, we also introduce a new metric to calculate the presence
of densely connected vertices in networks. Chapter 4 deals with models to generate arti-
ficial networks having small world and scale free properties. We propose a new model to
generate networks with these properties along with the presence of community structures.
Extending from the results of our analysis in Chapter 3, we introduce a fast agglomera-
tive clustering algorithm in Chapter 5. In Chapter 6, we address the issue of visualizing
these complex networks through a system which combines simplification, clustering and
dedicated layout algorithms. Finally we address the issue of evaluating the quality of
clusters for complex networks that do not have densely connected vertices in Chapter 7.
Each chapter is followed by a mini-conclusion and further research prospects. In the end,
we summarize our results and conclude the thesis by presenting some research directions
based on our findings.

Keywords : Network Science, Graph and Network Analysis, Visual Analytics, Information
Visualization, Network Metrics, Clustering Algorithms, Evaluating Cluster Quality
Field : Computer Science
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Analyse, Structure et Organisation des Réseaux Complexes

Résumé :

La Science des Réseaux est apparue comme un domaine d’étude fondamental pour
modéliser un grand nombre de systèmes synthetiques ou du monde réel. La découverte
du graphe petit monde et du graphe sans échelle dans ces réseaux a révolutionné la façon
d’étudier, d’analyser, de modéliser et de traiter ces réseaux. Dans cette thèse, nous nous
intéressons à l’étude des réseaux ayant ces propriétés et souvent qualifiés de réseaux com-
plexes. À notre avis, les recherches menées dans ce domaine peuvent être regroupées
en quatre catégories: l’analyse, la structure, le processus/organisation et la visualisation.
Nous abordons des problèmes relatifs à chacune de ces catégories tout au long de cette
thèse.

Les premiers chapitres introduisent l’état de l’art nécessaire aux lecteurs. Les chapitres
(3, 4, 5, 6, 7) abordent chacun un problème spécifique auquel nous proposons une solution.
Dans le chapitre 3, nous présentons une méthode de visualisation analytique pour analyser
les réseaux complexes. En s’appuyant sur cette méthode, nous introduisons une nouvelle
métrique pour déterminer la présence de sommets largement connectés. Nous détaillons
dans le chapitre 4 un ensemble de modèles pour générer des réseaux artificiels ayant les
propriétés petit monde et sans échelle. Nous proposons un nouveau modèle générant
des réseaux de ce type et qui contiennent, de plus, des structures communautaires. En
extension des résultats d’analyse obtenus au chapitre 3, nous introduisons un algorithme
de clustering agglomératif dans le chapitre 5. Dans le chapitre 6, nous abordons la question
de la visualisation de ces réseaux complexes grâce à un système qui combine simplification
et clustering avec des algorithmes de mise en page dédiée. Nous abordons enfin dans le
chapitre 7 la question de l’évaluation de la qualité des clusters pour les réseaux complexes
qui n’ont pas de sommets largement connectés. Nous concluons chaque chapitre par des
perspectives de recherches dédiées. Enfin, nous résumons nos résultats et concluons cette
thèse en proposant quelques futurs axes de recherches basés sur nos découvertes.

Mots-clef : Science de Réseaux, Analyse des Graphes et Réseaux, Analytique Visuel,
Visualisation d’Information, Métriques des Réseaux, Algorithme de Clustering, Évaluation
de qualité de Clusters
Discipline : Informatique
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Chapter 1

Introduction

Most real world systems can be modeled as networks where common examples include
social networks, transportation systems and biological networks. A network is an abstract
representation to model pairwise relations between objects from a certain collection. In
mathematics literature, we use the term graph to represent the same concept. These ob-
jects are represented by circles called nodes (or vertices) and their relations are represented
by lines called edges. From this simple mathematical structure, many complex systems
from the real world can be represented intuitively. As an example, consider the image in
Figure 1 where nodes represent people and two people are connected by an edge if they
know each other. This simple diagram represents a social network of people. This network
representation has gained a lot of popularity in recent times, mostly due to its simplicity,
intuitive and inherent graphical representation.

Figure 1: A network of people represented by nodes and edges.

1.1 Historical Background

The modeling of real world systems as networks or graphs, gave birth to an emerging field
of research known as Network Science. The basis of this field dates back to the year 1735,
where Leonhard Euler’s solution to the famous Königberg Bridge problem is considered
to be the first theorem in the field of graph theory and network science. The problem is
defined around the city of Königberg and its seven bridges. The city is built around the
River Pregel where it joins another river. An island named Kniephof is in the middle of
where the two rivers join. There are seven bridges that join the different parts of the city
on both sides of the rivers and the island (see Figure 2). People tried to find a way to
walk all seven bridges without crossing a bridge twice, but no one could find a way to do
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Chapter 1. Introduction

Figure 2: The city of Königberg with the seven bridges marked in red color.

it. The problem came to the attention of a swiss mathematician named Leonhard Euler.
Euler simplified the bridge problem by representing each land mass as a point and each
bridge as a line. He reasoned that anyone standing on land would have to have a way
to get on and off. Thus each land mass would need an even number of bridges. But in
Königberg, each land mass had an odd number of bridges. This was why all seven bridges
could not be crossed without crossing one more than once.

This simple explanation laid the foundations of graph theory, which has become a fun-
damental pillar of discrete mathematics. Graph theory has been used independently in a
number of domains like Sociology, Chemistry, Biology, Physics and Geography. Recently,
efforts have been made to group together theories, principles, algorithms and measure-
ments from these different fields under the umbrella of the new and emerging field called
Network Science.

1.2 Network Science

The term ‘network’ has different significations for people from different walks of life. The
term is used extensively to represent systems such as social networks [169, 148], elec-
trical circuits [163], economic networks [98], chemical compounds [42], transportation
systems [74, 144], epidemic spreading [137], metabolic pathways [91, 20], food web [121],
Internet [36], world wide web [1] and so on. Although seemingly diverse, these fields
have strong common methodological foundations and share methods to analyze, model,
understand and organize these networks.

Watts defines network science as the ‘science of the real world - the world of people,
friendships, rumors, disease, fads, firms and financial crises’ [171]. The National Research
Council (United States), defines network science as ‘the study of network representations
of physical, biological, and social phenomena leading to predictive models of these phenom-
ena’ [38]. From a computer science perspective, Ulrik Brandes defines Network Analysis
as applied graph theory [28]. We would like to extend this definition of network analysis
to network science, again from a computer science perspective as ‘the study of theory,
methods and algorithms applicable to graph models representing connected systems of
the real world’.

Researchers in the field of network science try to establish methodologies originating
from various domains to acquire knowledge and understand the behavior of these networks.
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The question is, how can this knowledge be applied and where? An early example comes
from the field of sociology and the development of the sociogram in 1933, where Jacob
Moreno, a psychologist, used a network to represent how the interpersonal structure of a
group of people looks. He used the example of a group of elementary school students where
boys were friends of boys and girls were friends of girls except for one boy who said he
liked a single girl. This representation of sociogram has been used in social networks ever
since and has found many useful applications to understand and analyze social networks.

Moving on from social networks to a completely different domain of electric supply
network, we consider the example borrowed from the article of Wang and Chen [168].
A famous cascading series of failures in power lines took place in August 1996, which
lead to blackouts in 11 US states and 2 Canadian provinces. This incident left about 7
million customers without power for up to 16 hours, and cost billions of dollars in total
damage. An analysis of this type of network can help identify break points and put in
place a protection strategy to avoid further instances of power failure of this magnitude
by proposing alternate routing paths.

In the examples briefly described above, it is important to understand that these real
world systems can easily be modeled as graphs. The simple mathematical model of a
graph presents a robust and flexible platform to build models for complex systems with a
large number of attributes and varying relationships. Recent developments in computer
technology has prompted a huge scaling factor in networks. Nowadays, networks with
hundreds of thousands of nodes and edges are easily constructed for various domains.
This progress has played the role of a catalyst to attract researchers to study various
properties, characteristics and measures for these networks, and hence has led towards the
development of the research domain called network science.

Traditionally the study of networks has been considered as a sub-domain of graph
theory. Before 1950s, regular graphs were studied extensively [143, 129], but since then,
most large scale networks with no apparent design principle were described as random
graphs introduced by two Hungarian mathematicians Paul Erdős and Alfréd Rényi [54, 55].
According to the Erdős-Rényi model, we start with n nodes and connect every pair of nodes
with probability p, creating a graph with approximately p[n(n − 1)/2] edges distributed
randomly. This model has been the corner stone for many scientific discoveries and notable
results [14]. Although random graphs occur readily in the real world, most systems exhibit
non-random characteristics. As researchers tried to develop new concepts and measures for
in-depth analysis and understanding of networks, three of these properties have attracted
lots of attention. We discuss these properties in the following section.

1.3 Properties of Networks

Motivated by several observations, inherent by construction or evident due to underlying
topology, three concepts have attracted lots of attention in the research of real world
networks and to some extent, revolutionized the study of networks as it stands today.
These concepts are the Small World Effect, Clustering Coefficient and Degree Distribution.
We discuss these concepts below:

Small World Effect or Average Path Length
In the late 1960s, an American social psychologist, Stanley Milgram conducted a set of
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experiments which are referred to as, the small world experiment [118, 159]. The idea was
to resolve the question of the number of degrees of separation in actual social networks.
Milgram gave 300 letters to participants living in the cities of United States, Boston and
Omaha, along with instructions to deliver them to one particular target person by mailing
the letter to an acquaintance they considered to be closer to the target. That person then
got the same set of instructions, which therefore, set up a chain. Milgram found that
the average path length of these chains was about six. The research was groundbreaking
in that it suggested that human society is a small world type network characterized by
short path lengths. The experiments are often associated with the phrase ‘six degrees of
separation’, although Milgram did not use this term himself, instead it was John Gaure
in 1990 who coined this term [72]. In literature, this concept is often referred to as the
average path length of a network. It gives an idea of, on average, how far apart any two
nodes lie in a network.

Formally, we can define the average path length as the mean geodesic (shortest) dis-
tance between node pairs in a network. Consider this distance be represented by l for a
network, mathematically we can define l by the following equation:

l =
1

n ∗ (n− 1)

∑
i,j

dij

where dij is the geodesic distance from node i to node j and n is the total number of
nodes in the network. We assume that the distance between two nodes is 0 if they cannot
be reached by one another and the distance of a node to itself is also 0.

For large size networks, the typical geodesic distance between any two nodes scales
as the logarithm of the number of nodes, suggesting that the average distance between
any two nodes in the network is quite low. Erdős and Rényi have shown that the average
distance in random graphs, also scales as the logarithm of the number of nodes, so to
speak, random graphs have also the small world effect [143].

This information can be quite useful in different networks. For example, studying how
to control and take precautions against an epidemic spread in social networks [122, 180],
designing marketing strategies and targeting customers for the launch and dissemination of
new products and technologies [45], and to more technical applications such as estimating
the number of hops required for an information packet to get from one computer to another
on the Internet [185].

Clustering Coefficient or Transitivity
Another important characteristic of real world networks is the high average clustering

coefficient of nodes [170]. This concept is sometimes referred to as Transitivity [129], or
the fraction of transitive triples in a network [169]. This is done so to avoid confusion
from the concept of Community Structures or Clusters [28, 68] which will be discussed
extensively in the chapters to follow.

Coming back to transitivity, the concept is very well known in social networks and
can be described as the friend of your friend is likely to be your friend. The roots of this
idea come from the work of Georg Simmel [150] who introduced the concept of triads as
a fundamental structure for social networks. In fact, the smallest and most elementary
social unit, a dyad is a social group composed of two members while a triad is a social
group composed of three members. Groups of larger size are also possible but since a
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variety of relationships can form in them, they are less stable [150] and often less studied
in sociology. Although high clustering coefficients were first observed in social networks,
many other networks have shown this tendency such as the world wide web [1], transport
networks [149] and metabolic networks [20, 165].

To quantify the clustering coefficient, two definitions exist in the literature. They can
be classified as global clustering coefficient and local clustering coefficient. The global
clustering coefficient measures the fraction of triples that have their third edge filled in,
to complete the triangle [132] and is calculated by the following equation:

Cglobal =
3 ∗ number of triangles in the network
number of connected triples of vertices

The factor of three in the numerator accounts for the fact that each triangle contributes
to three triples and ensures that the value lies in the range [0,1]. In simple terms, the
global clustering coefficient is the mean probability that two vertices that are network
neighbors of the same other vertex will themselves be neighbors. This value gives an
overall picture about the presence of triads in a network.

The definition of local clustering coefficient was given by Watts and Strogatz [170] and
is calculated for each vertex in a network. The local clustering coefficient for a node n,
having kn edges which connects it to kn neighbors is given below:

Clocal(n) =
2 ∗ en

kn ∗ (kn − 1)

If the nearest neighbors of the original node were part of a clique, there would be
kn(kn−1)/2 edges between them. The ratio between the number of edges en that actually
exist between kn nodes and the total number kn(kn−1)/2 gives the value of the clustering
coefficient of node n. To calculate the clustering coefficient of the entire network, we take
the average for all nodes in the network.

The two definitions of clustering coefficient given above result in different values when
calculated for the same network. One tries to calculate the mean of ratio, and the other,
the ratio of the means respectively [129]. But the important concept here is that both of
them tries to capture the same notion, the presence of triads in a network. Throughout
this document, we use the second definition without differentiating between global and
local clustering coefficient as it is more widely accepted [73].

In a random graph, since the edges are distributed randomly, the presence of these
transitive triples or triads is rare, as compared to real world networks where usually high
clustering coefficients are observed. It is interesting to note that the presence of these triads
is a direct implication of how real world systems behave in the real world. The probability
that you are going to become friends with a person who has a common acquaintance is
quite high. This can be quite helpful in predicting the evolution of networks and generation
of new links between existing objects specially in social networks. An obvious example
comes from the scientific collaboration network of researchers. If a researcher say a, co-
authors two artifacts with researchers b and c separately, it is likely that their research
domain is the same and researchers b and c might end up collaborating as well. There are
a number of articles citing these collaboration networks such as [125, 127].
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Degree Distribution
The degree of a node refers to the number of connections a node has in the network.

Formally, we define pk to be the fraction of vertices in the network that have degree k.
The term pk also represents the probability that a vertex chosen uniformly at random has
degree k. A plot of pk for any given network can be formed by making a histogram of the
degrees of vertices. This histogram is the degree distribution for the network (see Figure 3
as example).

Generally, it was believed that the degree distribution in most networks follows a
Poisson distribution but in reality, real world networks have a highly skewed degree dis-
tribution following power-laws. Power-laws are expressions of the form y ∝ xγ , where γ
is a constant, x and y are the measures of interest [152].

One of the early works in this direction was carried out in the year 1925 by George
Udny Yule, a British statistician, who explained the power-law distribution of the number
of species per genus of flowering plants [182]. The process is sometimes called a Yule
process in his honor. Another notable work came years later on by Derek de Solla Price
in 1965 where he studied networks of citations between scientific papers [44]. The number
of citations they received had a heavy-tailed distribution following a Pareto distribution
or power law. In a later paper in 1976, Price also proposed a mechanism to explain the
occurrence of power laws in citation networks, which he called cumulative advantage [138].
Price was the first to apply the process to the growth of a network and explained how
networks evolve.

Recent interest in networks with power-law degree distribution started in 1999 with
the work by Barabási and colleagues at the University of Notre Dame who mapped the
topology of a portion of the Web [13], finding that some nodes, which they called hubs,
had many more connections than others and that the network as a whole had a power-law
distribution of the number of links connecting to a node. They coined the term scale-
free network to refer to these networks with the degree distribution following power law.
Barabási and Albert also proposed a mechanism to explain the appearance of the power-
law distribution, which they called preferential attachment [13], which is essentially the
same as that proposed by Price in 1976.

Another common term used to refer to this principle is ‘the rich get richer’, first
used by Robert H. Jackson, Counsel to the Internal Revenue Bureau, in a hearing of the
Senate Finance Committee in 1935 [87]. He tried to explain the economic system and the
inequalities in the distribution of wealth and the burden of taxation in the United States.
In terms of network theory, all these concepts refer to the idea that if a node has a high
degree, it has a higher probability to attract more connections and thus its connectivity
grows at a faster rate than other nodes with low connectivity.

In sociology, the ‘Matthew effect’ is a term which refers to the principle of rich get
richer. This term was coined by Robert K. Merton [115] to describe how, among other
things, eminent scientists will often get more credit than a comparatively unknown re-
searcher, even if their work is similar; it also means that credit will usually be given to
researchers who are already famous. For example, a prize will almost always be awarded
to the most senior researcher involved in a project, even if all the work was done by a
graduate student.

In a random graph, each edge is present or absent with equal probability, and hence
the degree distribution is, as mentioned earlier, Poisson in the limit of large graph size.
Real world networks are mostly found to be very unlike the random graph in their degree

6



1.4. Small World and Scale Free Networks

distributions. Far from having a Poisson distribution, the degrees of the vertices in most
networks are highly right skewed, meaning that their distribution has a long right tail.
Figure 3 shows the degree distribution of a network generated using the network generation
model of [13] for scale free networks. The histogram of the degree distribution clearly shows
the right skewed behavior with a long tail like structure.

Figure 3: A typical scale free degree distribution showing highly skewed behavior and
long-tail like structure. The graph was generated using the model of Barabasi and
Albert [13].

In terms of a network, this scale free behavior suggests that few nodes have a very
high number of connections and lots of nodes are connected to a few nodes only. This
information has quite practical implications in the design and study of networks. For
example, in a social network, these hubs (nodes with high degree) play an important role
to diffuse information as they are people having many social links [23]. Many marketing
and business strategies can be developed revolving around hubs, as these people have
many social contacts that can be used effectively to promote products and acquire business
collaborations.

1.4 Small World and Scale Free Networks

From these three measures, two important classes of networks emerge, Small World Net-
works and Scale Free Networks. A small world network as defined by Watts and Stro-
gatz [170], is a network with high clustering coefficient and small average path length.
A scale free network as defined by Barabási and Albert [13], is a network where the de-
gree distribution follows a power law. Models were proposed by respective researchers to
explain how networks with these properties appear in the real world.

Lets have a look at the small world model proposed by Watts and Strogatz. We start
with a ring of n vertices in which each vertex is connected to its k nearest neighbors, for a
given k. This forms a regular graph as shown in Figure 4(a). Then, each edge is rewired
with a given probability p by choosing randomly a new vertex to connect. In a regular
graph, since neighbors are connected to each other, the overall clustering coefficient is
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Figure 4: From a Regular network to a Random Network, where random rewiring of
few edges in a regular network produces a small world network with high clustering
coefficient and low average path length.

very high. On the other hand, the average path length is very low as vertices are only
connected to their neighbors. Randomly rewiring a few nodes introduces edges connecting
nodes lying at long distances, which in turn, reduces the overall average path length. Since
many vertices are connected to their neighbors, the overall clustering coefficient remains
high whereas the average path length is reduced, giving us the properties of a small world
network (see Figure 4(b)). If the process of random rewiring continues, we eventually
end up rewiring every node which results in a random graph as vertices no longer share
common neighbors. It is important to note that networks produced using this model do
not have scale free degree distribution. Since every vertex in the network initially has a
fix k degree, random rewiring of only a few vertices does not effect the overall behavior
of the degree distribution. More formal studies of this model have been conducted with
interesting results [50]. Other models have been proposed to produce networks with small
world properties without using this basic model such as [112, 73].

Barabási and Albert explained how scale free networks emerge in real world networks
through another model. To begin, there are n vertices and no edges connecting them. At
every time step t, a new vertex v with m edges is added to the network. These edges are
connected to existing vertices with the probability proportional to the degree of the nodes
in the network. Obviously, at the beginning, when there are no edges, the probability of
connection of all the vertices is the same. As the network grows, gradually few nodes begin
to have higher node degree and thus higher probability of connecting to newly introduced
nodes in the network. This preferential bias in the connectivity is termed as preferential
attachment as new nodes prefer to attach to high degree nodes. Mathematical results
for scale free graphs have been studied by several researchers such as [22, 23]. Alternate
models have been proposed to produce scale free degree distribution without using the
preferential attachment such as [34, 2].

Although these two classes have been introduced separately, most real world networks
belong to them at the same time. A more generic term, Complex Networks is used to refer
to networks belonging to both these classes, although, many researchers call networks as
complex when they are either small world only or scale free only. There is no precise
definition for a complex network but any network which is not regular, nor random and
has any characteristic behavior such as high clustering coefficient or right skewed degree
distribution can be termed as a complex network. In this thesis, we restrict ourselves to
networks with small world or scale free behavior, or both at the same time and we refer
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to them as complex networks throughout this study.

1.5 Complex Networks

As described previously, the ideas of small world and scale free properties date back to
18th and 19th century, they have been made popular recently with the works of Watts
and Strogatz in 1998 [170] and Barabási and Albert in 1999 [13]. A number of books, sur-
veys, reports and research articles have addressed issues revolving around these complex
networks. Although the study of complex networks has sound foundations from mathe-
matics and graph theory, the field itself is in its infancy, as more and more researchers
try to develop new theories and behaviors common to different kinds of networks, be it
biological, technological or social. Most of the early research work focuses on identifying
the small world and/or scale free behavior of networks from different domains.

One such study to analyze Internet networks was performed by Faloutsos et al. [58]
where they identify three power-laws for the topology of the Internet. They also introduced
a graph metric to quantify the density of a graph and proposed a rough power-law approx-
imation of that metric. They also showed the use of power laws and the proposed metric
to estimate useful parameters of the Internet, such as the average number of neighbors
within h hops.

A more profound mathematical analysis of small world networks was performed by
Barrat and Weigt [15] where they studied the geometrical properties of small world net-
works which interpolate continuously between a one-dimensional ring and a certain random
graph. The long ranged links contribute to the low average path length which strongly
depends on the amount of disorder in the global structure. The local structure contributes
to links between two neighboring vertices and leads to a high clustering coefficient.

Mathias and Gopal [112] studied neural and transportation networks and tried to
explain how the small world property arises as a consequence of a trade off between
maximal connectivity and minimal wiring as proposed by Watts and Strogatz [170]. They
present an alternate approach to generate small world behavior through the formation of
hubs and small clusters where one vertex is connected to a large number of neighbors.

Amaral et al. [7] also studied the small world networks and presented a classification
of these networks based on the behavior of the degree distribution of several real world
networks. The three classes were identified as:

1. scale-free networks, characterized by a vertex connectivity distribution that decays
as a power law.

2. broad-scale networks, characterized by a connectivity distribution that has a power
law regime followed by a sharp cutoff.

3. single-scale networks, characterized by a connectivity distribution with a fast decay-
ing tail.

To justify this classification, they present two concepts, Aging of the vertices and Cost
of adding links to the vertices or the limited capacity of a vertex. The idea of Aging is that
with the passage of time, some vertices stop connecting to new links, an example is that
of social network of movie actors, when actors retire, the nodes representing these actors
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in the network stop interacting with new nodes and thus need to be taken into account
for a growing network. The Cost of Vertex refers to the concept of practical efficiency in
networks such as network of world airports where direct flights represent links between
two airports. Simply for commercial issues, it is practical to have hub airports where
many routes connect, but with certain limitations such as the maximum flights an airport
can host.

Barabási’s book titled Linked: The New Science of Networks [14] studies different
networks demonstrating that these networks have an underlying order. This knowledge
can be used effectively in a variety of domains, from designing optimal organization of
a firm to stopping a disease outbreak before it spreads catastrophically. A review from
Albert and Barabási titled Statistical mechanics of complex networks [143] shows empirical
results on the topology of several real world networks and focuses on generation models to
produce artificial complex networks mimicking real world systems. Another survey in the
similar direction is that from Dorogovtsev and Mendes titled Evolution of networks [48]
where they discuss a number of issues like how networks organize into scale-free structures
and the role of the mechanism of preferential attachment, the topological and structural
properties of evolving networks. An interesting study of applications of the general results
to particular networks in nature are discussed and connections of the network growth
processes with the general problems of non-equilibrium physics, econophysics, evolutionary
biology are established. Dorogovtsev and Mendes also wrote a book titled Evolution of
Networks: From Biological Nets to the Internet and WWW [49] based on their previous
survey.

A survey by Mark Newman, Structure and Function of Complex Networks [129] pro-
vides another good review of developments in the field of network science. He presents a
loose categorization of these networks, as Social, Information, Technological and Biolog-
ical networks. Newman et al. also edited a collection of research works in this domain
called The Structure and Dynamics of Networks [133].

Another property of complex networks was studied by Newman [128], which is the
mixing patterns of these complex networks. A network is said to show assortative mixing
if the nodes in the network that have many connections tend to connect to other nodes
with many connections. Newman reports that in a variety of networks, social networks
are mostly assortatively mixed, but that technological and biological networks tend to be
disassortative.

Duncan Watts, in his book Six Degrees: The Science of a Connected Age [171] tries to
use plenty of examples from real life to explain the new and growing science of networks and
their collective behavior. The book targets general public and presents network concepts
by examining everyday life examples such as disease epidemics and the stock market. Mark
Buchanan’s book, Nexus: Small Worlds and the Groundbreaking Theory of Networks [32]
demonstrates practical applications of network theories to diverse problems as well as
an attempt to understand the dynamic interactions within our physical as well as social
worlds.

Bornholdt and Schuster compiled a number of articles related to this subject in a book
titled Handbook of Graphs and Networks: From the Genome to the Internet [25]. The
book discusses the field of complex networks and presents the dynamics of networks and
their structure as a key concept across disciplines such as Traffic Networks and Economic
Networks.
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An interesting article written by Judith Kleinfeld [99] takes a look at the experiments
conducted by Milgram to show the ‘six degrees of separation’ principle. Many questions
are raised to challenge the validity of the experiments and the claims made by Milgram.
Recall from the earlier section where we described the experiment, the idea was to deliver
a letter to a particular target person, a stockbroker living in Boston. The person chosen by
Milgram was well known in the community, and does not represent the entire population.
Also, the people selected to deliver the letter were not chosen randomly. The experiment
tells that three hundred people living in Omaha, were selected to deliver the letter, but
actually one hundred were in Boston. Out of the remaining two hundred people, only
96 were randomly selected from a mailing list, the others were blue-chip stock investors.
Starting from these 96 randomly selected people, only eighteen reached the eventual tar-
get which is a very low percentage. Other researchers have failed to replicate the same
experiment and leaves a big question mark on the results achieved. Even with these bi-
ased experiments, the results were widely and easily accepted by the population at large,
Kleinfeld suggests that this is largely due to the perception that with the advancement in
technology, the world is becoming smaller, and we want to believe that we live in a small
world. She concludes that it is possible that we live in a small world separated by six
degrees, but experimental evidence is lacking and should be reconsidered.

Another perspective to study complex networks is given by Bollobás [22] who classifies
the work in this field into the following categories.

1. Direct studies of the real-world networks themselves, measuring various properties
such as degree-distribution, diameter, clustering, etc.

2. Suggestions for new random graph models motivated by this study.

3. Computer simulations of the new models, measuring their properties.

4. Heuristic analysis of the new models to predict their properties.

5. Rigorous mathematical study of the new models, to prove theorems about their
properties.

He focuses on the mathematical study of these networks and models including sev-
eral new results, mostly demonstrating that large-scale real world networks confirm the
computer generated models reviewed. He concludes that there is still a lot of work that
needs to be done in terms of mathematical study of these models and networks. This work
appears in the book compiled by Bornholdt and Schuster, but due to its importance, we
mentioned it again.

One such mathematical study comes from Lun Li et al. [106], who performed an exten-
sive study of scale free graphs in an attempt to formalize the mathematical foundations
and definitions pertaining to the topic. They introduce a structural metric called s-metric
that allows us to differentiate between all simple, connected graphs having an identical
degree sequence, which is of particular interest when that sequence satisfies a power law
relationship. The metric is used to falsify the claim that scale free networks are robust to
random loss of nodes but fragile to targeted worst-case attacks on hubs as shown by Albert
et al. [4]. The examples considered are of router-level Internet [107, 5] and metabolic net-
works [155] where the networks in question do not have hubs. The most highly connected
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nodes do not necessarily represent nodes fragile to attack and that their robust, yet fragile
features actually come from aspects that are only indirectly related to graph connectivity.

Another interesting book compiled by editors Brandes and Erlebach titled Network
Analysis : Methodological Foundations [28] covers methods for specific levels of analysis
such as individual elements, groups of elements and the entire network. The book contains
an extensive study of concepts, metrics and algorithms and rightly claims to be the first
book to do so, from a methodological perspective independent of specific application areas
to analyze networks.

Summarizing the existing literature on networks, most of the early work is related
to bringing networks from different real world examples under the classification of either
small world networks, scale free networks or both at the same time. Several models have
been proposed and studied in detail to replicate the behavior of these real world networks
as a tool to understand the structure and evolution of complex systems. Researchers
have realized that although the low average path length, high clustering coefficient and
power law degree distribution are common features for these networks from various do-
mains, there is a strong need to develop mathematical foundations, models and measures
to understand how these systems differ from one domain to the other. An attempt to
develop common theories and algorithms for these complex networks can not only lead
to enhanced scientific understanding of the physical systems around us but can also help
build a common ground for real world applications that can be useful to solve real world
problems. All this knowledge acquired by the researchers contributes in the development
of this new and emerging science called network science.

Another important yet less studied aspect that has changed our approach towards the
study of these complex systems is the advent and availability of computer aids to visualize
these networks. Euler used a graph to represent the Königberg Bridge problem and so
did Jacob Moreno for a sociogram, but with the explosion in the size of networks recently,
drawing these graphs has prompted radical changes in how we visualize information. Spe-
cially with new and innovative rendering technologies and interactive exploration possible,
the study of networks has changed and evolved during the last decades. Although, not
considered as an integral part of network science, we believe that Network Visualization
is an important aspect of this growing field. In our point of view, this drift certainly
suggests that network science has overlapping goals with fields such as Information Visu-
alization [19, 96], Visual Data Mining [151, 96] and Visual Analytics [157]. One way to
differentiate these fields from network science is that, in all these fields, visualization is
an essential concept and they cannot exist if visual aspect is taken away from these fields
whereas network science does not depend solely on visualization. From this brief review
of the literature, in the next section, we move towards categorizing the research in the
field of network science and specially complex networks.

1.6 Study of Complex Networks

Reviewing the literature, the study of these networks can be grouped under four categories
which are:

> Analysis

> Structure
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> Processes and Organization

> Visualization

Analysis comprises of several metrics and measurements proposed to study the statis-
tical properties of complex networks. These properties can be further categorized based
on the granularity of the measure used, such as element level, group level and entire net-
work [28]. Metrics such as the clustering coefficient and degree distribution have played a
fundamental role in the origins of complex networks. Current research is heavily focused
on developing more metrics that can quantify new and interesting properties of these
networks.

Structure refers to the research carried out in modeling real world networks. There have
been a number of principles identified as being the driving force to produce small world
networks, scale free networks or networks having both these properties. Researchers have
proposed a host of algorithms in an attempt to understand the structure and evolution of
complex systems.

Processes and Organization is the collection of numerous processes exploiting the small
world or scale free behavior of these complex networks. Common problems like searching
specific nodes or paths in networks, searching and identifying frequent motifs, grouping
similar vertices to organize and understand the overall behavior of networks are all ex-
amples of common processing tasks performed on complex networks. One of the most
widely used methods to group similar vertices is called Clustering which has found practi-
cal applications in numerous domains. Clustering is defined as a decomposition of vertices
into ‘Natural Groups’. More precisely, we can say that a cluster is a set of vertices with
high interconnectivity among vertices of the same cluster and low connectivity of vertices
of different clusters. In sociology, often clusters are termed as community structures or
simply communities.

Visualization groups the techniques existing in the domain of graph drawing, informa-
tion visualization and visual analytics applied to these real world networks for interactive
exploration and extraction of hidden knowledge. Visualization of graphs is an inherent
feature of network science as its basis lies in graph theory. Researchers have used the grow-
ing technological advancements in these fields to derive interesting results about complex
networks.

Although each of these categories has clear and well defined objectives, they are not
necessarily independent of each other. For example, the metrics and measurements devel-
oped for these networks are heavily used in developing models to understand the structure
of these networks. Processes of grouping similar nodes are commonly used to reduce the
visual complexity and present a summarized graphical view such that domain experts can
interpolate and extrapolate knowledge about these complex systems. Thus, although we
can identify these categories of research for network science, the research itself is carried
out tightly integrating these categories such that it is difficult to separate one from the
other.
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1.7 Research Contributions

In this thesis, we address specific problems for each category and try to resolve some
common issues pertaining to the study of complex networks, and contribute to the ad-
vancement of this new and exciting field of study.

In terms of Analysis, we start by presenting a visual analytics way to explore these
complex networks. A method combining a new metric and visualization technique to
analyze and explore these graphs is proposed where the idea is to study how the edges are
distributed among nodes of varying degree. Several real world networks are analyzed using
the proposed methods with interesting observations and results are presented in details in
Chapter 3.

Next, we study the structure of these complex networks and review a number of differ-
ent network generation models specially focusing on models that produce small world and
scale free networks. Although these models generate random networks with scale free and
small world properties, there is no apparent community structure present at the macro
level in the networks generated by these models. We present a new model which is useful
to generate small world and scale free networks with community structures. The model
can be useful to help generate test data sets for experimentation of empirical studies of
complex systems with known and well defined structure. This topic is discussed in detail
in Chapter 4.

To study the topic of processes and organization, our research efforts are directed
towards the problem of clustering as fundamental procedure to organizing complex net-
works. With the increasing storage capacity for large size networks, fast algorithms are
required that are able to cluster complex networks. We propose an algorithm which is
highly efficient in terms of time complexity and uses the analysis method proposed in
Chapter 3 to build a clustering algorithm. Comparative results show that the algorithm
gives acceptable results in terms of cluster quality. The details are presented in Chapter 5.

In terms of visualization, a common problem with these networks is that drawing
these networks using existing methods produces highly entangled and cluttered drawings
as several networks were drawn using force directed algorithms in Chapter 3 for visual
analysis. We propose a method to address this issue, combined with another clustering
algorithm specially designed to handle the visualization aspect of complex networks. We
have applied the method on co-occurrence networks obtained from the web where several
case studies show the efficiency of the proposed clustering and visualization system. We
discuss the details of the proposed solution in Chapter 6.

Continuing with the topic of clustering, we study different metrics that are used to
evaluate the quality of clusters in the absence of ground truth and bench mark cluster-
ings for different data sets. Based on our findings from the analysis of several complex
networks in Chapter 3, we identified that several networks do not have densely connected
subgraphs and thus node-edge density should not be used as a primary ingredient to an-
alyze the quality of a clustering algorithm in the absence of dense subgraphs. Further
more, the presence of star-like structures was identified as an important pattern in some
complex networks. We propose a new method based on average path lengths that is able
to overcome the drawbacks of density based evaluation metrics and correctly evaluate the
quality of a cluster in the presence of star-like structures. The details are presented in
Chapter 7.
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1.8 Organization of Thesis

In the next chapter, we present necessary background knowledge and present a number of
real world networks that are used for experimentation and empirical studies in this thesis.
The chapter ends with a tabular listing of some statistical measures of these networks.

Chapters (3, 4, 5, 6, 7) all introduce common problems related to the study of com-
plex networks. Chapter 3 is related to visual analysis and metrics for complex networks.
Chapter 4 discusses the structure of networks having both small world and scale free
properties. In Chapter 5, we focus on clustering of complex networks presenting a new
algorithm which is highly efficient in terms of time complexity. Chapter 6 focuses on
clustering and visualization of these networks. Chapter 7 addresses the issue of evaluating
the quality of clustering algorithms for networks without densely connected regions.

Chapter 8 lists the articles that we published during this period. We also listed other
research work that we carried out during the thesis and are related to the study of complex
networks but are not part of the thesis. Brief introduction is given followed by various
publications that resulted from the research.

Finally, in Chapter 9, we present our conclusions and future research prospects.
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Chapter 2

Preliminaries

In this chapter, first we briefly describe the mathematical terminologies used throughout
this document. Next, we introduce a number of real data sets that have been used for
experimentation in various chapters. We also provide a number of statistical measures for
these data sets at the end of this chapter.

2.1 Mathematical Foundations

This section reviews some basic definitions used extensively in network science and mostly
borrowed from graph theory. We use the terms network and graph interchangeably
throughout this document.

Graph: A graph is an abstract representation of a set of objects connected through
links. The objects are denoted by the set V of vertices (also called nodes) and their
connections denoted by the set E of edges (also called links). These links join pairs of
vertices, where two vertices joined are adjacent to each other or are called neighbors of
each other. An edge is usually represented by a pair of nodes (u, v) where u ∈ V and
v ∈ V . A degree of a node n is the number of connections it has with other nodes and is
represented by deg(n).

Undirected and Directed Graph: Graphs can be undirected or directed. In undi-
rected graphs, the order of the vertices of an edge (u, v) is immaterial as there is no
orientation associated to an edge. In a directed graph, each directed edge (arc) has an
origin (tail) and a destination (head). An edge with origin u ∈ V and destination v ∈ V
is represented by an ordered pair (u, v). The in-degree of a node n is the number of edges
where n is a head. Subsequently the out-degree of n is the number of edges where n is a
tail.

Simple and Multigraph: In both undirected and directed graphs, we may allow the
edge set E to contain the same edge several times, i.e., E can be a multiset. The edges
occurring several times in E are called parallel edges. An edge joining a vertex to itself,
i.e., an edge whose end vertices are identical, is called a loop. A graph is called loop-free
if it has no loops. A graph is called a Multigraph if it has parallel edges and/or loops as
opposed to a graph where there are no parallel edges and loops, such a graph is termed
as Simple Graph.

Weighted and Unweighted Graphs: A graph is a weighted graph if a number
(weight) is assigned to each edge. An unweighted graph can be considered as a special
case of weighted graph. Any unweighted graph is equivalent to a weighted graph with
unit edge weights.
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Complete Graphs: A complete graph is a simple graph in which every pair of distinct
vertices is connected by a unique edge. Thus for an undirected graph with n nodes, the
total number of edges in a complete graphs can be calculated using the following equation:

TotalEdges(G) =
n ∗ (n− 1)

2

Regular Graph: A regular graph is a graph without loops and multiple edges where
each vertex has the same number of neighbors; i.e. every vertex has the same degree.
A regular directed graph must also satisfy the stronger condition that the in-degree and
out-degree of each vertex are equal to each other. A regular graph with vertices of degree
k is called a k-regular graph or regular graph of degree k.

Bipartite Graph: A bipartite graph (or bigraph) is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge connects a vertex in U to one
in V . Nodes of the same set are not connected to each other.

Subgraph: A graph G′ is a subgraph of a graph G if the vertex set of G′ is a subset
of the vertex set of G and if the edge set of G′ is a subset of the edge set of G. That is, if
G′ = (V ′, E′) and G = (V,E), then G′ is a subgraph of G if V ′ ⊂ V and E ⊂ E′.

Induced Subgraph: An induced subgraph is a subgraph formed by specifying a set
of vertices V ′ from V and then selecting all of the edges from the original graph G that
connects any two vertices in V ′. So in this case E′ = {(u, v) ∈ E : u, v ∈ V ′}.

Path and Cycle: A path in a graph is a sequence of vertices such that from each of
its vertices there is an edge to the next vertex in the sequence. A path may be infinite,
but a finite path always has a first vertex, called its start vertex, and a last vertex, called
its end vertex. The other vertices in the path are internal vertices. A Cycle is a path such
that the start vertex and end vertex are the same.

Connected Component: A connected component of an undirected graph is a sub-
graph in which any two vertices are connected to each other by paths. Subsequently, if
a pair of nodes in a subgraph does not have a path connecting them, the graph is called
disconnected graph and the subgraphs forming that are connected in this big graph are
called connected components.

Clique: A clique in an undirected graph is a subset of its vertices such that every two
vertices in the subset are connected by an edge.

Tree: A tree is a graph in which any two vertices are connected by exactly one path.
In other words, any connected graph without cycles is a tree. A tree is called a rooted
tree if one vertex has been designated the root, in which case the edges have a natural
orientation, towards or away from the root. In a rooted tree, the parent of a vertex is the
vertex connected to it on the path to the root; every vertex except the root has a unique
parent. A child of a vertex v is a vertex of which v is the parent. A leaf is a vertex
without children.

Cut: A cut is a partition of the vertices of a graph into two disjoint subsets. The cut-
set of the cut is the set of edges whose end points are in different subsets of the partition.
Edges are said to be crossing the cut if they are in its cut-set. In an unweighted undirected
graph, the cut size or cut weight is the number of edges crossing the cut. In a weighted
graph, the same term is defined by the sum of the weights of the edges crossing the cut.
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2.2 Real World Networks

In this section, we present a number of real world networks studied by different researchers
from various domains. We use the categorization introduced by Mark Newman [129] briefly
discussed earlier in Chapter 1. Note that this categorization is not based on structural
similarity between the networks, rather it regroups networks of similar domain. The idea is
to provide us with a global perspective and not a structural comparison of these networks,
as Newman puts it, it is a loose categorization of these networks. Thus we recommend
the readers should not take these categories as the absolute and rigid classification of
networks.

These networks will be used for experimentation throughout this document. We have
named (bold fonts) each of these networks and use these names to refer to them through-
out. Note that some of these graphs were originally directed, weighted or multigraphs
but for our experiments we have transformed these graphs into simple, undirected and
unweighted graphs. Moreover, we have only kept the biggest connected component for ex-
perimentation and removed the nodes that were disconnected from the biggest connected
component.

2.2.1 Social Networks

Social networks represent connectivity patterns among humans. Nodes represent people
and two nodes are linked by an edge if there is a social interaction between the two people.
These social interactions can take many different types such as a friendship network [183]
or a business relationship [65] and depends on the network itself.

Two well studied networks in this category are the co-authorship network in aca-
demics [125] and the IMDB network (http://www.imdb.com/) from the movie domain.
In a co-authorship network, two people are linked to each other if they have written a
common artifact and in the IMDB network, two actors are linked together if they appear
in a movie together. Other networks commonly found in the real world are the network
of telephone calls [3] where people call other people and email communication [51] where
sending an email establishes a link between two people.

NetScience Network is a co-authorship network of scientists working on network
theory and experiments, as compiled by M. Newman in May, 2006 [131]. The network was
compiled from the bibliographies of two review articles on networks, M. Newman, SIAM
Review and S. Boccaletti et al., Physics Reports, with a few additional references added by
hand. The biggest connected component is considered for experimentation which contains
379 nodes and 914 edges.

Geometry Network is another collaboration network of authors in the field of
computational geometry. The network was produced from the BibTeX bibliography ob-
tained from the Computational Geometry Database ‘geombib’, version February 2002
(see http://www.math.utah.edu/~beebe/bibliographies.html). Problems with dif-
ferent names referring to the same person are manually fixed and the data base is made
available by Vladimir Batagelj and Andrej Mrvar: Pajek datasets from the website http:

//vlado.fmf.uni-lj.si/pub/networks/data/. Only the biggest connected component
is considered containing 3621 nodes and 9461 edges.

Dblp2008 Network is another co-authorship network constructed from the DBLP
database. It contains of a network of authors who have co-authored a scientific article
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in the year 2008. The snapshot was taken in January 2009. The complete data set
can be downloaded from the DBLP Computer Science Bibliography website http://www.

informatik.uni-trier.de/~ley/db/. Again only the biggest connected component was
considered which contains 93498 nodes and 260152 edges.

Imdb Network is an actor network where nodes represent actors and two actors are
connected to each other if they have acted in a movie together. The data set we use here
is a subset taken from the IMDB database ( http://www.imdb.com/) of movies. This
network contains 7640 nodes and 277029 edges.

2.2.2 Information Networks

This category represents networks that embed knowledge about the structure of the net-
work in the real world. A common example is the co-occurrence network of words. The
co-occurrence of words in sentences or pages reflects language organization in a subtle
manner that can be described in terms of a graph of word interactions where words are
represented by nodes and an edge represents that these words appear together in a sentence
of some text, or possibly on the same page of a book [101, 59].

One of the largest networks studied to date is the World Wide Web which belongs to
this category. Web pages are objects and are linked to each other if they are connected
through a hyper link [84]. Another network that falls in this category is the citation
networks, which is a network of ‘articles’ as nodes and two nodes are linked to each other
if one article cites the other [52].

Jaguar Network is a co-occurrence network of key words collected from web pages.
The Exalead search engine (http://www.exalead.com/) was used to search the key word
jaguar. A number of web pages were returned as search results from the wikipedia repos-
itory. An edge connects two keywords if they appear on the same web page. The word
jaguar is a good example of words with semantic ambiguity as it represents completely
different subjects like the Jaguar Cars, the animal etc. We have used this data set to test
our clustering algorithm where the idea is to show that the clustering algorithm success-
fully groups web pages of similar semantic meanings. The top 50 web pages returned as
search results were used to extract 466 keywords connected through 5154 edges. These key
words were extracted automatically by the Exalead Search API by parsing the collection
of web pages.

Hepburn Network is also a co-occurrence network of key words collected from web
pages. The key word Hepburn was used as a search query to gather web pages using the
Exalead search engine on the Wikipedia encyclopedia. We searched the word Hepburn
because it is a famous family name in Scotland. It is also quite frequent in some other
areas of Europe. Many famous people have emerged from this family such as writers,
actors, businessmen and we expected to construct a social network of people belonging to
this family. Again, the top 50 web pages were used to extract 524 keywords connected
through 5120 edges. These key words were extracted automatically by the Exalead Search
API by parsing the collection of web pages.

Cac40 Network is another co-occurrence network collected as as an example of
browsing web pages. These web pages were collected starting from the page CAC 40 on
Wikipedia (http://en.wikipedia.org/wiki/CAC_40). All the pages in the ‘See Also’,
‘References’ and ‘External Links’ sections were further explored and the process was re-
peated for links up to depth 3. A total of 50 web pages were collected this way. Key words
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were extracted from the Meta tag of the web pages. The total number of words collected
after the removal of stop words (like ‘for’, ‘the’ etc.) was 412 with 4125 edges. Cac 40 is
an index associated with the top 40 companies listed in the Paris Stock Exchange. These
companies vary in their business activities from dealing in commodities to manufactur-
ing products. The idea was to study the relationships between companies as we use this
example to show the effectiveness of our proposed visualization of complex systems.

2.2.3 Technological Networks

The third category of networks is the collection of networks mostly man-made related to
distribution of resources or related to infrastructure. One of the earliest networks studied
in this category is the topology of Western States Power Grid in the United States [170].
Transmission lines for electrical energy, when interconnected with each other, become high
voltage transmission networks and are referred to as power grids. They are are used for
bulk transfer of electrical energy, from generating power plants to substations located near
to population centers.

One network which has attracted lots of attention in the field of network science is
the Internet, where the network of physical connections between computers has been
studied extensively [58]. Another type of network placed in this category is the network
of software classes [161] where nodes represent software classes and two classes are linked
if they interact with each other.

Other networks such as railways [104, 149], airplane routes [8, 7], and roads [94] all
fall into this category where train stations, airports and cities act as nodes and a direct
connection represents an edge between them.

Opte Network is an Internet Tomography network which is a collection of routing
paths from a test host to other networks on the Internet. The database contains routing
and reachability information, and is available to the public from the Opte Project website
(http://opte.org/). The network has 35836 nodes and 42387 edges.

AirTransport Network is a network of air traffic between cities. The cities are
represented by nodes and edges between two nodes represent that a direct flight exists
from one city to the other, irrespective of the airports in the city. This network has
attracted lots of researchers from the field of geography and transportation. For more
details, readers can refer these articles [8, 47, 144]. The network is a simple, undirected
graph which contains flight information from the year 2000. The graph has 1540 nodes
and 16523 edges.

2.2.4 Biological Networks

The final category groups networks appearing in the field of biology. The most studied
example of these networks is the metabolic pathways found in living cells. In these net-
works, substrates are treated as vertices, while chemical reactions connecting substrates
and educts are treated as directed links [20, 91, 155]. Other notable networks in this
category are, the food web [175, 121]. These are networks of ‘species’ which are defined
as functional groups of taxa that share the same predators and prey. Edges connect two
species if one consumes the other. Another commonly found network is a Protein Inter-
action network [66]. Neural networks have also been studied where the most widely used
example is that of the neural network of the nematode C. elegans [174].
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Network n e ad hd cc apl

NetScience 379 914 2.4 34 0.74 6.0

Geometry 3621 9461 2.6 102 0.53 5.31

Dblp2008 93498 260152 2.7 164 0.71 -

Imdb 7640 277029 36.26 1271 0.87 2.94

Jaguar 466 4816 10.3 293 0.90 2.42

Hepburn 524 5120 9.7 268 0.92 2.51

Cac40 412 4125 9.5 216 0.91 2.56

Opte 35836 42387 1.18 259 0.003 16.74

AirTransport 1540 16523 10.7 487 0.49 2.93

Protein 1246 3142 2.5 53 0.23 4.89

Table 1: n=nodes, e=edges, ad=average degree, hd=highest node degree,
cc=clustering coefficient, apl= average path length

Protein Network is a Protein-Protein interactions network. The data represents a
set of S. cerevisiae interactions identified by TAP purification of protein complexes followed
by mass-spectrometric identification of individual components [66]. The data is available
from http://dip.doe-mbi.ucla.edu/dip and contains 1246 nodes and 3142 edges.
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Analysis using Topological De-
composition

3.1 Introduction

From the days of Euler’s solution to the famous Königberg bridge problem and Simmel’s
sociogram, the development of computers has seen the ability to store, process and visu-
alize large size networks. The world has also seen the exponential growth of several data
sets of this technological age such as the Web [1] and Internet [36]. All these advancements
in technology bring new challenges to the field of network science. We require new and
robust methods to analyze and understand these networks. In this chapter, we propose
a new method to analyze networks which is based on decomposition and visualization
of networks. We present our analysis of several real world networks using the proposed
method to help extract interesting knowledge.

Before we present our method, we look at a brief taxonomy of existing methods of
analysis. There are a number of ways to analyze networks. One way is to develop statistical
measures that return quantitative knowledge about these networks. A good example of an
element level measure is the degree of a node, which refers to the number of connections a
node has to other nodes in the network. An example of network level metric is the degree
distribution of the network. A good summary of these metrics can be found in [28].

Another way to analyze these networks is to layout a network into a graphical repre-
sentation and let humans and/or more precisely domain experts visually analyze it. Visual
analysis is a useful method to discover hidden knowledge and extract interesting patterns
in data [96] and has been effectively applied in a number of different fields. A number of
books and surveys are available addressing the graph drawing problem in general such as
[158], and more precisely drawings for visualization and extraction of information [19, 81].

Most of the real world networks in question today have hundreds of thousands of
nodes and edges. An interesting approach is to decompose the entire network into sub-
components and then apply either statistical measures or visualization methods on these
sub-components to analyze a network. The study of large scale networks has motivated
research in this direction as the size of these networks presents new challenges. Methods
and Measurements that require high time complexity are no longer of use for these large
size networks even with the increasing computational power, we still need faster meth-
ods, heuristics and decomposition methods that can process these networks in reasonable
time frames. Moreover, with these large size networks, measures like centrality and struc-
tural organization of networks are no longer dominated by elements but rather, groups
and subsets. The complex interactivity of these subsets play, an important role in the
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overall behavior and evolution of networks, thus presenting researchers with a challenging
problem.

Decomposition techniques have particularly important significance for visualization
methods as it is practically impossible to visualize these large size networks on a computer
screen even with the new and advanced visualization tools and interactive techniques for
visualization [81]. A number of tools have been proposed that combine decomposition
methods with visualization to analyze these networks where we cite only a few of these
[10, 53, 80].

Decomposition of a network can be performed in several ways. Note that the term
decomposition can refer to different concepts depending upon the application domain. In
the current context, we refer to the idea where the nodes of the network can be divided
into subsets based on some criteria such that the structural relations between nodes are
preserved. We do not impose any conditions on how this division is performed. For
example, nodes can belong to multiple sets at the same time, the only requirement is that
we obtain a subset of nodes from the given network and if there are edges connecting
nodes in the subset, they essentially occur in the whole network as well.

In this chapter, we introduce a decomposition method for networks which is based
on their topology, therefore we call it, topological decomposition. This decomposition is
motivated by two important features of real world networks. The first is that these net-
works have non-uniform degree distribution which is a fundamental property to identify
these networks in comparison to random and regular networks. The second, visualiza-
tion of these networks produce highly entangled and hard to read drawings. Our idea is
to decompose the network into small subgraphs and then visualize these small parts to
understand, analyze and extract information from them.

The idea to decompose and study complex networks is not new. A decomposition
based on the connectivity of vertices was proposed by Batagelj and Zaversnik called the k-
core decomposition [16]. The method consists of identifying subsets of the network called
k-cores. These subsets are obtained by recursively removing all the vertices of degree
smaller than k, until the degree of all remaining vertices is larger than or equal to k. So
for example, to obtain a 2 − core of a network, we remove all the vertices with degree
less than 2 in the network, which is nodes of degree 1. After this removal, certain vertices
that previously had high degree might now have degree 1, the removal process is repeated
again until there are no vertices of degree 1 left in the network. All the vertices left after
this removal become part of 2− core and the process can be restarted for higher values of
k.

Cores with larger values of k correspond to sets of vertices with high degree and
connected to high degree vertices only. This gives cores with larger values of k, a more
central position in the network’s structure [6]. This method has been used in several
domains to analyze networks and the connectivity of vertices for example, in the analysis of
protein interaction networks [178, 12] and networking to filter out peripheral Autonomous
Systems [64]. Apart from its utilization in analysis, it has also been used to visualize large
scale networks as it decomposes a network into subsets of vertices of increasing centrality.
It can also help focus on certain regions of interest in a network [6, 17].

The method we propose is significantly different from k-cores, although both k-core
and the proposed topological decomposition are based on degree of vertices and creating
subsets. Topological decomposition focuses on studying how edges are distributed in high
and low degree nodes. k-cores focus on recursively identifying central nodes and has clearly
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different objectives. The differences will become more evident as we explain the details of
our method.

3.2 Topological Decomposition

We introduce the idea of Degree Induced Subgraphs abbreviated as DIS. We define a DIS as
an induced subgraph created by imposing constraints on node degrees. These constraints
can be either having a certain degree for nodes, or lying between a certain interval. We
define two such graphs:

Definition 1: Maxd-DIS is an induced subgraph of G with vertex set V ′ such that
nodes in V ′ have maximum degree d in G. Mathematically for a graph G(V,E) where V
is a set of nodes and E is a set of edges, the Maxd-DIS is defined as an induced subgraph
G′(V ′, E′) such that V ′ ⊆ V and ∀u ∈ V ′, degG(u) ≤ d where d can have values from 0 to
the maximum node degree possible for the network under consideration.

Definition 2: Mind-DIS is an induced subgraph of G with vertex set V ′ such that
nodes in V ′ have minimum degree d in G. Mathematically for a graph G(V,E) where V
is a set of nodes and E is a set of edges, the Mind-DIS is defined as an induced subgraph
G′(V ′, E′) such that V ′ ⊆ V and ∀u ∈ V ′, degG(u) ≥ d where d can have values from 0 to
the maximum node degree possible for the network under consideration.

Throughout this document, we use the term DIS to refer to these degree induced
subgraphs. In the following sections, we take a detailed look of the proposed decomposition
technique and their usefulness to analyze real world networks.

3.2.1 Maxd-DIS: A closer look

Consider a graph shown in Figure 5 (left) and we calculate the Max4-DIS shown on the
right in the figure. The nodes are labeled by their degree in the entire graph. Calculating
the Max4-DIS, the nodes with degree 5 and 6 are removed and an induced subgraph from
the remaining nodes is obtained as a result. In this example, it is quite clear that in
Max4-DIS, the nodes break into disconnected components. Thus a simple deduction is
that the entire network was connected by high degree nodes, as soon as we removed them,
the network broke into smaller connected components. Another interesting observation is
that we can study how edges are distributed in low degree nodes as by definition, the Maxd-
DIS considers only low degree nodes for low values of parameter d. Recall the definition of
hubs from Chapter 1 given by [13], one way to look at this construction is that we want to
avoid the hubs and look at how nodes connect to each other without the hubs. Comparing
it with the k-cores, a hub might end up in a core with low k value depending upon the
degree of nodes that connect to a hub. On the other hand, in topological decomposition
proposed here, hubs are by definition, nodes with high degree and thus they can never
end up in low d values of a Maxd-DIS graph.

Let us take another example from a real world graph, that of the Geometry co-
authorship network by drawing several Maxd-DIS graphs. The graphs are drawn using
Fast Multipole Multilevel Method (FM3) [76] which is a force directed algorithm. These
algorithms put nodes densely connected to each other closer in the layout and pushes
nodes that are not connected away from each other. These algorithms are ideally suited
for visual detection of community structures in networks. But in case of networks having
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Figure 5: An example of Maxd−DIS before and after calculating Max4−DIS.

scale free properties, where lots of nodes connect to only a few nodes, most of the time it
becomes difficult to visually identify the presence of these communities. This is because
nodes with very high connectivity are placed in the center of the layout and nodes of low
degree are placed towards the outer periphery. As a result, these drawings are very hard
to read specially in the center where all the high degree nodes are placed as shown in
Figure 6(a), we can see the entire network drawn using FM3 algorithm. The network
contains over 3500 nodes which makes it quite difficult to see anything interesting in the
network.

Figures 6(b),(c) and (d) are Maxd-DIS graphs constructed for values d = {5, 10, 15}
respectively. We studied subgraphs for different values of d and choose these three values
based on our analysis as they seemed to have interesting observations. These values are
by no means an indication of how d values should be selected for other data sets and vary
from one data set to the other.

Figure 6(b) shows the Max5-DIS and is an interesting way to look at how nodes with
low degrees are connected to each other. The subgraph contains 2757 nodes which is more
than 76% of the total nodes in the entire graph. This suggests that most of the nodes
in the network have low degree. Most of the time, our focus is towards the high degree
nodes that stand out in the analysis of these complex networks. But the majority of the
nodes have low node degree and we stress that analysis methods should also focus on these
nodes as they are in majority and influence the overall behavior of the network to a large
extent.

There are 1481 edges in the subgraph which makes the average node degree 0.53 as
compared to the overall average of 2.6 which is a huge difference in the context. The
maximum node degree for the entire network is 102. This means that most of these low
degree nodes tend to connect with ‘higher’ degree nodes. Note that we emphasize the
relative degree and use ‘higher’ instead of ‘highest’, this is to suggest that since we are
analyzing Max5-DIS with degree limit 5, these nodes might end up connecting to nodes
with degrees 6, 7, 8 and not necessarily with nodes of degree closer to the highest node
degree which is 102. We will have a look at this when we analyze the Max10-DIS and
Max15-DIS graphs.

Another interesting observation is the number of connected components, which in
this case is 1537 and there are lots of nodes with degree 0 in the Max5-DIS. Remember
that the entire network is a single connected component, this high number of disconnected
components suggest that as high degree nodes appear, these smaller connected components
merge to form one big single connected component in the network.

Finally, an important observation is about the structure formed by these low degree
nodes when connecting to each other. Recall from Chapter 1, where we discussed Simmel’s

26



3.2. Topological Decomposition

sociology and the formation of triads. Figure 6(b) verifies the theory as we see a number
of triads in the figure. Triads are present not only in connected components of more than
three nodes, but also in connected components of exactly three nodes. Moreover, we do
not only observe triads forming cliques of three nodes, but also of bigger sizes, although
rare, but they are clearly present. There are a few cliques of size 4 and even one of size 5.
By construction of this co-authorship network, we expect cliques to be present. Since the
data set is about scientific articles in which it is common to have 3, 4 or more authors,
it is quite obvious that we will find these cliques when visualizing the network. To avoid
any false implications, we would like to refer to Figure 5 once again, notice the clique of 5
nodes, when a Maxd-DIS is constructed, it no longer remains a clique of same size. Thus
when analyzing a subgraph such as Figure 6(b), we should not conclude that there are
only cliques of size 3 or 4 in the network, rather there are definitely cliques of larger sizes
in the entire network.

Figure 6(c) shows the Max10-DIS of the same network. Looking at the graph, we
can immediately see that lots of small connected components from Figure 6(b) are now
beginning to connect. Two such connected components are quite evident and there is
another one which is of considerable size. In mathematics, this phenomena is called
the emergence of a giant component [90]. Physicists call it percolation and refer to this
phenomena as phase transition [56]. The network changes drastically as certain links are
introduced, and becomes a single connected component [14]. In this case these links are
introduced in the network by higher degree nodes that are responsible for connecting all
these smaller components. The number of connected components in Max10-DIS are 942
as compared to 1537 in Max5-DIS, which is a considerable decrease as we do not have
very high degree nodes.

Note that we still do not have the presence of very high degree nodes. If we look at
the degree distribution of Geometry network shown in Figure 7, we see that it is around
degree value 10 that the long tail starts to develop. In terms of clustering, this is quite
significant. Consider if we want to group similar nodes, we can use this idea that in the
absence of high degree nodes, this network breaks into smaller connected components,
and from the subgraph, we can say that there are two big and a smaller cluster of nodes
in the entire network. As high degree nodes are introduced in this network, the network
becomes one big connected component and it becomes difficult to identify clusters. We
will discuss this idea in more detail in the following chapters, for the moment we continue
with the analysis of networks using Maxd-DIS decomposition.

One observation from the degree distribution is that the highest frequency of nodes
is for degree value 2, which is 817, followed closely by degree 1 and degree 3 nodes with
frequencies 751 and 617 respectively which suggest that 60% of the total nodes have degree
less than 4.

And finally we move to Figure 6(d) which shows the Max15-DIS. A clear development
in this graph is the formation of the big connected component which comprises of 2133
nodes and 3523 edges. Notice that this graph only contains nodes with a maximum node
degree of 15 in the entire network as compared to the highest node degree, which is 102.
This shows that approx. 59% of the nodes are linked in a single connected component
without the presence of very high degree nodes.

An obvious question arises, how do we define ‘high’ or ‘very high’ degree nodes? Obvi-
ously there is no concrete definition, but a rather vague estimation can be made by using
a number of heuristics. If we compare 15 with 102, the gap seems to be quite wide and it
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Figure 6: Visualization of Maxd-DIS graphs for the Geometry network. (a) Entire
Network (b) Max5-DIS (c) Max10-DIS (d) Max15-DIS.

28



3.2. Topological Decomposition

Figure 7: (a)Histograms and (b) Log-Log scatter plot of the Degree Distribution of
Geometry Network.

is easy to say that the value 15 does not really represent ‘high’ values of degree. On the
other hand, if we compare 15 with the average node degree which is 2.6, the value seems
to be quite high and can be considered as a high value for node degree. If we look in terms
of percentage, the Max15-DIS contains 3413 nodes which is 208 nodes less than the total
number of nodes in the network and makes a percentage of around 94%. If we consider
the top 5% nodes as the high degree nodes, Max15-DIS suggests that in the absence of
high degree nodes, 59% of the nodes in the network are still connected.

Thus we suggest that the Maxd-DIS can be used as a method to study an important
feature of scale free networks studied by Albert et al. [4] i.e. scale free networks are robust
to random loss of nodes but fragile to targeted worst-case attacks on hubs (introduced
earlier in Chapter 1).

Looking at the average degree in this subgraph, for the 94% of the nodes in the entire
network is 1.33 as compared to overall value of 2.6 for the entire network. Thus the high
degree nodes heavily influence the total number of edges (or the average degree of nodes)
in the entire network. Obviously this is a direct implication of the long tail in the degree
distribution. The longer the tail, the bigger would be the difference in the average node
degree of low degree nodes and the overall network.

About the connectivity of the nodes and the three bigger connected components in
Figure 6(c), there is an interesting observation about the average path lengths of these
bigger connected components. The three components have values of 12.9, 12.4 and 9.7
which when compared to the overall value of 5.31 are quite high. Even the biggest con-
nected component in Figure 6(d) has a very high average path length of 12.1. As the high
degree nodes appear in the network the average path length drops considerably in the final
network. If we look closely at Figure 6(a,b,c), we understand an important connectivity
principle of these networks. When nodes connect to each other through ‘higher’ degree
nodes, the average path length is a bit higher as the connections form long paths, and
when nodes connect through ‘very high’ degree nodes, the average path length is lower.

We further explain this using an example of co-authorship network. Consider the four
cliques in Figure 8(a) representing four different articles, where the number of authors for
the four cliques are 5,3,4,3 and each node is labeled with letters from A to O.

The four cliques can be connected to each other by two principles. The first one is
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Figure 8: (a)Four cliques representing different articles in an co-authorship network
(b) The cliques are combined to form high average path length with certain nodes
having higher degree (c) The cliques are combined to form low average path length
with Node A standing out as a very high degree node.

shown in Figure 8(b), which is in the absence of very high degree nodes. Consider a person
authoring two articles with two different sets of people, in that case, that person will sit
in between two cliques. From the example in the figure we consider person A and G are
the same person and thus they connect the two cliques as shown in Figure 8(b). Another
way to connect two cliques is to add edges between people writing different articles. In
this example we add an edge between F and I, suggesting that earlier these people worked
with a different set of people, but now they have collaborated to write together. Similarly,
person J is the same as O, and L is the same person as N. This connectivity pattern
introduced is due to the absence of very high degree nodes as, in this connected network,
no node has a very high degree. The result is that we get a long string of cliques connected
to each other just as we saw in Figure 6(c,d).

On the other hand, another way to connect these cliques is shown in Figure 8(c) where
a single person co-authors many articles with other people, in this case, that person is
shown as node A, which collaborates with all other authors. This gives a certain node a
very high node degree and reduces the overall average path length to a large extent. Both
these connectivity patterns are present in the Geometry network as we see long paths in
Figure 6(c,d) and short paths in Figure 6(a).
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Let us summarize what we have explained in this section. We have tried to analyze the
Geometry network using the Maxd-DIS decomposition. We identified several interesting
observations such as:

1. Studying how edges are distributed in low degree nodes.

2. Observe the structure of networks such as the formation of triads and cliques of
bigger sizes.

3. Analyze the connectivity of nodes in the absence of hubs and see if a network is
fragile to targeted attacks.

4. Break up of nodes in several disconnected components in the absence of high degree
nodes, which motivates the idea of possibly grouping the connected components as
clusters.

5. For higher values of d, the smaller components begin to merge into a single connected
component even if very high degree nodes are not present.

6. The average path length of biggest connected components in the DIS subgraphs is
considerably higher in the absence of very high degree nodes indicating that very
high degree nodes are also responsible for reducing the overall average path length.

7. Two connectivity patterns are observed, one in the presence of higher degree nodes,
and the other, when very high degree nodes appear. These patterns effect the average
path length of a connected component.

From this detailed analysis of the Geometry network, we will have a look at some other
real world networks and try to see if we observe similar findings in other networks.

Next, we consider another co-authorship network, the Dblp2008 network. In Fig-
ure 9(a) and (b), we show the Max5-DIS and Max10-DIS of the network. In both these
figures, we show only part of the entire subgraphs as Max5-DIS contains over 60000 nodes
and Max10-DIS over 80000 nodes. The analysis is quite similar to that of the Geometry
network as in the Max5-DIS we see lots of smaller connected components forming cliques
of sizes between 1 and 5.

In Figure 9(b) we clearly see that the smaller components start to combine into one
big connected component just as the case of geometry network shown in Figure 6(c) and
Figure 6(d). This suggests that even at degree value 10, smaller connected components
begin to merge into one single connected component.

Figure 10(a) and (b) show the Max5-DIS and Max15-DIS of the Opte network. There
are 33418 nodes and 21067 edges in Max5-DIS which is 93% of the nodes have a degree
less than or equal to 5. If we look at the average degree of the entire network which is
1.18, this information comes as no surprise as it is expected to have many nodes of low
degree.

There is an absence of cliques when we observe the Max5-DIS of Opte network as
compared to the previous two examples. The absence of cliques can be deduced from the
low clustering coefficient of the network. The most important observation is the presence
a motif which stands out as recurrent, is the presence of star-like structure where one
node is connected to many other nodes of degree exactly equal to 1. This structure has an
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Figure 9: Visualization of Maxd-DIS graphs for the Dblp2008 network. (a) Part of
Max5-DIS (b) Part of Max10-DIS.
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implicit justification, it is highly efficient in terms of cost of transmission channels. Cliques
are not required as data can be transmitted only if a single path exists from one computer
to the other. Mostly the computers in such a network are organized in this star topology
where the computer with all the connections serves as a communication channel for the
other computers and the rest of the network. In network terminology, we can say that
there are no densely connected components as compared to the previous two networks,
but rather the star topology dominates this type of network.

Just as the previous networks, there are lots of disconnected components in this net-
work. One common behavior with the two previous examples is that as we increase the d
value, smaller connected components begin to merge into a single connected component
as shown in Figure 10(b). As compared to the highest node degree in this network, which
is 259, if we look at the Max15-DIS, the biggest connected components has 24414 nodes,
which shows that 68% of the nodes make a single connected component with maximum
node degree of 15 only. Another interesting observation about this biggest connected com-
ponent is the average path length of the nodes. In the absence of very high degree nodes,
the average path length of these 68% nodes is 21.6 as compared to the overall value of
16.7. This suggests that the high degree nodes are again the reason of reduced average
path length in these real networks.

We move to another example of technological network, the AirTransport network.
Figure 11(a) shows the Max25-DIS and Figure 11(b) shows part of the Part of Max50-DIS.
We choose relatively higher values of d in this example because there were not sufficient
nodes or edges to observe anything interesting for lower values of d. From Figure 11(a),
we can see that there are many disconnected components in the network as the previous
examples. Recall, this signifies that these networks require higher degree nodes to connect
to each other.

The structure of the network is quite an interesting one. We see that there are triads
as well as stars in Figure 11(a). If we look at the overall clustering coefficient, the presence
of triads is confirmed from the relatively high value of 0.49 as compared to that of the
Opte network which is 0.003. If we look closely at the biggest connected component in
Figure 11(b) with the Max50-DIS, we see that there are many star like structures, i.e. many
nodes with degree 1 connect to a single node. This makes a very interesting example to
study as we see that this network is a good mix of the two fundamental structures that we
have identified, the cliques and the stars. Moreover, the average node degree in Max50-DIS
is 1.49, which is very low as compared to the overall average degree of 10.7. Along with
the highest node degree of 487, these values suggest that the high degree nodes are very
well connected to other nodes in the network and thus push the average node degree to a
high value of 10.7.

Note that as with the previous examples, the smaller connected components start to
merge as we move to higher values of d while constructing the Maxd-DIS graphs.

The biggest connected component in Figure 11(b) has 832 nodes and 1941 edges which
is 54% of the total nodes. The average path length of the nodes in this component is 5.9
as compared to the overall value of 2.9 and the considerable difference again suggests that
very high degree nodes are responsible for the decrease in the overall average path length
of the entire network.

Finally, we consider an example from the Biological data. The Protein network again
presents a proof of the presence of star like connectivity among nodes. There are a few
triads as well but no bigger size cliques as can be seen from Figure 12(a) and (b) showing
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Figure 10: Visualization of Maxd-DIS graphs for the Opte network. (a) Part of Max5-
DIS (b) Part of Max15-DIS.
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Figure 11: Visualization of Maxd-DIS graphs for the AirTransport network. (a)
Max25-DIS (b) Part of Max50-DIS.
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Figure 12: Visualization of Maxd-DIS graphs for the Protein network (a) Max7-DIS
(b) Part of Max10-DIS.

Figure 13: An example of Mind−DIS before and after calculating Min4−DIS.

the Max7-DIS and part of Max10-DIS respectively. One big connected component starts to
appear in Figure 12(b) but we can identify the presence of the star like structures clearly
even in the bigger component. The low clustering coefficient of 0.23 of the overall network
also indicates the absence of many triads.

The biggest connected component in Figure 12(b) contains 436 nodes and 553 edges
and has an average path length of 9.8 where the overall average path length of the network
is 4.8. These values again reinforce our idea that high degree nodes cause the overall
decrease in the average path length of the nodes in a network.

3.2.2 Mind-DIS: A closer look

In this section, we present the details of Mind-DIS decomposition and how it can help us
to analyze networks. Lets take a simple example to see how it works. Consider the graph
in Figure 13 on the left and its Min4-DIS on the right. Only the nodes with degree at
least 4 are left in the subgraph and the low degree nodes are removed. This method by
definition considers only high degree nodes and thus helps us to have a look at how edges
are distributed in high degree nodes of a network.
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In terms of analysis of real world networks, lets consider the AirTransport network
for a detailed analysis using Mind−DIS. Figure 14(a) shows the entire network containing
1540 nodes and 16523 edges.

Figure 14(b) shows the Min250−DIS of the network showing the top 10 highest degree
nodes of the network connected through 44 edges, which is just one less to make it a clique.
This suggests that the worlds most widely connected airports have all a direct flight to
each other with the exception of one case. Recall from the construction of this network
explained in Chapter 2, two cities are connected to each other if there is a direct flight
from one to the other. The high degree of a city refers to its many different connections
to other cities and not heavy traffic nor does it refer to the world’s busiest airports.

Figure 14(c) shows the top 20 widely connected airports in the world drawn using a
circular layout [158]. We have also labeled the nodes with the city names. The nodes
are connected through 189 edges, missing the only edge for it to be a clique. This high
connectivity of high degree nodes essentially comes from the design strategy of airlines and
connectivity of any two cities of the world. Since the idea is to minimize the number of
hops required to go from one place to the other, all the hubs in the network are connected
directly to each other.

Figure 14(d) shows the top 5% high degree nodes of the network. There are 77 nodes
connected through 1822 edges which is an average degree of 23. In this subgraph, this high
connectivity can be measured in terms of average path length, which is 1.3 as compared to
the average path length value for the entire graph which is 2.93. This is a huge difference
in the context. Note that there is not a single node disconnected in this network, thus high
connectivity of hubs has been used as a method to increase the efficiency of transportation
where the criteria is obviously minimizing the hops as described earlier.

This example shows an application of how Mind-DIS can help analyze the connectivity
of hubs in real world networks. From the above example, we learned that the hubs are
very tightly connected to each other. We used the average path length to quantify how
close the nodes are to each other. Using Mind-DIS, we can also study the phenomena
of assortative mixing [128] introduced in chapter 1 where nodes with many connections
have a tendency to connect to other nodes with many connections. And finally we noticed
that all the nodes were connected in a single component and there were no disconnected
components. We summarize the type of analysis that can be performed using Mind-DIS
below:

> Study how edges are distributed in high degree nodes or hubs.

> Observe the connectivity pattern of high degree nodes forming one big connected
component. We use Average path length to quantify how closely the hubs are con-
nected to each other.

> Analyze networks for assortative mixing.

Next, we consider the other four networks that were analyzed using Maxd-DIS, the
Geometry, Dblp2008, Opte and Protein networks. For each of these networks, we took the
Mind-DIS with approximately 5% highest degree nodes. The results are shown in Figures
{15,16,17,18} respectively for the above mentioned networks.

The Geometry network contains 179 nodes and 1384 edges. There are only two nodes
that are not connected to the biggest connected component as shown in Figure 15. The
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Figure 14: Visualization of Mind-DIS graphs for the AirTransport network (a) Entire
Network (b) Min250-DIS with the 10 highest degree nodes (c) Min185-DIS with the
20 highest degree nodes (d) Min94-DIS with the top 5% highest degree nodes.
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average degree of this sub graph is 7.7 as compared to 2.6 of the overall, which shows that
these high degree nodes tend to connect to each other. The average path length of the
big connected component is 2.4 as compared to 5.3 of the entire network, which again is a
considerable difference. In this network, obviously the number of hops is not a criteria for
efficiency, as it was for the AirTransport network. Here, the social contacts of a research
community play an important role to keep the network well integrated where researchers
collaborate to many different people, which results in a low average path length for this
subgraph. We go back to the description of this network and the way this network is
built. The data set was obtained from Computational Geometry Database which contains
citation record of people working in this domain. The high connectivity of nodes within
and the low average path length of these high degree nodes can be justified by the fact
that people working in the same scientific domain have a higher probability of interacting
with each other. We can compare the behavior of high average degree and low average
path length of this network with that of AirTransport network as being similar, although
the semantics and the reasoning behind this development are quite different.

The other co-authorship network is the Dblp2008 which is significantly different from
the Geometry network. Figure 16 shows the Min17-DIS of the network with 3872 nodes
and 20828 edges. There are 326 connected components which is quite different from the
previous two networks analyzed using Mind-DIS. Although there is one big connected com-
ponent, but there are many disconnected components that are themselves well connected
to other nodes forming cliques. We call this behavior, local peaks as these are people
working in different scientific domains and publishing many articles. Their domains do
not cross necessarily and thus they are high publishing authors interacting with their
restricted research community but not with people of other domains.

A similar phenomena is observed in the Opte network where the Min7-DIS is shown
in Figure 17. There are 1697 nodes and 1869 edges in this graph and a very high number
of connected components, 718. There is one connected component of larger size but
most nodes have degree 0. This suggest that these high degree nodes pass through lower
degree nodes for connectivity. Remember we noticed the contrary when using Maxd-DIS
to analyze networks, when low degree nodes had to pass through relatively higher degree
nodes for connectivity.

Finally we look at the Protein network in Figure 18 showing the Min17-DIS. The graph
contains 67 nodes and 147 edges. There is only one node which is disconnected from the
bigger connected component. The average path length of this connected components is
3.7 as compared to the overall value of 4.8.

From the Mind-DIS analysis of several graphs, we found two interesting phenomena
about the way high degree nodes can connect to each other.

> Nodes with high degree are well connected to each other forming one big connected
component with low average path lengths (comparing with respective average path
lengths of their entire networks) OR

> Nodes with high degree break into several connected components and have a path
to each other through lower degree nodes

The Mind-DIS reveals this interesting structural behavior of real world networks. This
information can be quite useful when analyzing the efficiency of these networks or it might
even help design and improve the efficiency of systems with this type of analysis.
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Figure 15: Min17-DIS of Geometry network with 5% highest degree nodes.

Figure 16: Min17-DIS of Dblp2008 network with 5% highest degree nodes.
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Figure 17: Min7-DIS of Opte network with 5% highest degree nodes.

Figure 18: Mind-DIS of Protein network with 5% highest degree nodes.
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The proposed DIS method seems to be effective in a number of different ways when
combined with visual analysis. In the above section we analyzed some real world net-
works and showed how this method can be useful. Apart from the visual analysis of
the decomposed networks, the method can serve as the basis for the development of other
methods, metrics and algorithms for various applications. We present one such application
in section 3.4 that can be useful in different domains.

3.3 Comparing DIS and K-cores

Comparing the k-core decomposition with the Topological decomposition based on DIS,
first we consider the Maxd-DIS. Consider the example of Geometry network described
earlier and shown in Figure 6. The highest k value possible is 21 for the k-core decom-
position whereas the highest node degree is 102 for the DIS decomposition. Thus, the
subgraphs constructed for the two methods are 21 and 102 respectively. Subgraphs with
more nodes are produced using k-core for different values of k as shown in Figure 19. One
clear observation from the visualization of graphs in Figure 19(b) and (c) is that k-core
decomposition cannot be used to study how low degree nodes connect to each other as
compared to Maxd-DIS. By definition, as it progressively contains nodes with high con-
nectivity, for low values of k, we have quite large graphs cluttered in one big connected
component. This makes any visual analysis impossible. Thus Maxd-DIS has a clear ad-
vantage over k-core decomposition as it provides a way to study the connectivity of low
degree nodes as discussed earlier in the previous section.

Looking at the Min17-DIS of the geometry network, in Figure15, the network contains
179 nodes with 1384 edges. Comparing it with Figure 19(c) showing 10 − core of the
same network with 133 nodes and 1296 edges, we can clearly see that Min17-DIS contains
many nodes with low connectivity in the subgraph. This is because the way the two
subgraphs are built by definition. k-core focuses on nodes that only connected to other
high connectivity nodes and thus in the subgraph, each node has at least degree 10. On
the other hand, Min17-DIS contains nodes that are highly connected to other nodes and
thus in the induced subgraph, it is quite possible to find nodes with low degree. The
node edge density of the two subgraphs is a good indication of different set of nodes being
selected for the two graphs with some similarities.

Finally we compare the top 22 nodes obtained by the two methods shown here in
Figure 20. The author names are displayed and except for an author ‘Pankaj K. Agarwal’,
no other author is common to the two subgraphs. This clearly shows that by definition,
the two decomposition methods target a different set of nodes.

Summarizing the above findings, the k-core decomposition is more closer to the Mind-
DIS as both these methods try to focus on nodes of higher degree. To differentiate between
these two, assume that for some network, we are looking for ‘important’ nodes in some
respect. Using the definition of Mind-DIS, the ‘important’ nodes would be the ones that
have high degree, irrespective of who they are connected to. On the other hand, using the
definition of k-cores, ‘important’ nodes would be the ones that have high degree and are
connected only to other ‘important’ nodes.

A word on the time complexity of these two methods. k-core can be calculated in
O(n + e) [6] where n is the number of nodes and e is the number of edges. Mind-DIS
can be calculated in O(n) time which is much faster than the k-core decomposition. The
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Figure 19: k-core decomposition of the geometry network for different values of k
(a)k = 1 contains the entire network (b)k = 5 contains 610 nodes and 3594 edges
(c)k = 10 contains 133 nodes and 1296 edges (d)k = 21 is the highest possible value
of k for the network and contains 22 nodes and 231 edges making it a clique.
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Chapter 3. Analysis using Topological Decomposition

Figure 20: (a)Max59-DIS of Geometry network containing top 22 nodes with highest
degree (b) k-core of Geometry network containing top 22 nodes with k = 21. Only
one node is common to the two subgraphs.

difference becomes more important when real world networks with hundreds of thousands
of nodes and edges are treated using these methods.

3.4 Applications: Detection of Densely Connected Nodes

Figure 6(a,b,c) and Figure 9(a) clearly show that it is easy to identify cliques and densely
connected set of nodes visually, or on the contrary, identify the absence of them as shown
in Figure 10(a). This motivated us to quantify and measure the presence of densely
connected nodes in real world networks. In this section, we propose a metric which we call
Component Densities which is based on the topological decomposition presented in the
previous section. The idea is quite intuitive, as the networks break into smaller connected
components, we want to measure if these connected components have high node-edge
density.

A common application of detecting the presence of densely connected components is in
the detection of Community Structures. Roughly speaking, we like to define a community
as a decomposition of nodes into ‘Natural Groups’. More precisely, we can say that
a community is a set of nodes with high interconnectivity among themselves and low
connectivity to nodes outside the community. Detection of communities has a wide range
of applications in various fields. For example, in social networks, community detection
could lead us towards a better understanding of how people collaborate with each other.
Other applications of locating dense subgraphs can be found in biological data such as in
genome networks where mining coherent dense subgraphs helps in functional discovery [83],
or on the world wide web, where dense subgraphs might be communities of pages on topics
of similar interest or even link spam where web pages extensively refer to one another to
increase their popularity [67].

The issue of detecting densely connected nodes using metrics has been addressed by
other researchers. Few metrics are widely used to discover the presence of densely con-
nected nodes. We argue that these metrics do not truly reflect the presence of communities
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Figure 21: Consider two graphs with same number of nodes and edges and thus having
the same density in terms of number of nodes and number of edges. (a) Nodes well
connected to each other forming quads, (b) Nodes sharing neighbors to form triads.
Clustering Coefficient for graph (a) is 0.0 and (b) is 0.69 representing the absence of
triads in graph (a). This example shows that nodes can be densely connected even if
the clustering coefficient is low.

by presenting counter examples. This is because these metrics concentrate on local co-
hesiveness among nodes and the goal is to judge whether two nodes belong to the same
community or not. Thus loosing the overall perspective of the presence of communities in
the entire network.

One of the most widely used metric in network analysis is the clustering coefficient
described earlier. This metric can be often misleading due to its name as this metric
does not guarantee the presence of clusters in a network. Consider the example shown in
Figure 21 with two graphs. Both contain the same number of nodes and edges. Thus the
density (ratio of number of edges to number of nodes) of the two graphs is exactly the
same. Graph (a) is constructed using Quads instead of triads where a quad is a set of four
nodes connected through four edges in a ring. We then compare this graph with another
graph constructed with triads. Both these graphs are shown in Figure 21(a) and (b). The
clustering coefficient of graph (a) is 0.0 representing the absence of triads as compared to
graph (b) with a value of 0.69. This is no surprise as clustering coefficient, by definition,
measures the quantity of triads in a graph. This simple example suggests that a graph
can be densely connected even in the absence of triads. The presence of triads has been
identified in social networks, but not necessarily in networks from other domains, thus a
metric is required that can identify the presence of densely connected nodes in the absence
of triads.

Let us consider another example, shown in Figure 22. Figure 22(a) clearly has four
densely connected components highly connected within and disconnected to each other.
Figure 22(b) has several nodes sharing common neighbors in the form of triads but visually,
no distinct groups. Both these graphs have the same number of nodes and edges where
the clustering coefficient for graph (a) is 0.70 and of (b) is 0.69. No information about
the presence of four densely connected components can be deduced from the clustering
coefficient of graph (a).

Another popular metric is the Jaccard Index introduced by [86] also known as Jaccard
similarity coefficient. This metric is used to measure the similarity of two elements based
on common neighborhood. More precisely the index looks at the number of common
neighbors of the two elements and compares it with the size of all the neighbors of the two
elements. An edge is assigned high similarity value if they share lots of neighbors. Coming
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Figure 22: Two graphs with the same number of nodes and edges (a) Four Groups of
Nodes well connected within and disconnected with other groups.(b) Nodes sharing
neighbors in the form of triads. Clustering Coefficient for graph (a) is 0.70 and (b) is
0.69. High values for clustering coefficient does not necessarily imply the presence of
distinct community structures in a network as shown in graph (b).

back to our example in Fig.22(a), if we consider the edges connecting the clique with three
nodes only, all its edges are assigned a value 0.33 as compared to the edges of the clique
with five nodes that are assigned a value 0.6. A low edge value might suggest that the an
edge is not part of a densely connected set of nodes which in this case, is contradictory as
the edge with 0.33 value is in fact part of a densely connected component.

Several other metrics have been proposed in the literature where [114] provides a good
comparative study of various metrics for the community detection problem. Metrics such
as edge strength [9] are an effort to identify edges acting as bridges between communities.
Their metric combines two terms, the first term being the Jaccard metric of an edge e.
The second term computes the relative number of cycles of size 4 containing the edge e.
Raddichi et al.[139] have designed a similar generalization computing the cycles of size m.
The Jaccard index clearly stands out as the archetype metric for finding communities in
networks based on the notion of triads. Readers are referred to [114] for further details.

Our goal is clearly different from existing metrics as we do not focus only on triads.
Our intention is to exploit the fact that when DIS are created, nodes break into smaller
connected components. The density of these components can easily be measured and thus
subgraphs of high density can be found in the entire network. We would like to mention
that we do not address the well known maximal clique problem using this metric which
is known to be NP-Complete [40], although there are fast algorithms that address this
problem [31]. Note that we do not guarantee completeness in the sense that we do not
expect to find all the dense subgraphs present in the entire network. Using this method,
checking whether a connected component is a clique, is no more than a counting problem
where we can identify the presence of a clique by simply counting the number of nodes
and the number of edges in a connected component. But we do not try to find cliques of
a fixed size k which is shown to be solvable in O(nk) by [123] as our the method does not
guarantee that we will find cliques of some fixed size k. The proposed method is capable of
identifying connected components as cliques irrespective of the size of the clique given the
condition that when the network is decomposed, the network breaks into several connected
components. From the examples presented earlier in this chapter, this heuristic seems to
work well as all the networks presented in the study, had this property for low or high
values of d.
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The first step to calculate Component Densities is to calculate the connected com-
ponents in the DIS graphs generated. The method is independent of the type of DIS
generated and holds for any type of decomposition.

Calculation of Connected Components:
A breadth first search algorithm [41] can be used to calculate the connected components

in a DIS graph. All the connected components of a graph can thus be calculated in O(n+e)
time where n is the number of nodes and e is the number of edges in the DIS. The process
is repeated for each DIS, 2 ∗maxd times where maxd represents the maximum degree of a
node in the network and the factor 2 as the procedure is repeated twice, one for Maxd-DIS
and the other for Mind-DIS. This gives an overall time complexity of O(2∗maxd ∗ (n+e)).

Note that, as we move from different values of d, recalculation of each connected
component can be avoided by reusing values from the previous step. Thus an improved
implementation can speedup this calculation process and the overall time complexity can
be bounded by O(c ∗ (n+ e)) where c is some constant.

Measuring Component Densities:
Now that we have identified connected components in the decomposed graphs, we cal-

culate a metric to quantify the presence of densely connected components if there are
any. We assign a component density to each individual connected component using the
following equation:

CDq = (eq ∗ 2)/(nq ∗ (nq − 1)) (1)

Where CDq represents the Component Density (CD) of connected component q, eq
represents the number of edges in q and nq represents the number of nodes in q. The
equation represents the ratio of the number of edges in component q to the maximum
number of edges possible in the component. A value of 1 suggests that the component is a
clique and since the component is connected the minimum CD value possible is 2/nq. The
time complexity to calculate is the same as that of calculating the connected components
of a subgraph. The calculation can be done at the same time and thus the time complexity
remains the same after the calculation of the component densities.

Figure 23(a) shows the Max5-DIS calculated for the Geometry network. We calculated
the component densities on this subgraph and colored the nodes using a gradient from
blue for high values to red for low values of CD. This coloring helps to easily identify the
presence of densely connected nodes. Figure 23(b) shows the entire network where the CD
values of Max5-DIS are projected on the nodes of the entire network. This visualization
helps to identify the presence of the densely connected components found and provides
the user an idea of how these dense subgraphs are spread in the network.

Additional processes and measures can also be interesting such as searching for certain
size of densely connected components or counting the number of connected components
which are cliques. We can also study the presence of star-like structures in these subgraphs
which can help us quantify the structure of these complex networks as comprising of
cliques, stars or a mixture of both of these.

This metric is group level metric which is applicable on individual DIS graphs. We
extend the study of CD values from individual graphs to all the DIS graphs generated for
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Figure 23: Component Density (CD) calculated for the Max5-DIS of Geometry net-
work. (a) shows color encoding on the nodes from high (blue) to low (ref) values.
Nodes in blue color can be easily identified as densely connected components. (b)
shows the projection of CD values of Max5-DIS on the entire network with the same
color encoding. This gives an idea of how the densely connected components are
spread out in the entire network.

different values of d. The idea is to study how CD values behave over different values of
d, we call these Component Densities for Graphs (CDG).

Component Densities for Graphs:
We calculate the weighted component density for all the connected components in a

DIS to ensure that large and dense components are assigned high values as compared
small and less dense components. Remember that the number of nodes in each connected
component changes as the d value changes and some connected components have many
nodes specially as the giant component appears in a DIS. We represent this value by CDGd

for d degree induced subgraph and is calculated by the equation:

CDGd =

qmax∑
q=0

nq ∗ CDq

nd
(2)

Where CDGd represents the weighted Component Density of d-DIS. While calculating
the CDGd, we exclude the weight of components having only 1 or 2 nodes as it biases the
CDGd. We do count them in the total number of nodes (nd) present in the induced sub-
graph though. This is because if a graph has lots of 0 degree nodes, its overall component
density will be lower than a graph with well connected higher degree nodes. The weight is
associated to ensure that components having more nodes are weighted more as compared
to components having fewer nodes. The CDGd can be calculated for different values of d
where the d can take values from 0 to the maximum degree of a node in G. The calcula-
tions in Eq. 1 and Eq. 2 are totally independent of how the subgraph was constructed and
thus can be used to calculate the component densities of either Maxd-DIS or Mind-DIS.
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The CDG values of Maxd-DIS (given by CDGMaxd
) and Mind-DIS (given by CDGMind

)
represents the presence or absence of dense components in the subgraphs generated by
these decompositions. High values of CDG suggest that there are densely connected nodes
in the induced subgraph which can eventually represent communities in the entire graph
as well. Another supplementary information that can be extracted from CDG values is
that by identifying the peak value of CDGMaxd

and CDGMind
, we can point out the

induced subgraphs in which these dense subgraphs are present, instead of analyzing each
and every subgraph as we explained earlier in section 3.2.1 and section 3.2.2. Looking at
CDG values, we can not only identify the subgraph of interest, but quantify the presence
of dense subgraphs for comparative study over different data sets.

We plot graphs for the respective CDGMaxd
and CDGMind

values for different data
sets that have been studied in this chapter. The graphs are shown in Figure 24. The values
on the x-axis represent the maximum degree of each network, which in turn represents the
number of subgraphs generated for each network. The values on the y-axis are the CDG
values which are between 0 and 1 where 1 represents the presence of cliques. For each
real world data set, we have also generated small world [170] and random networks [54] of
equivalent number of nodes and edges so that we can compare the behavior of the metric
with the corresponding artificially generated network. These networks are drawn using
Dotted-Line for Small world networks and Dashed-Line for Random networks.

The evaluation of CDGMaxd
and CDGMind

for Random networks and Small world
networks for graphs of different sizes can be generalized easily. For random networks, we
do not expect to find any community structure and thus these networks have low CDG
values for all the test cases as shown in Figure 24. On the other hand, we have the small
world networks which by definition contain communities and this is well reflected by the
high CDG values for all the artificially generated networks. One exception is the case
where the generated small world graph is equivalent to the size of the Opte network. This
is due to the low overall density of the graph itself as the edges scale linearly with the
number of nodes. Thus we do not expect to find densely connected set of nodes and this
is reflected by the metric and is clearly observable in the graph.

We first look at the CDG values of the two co-authorship networks, the Geometry
and the Dblp2008 network shown in Figure 24(a,b,c,d). The high values of Maxd-DIS for
both these graphs are observed as compared to the respective small world and random
graphs. Remember that the overall node-edge densities of these networks vary a lot, thus
they cannot be compared with each other. This is the reason why we generated artificial
networks to have a sort of a benchmark value for these networks. The graphs follow
almost the same behavior as high values are observed for d value of around 6 and 8 and
the values fall of consistently as d values increases. This result has logical semantics to
it, as we are considering a collaboration network of researchers and they are connected
to each other if they publish an article. Mostly less than 8 people appear as authors
in an article forming cliques in the collaboration network of sizes smaller than 8. This
information is well represented by the CDGMaxd

values.

The most interesting observation is the Mind-DIS graph where we observe high val-
ues for the Geometry network and low values for the Dblp2008 network. This difference
was highlighted earlier in section 3.2.2 where we justified that since Geometry network
comprises of people working in the same scientific domain, they are more likely to collab-
orate with each other where as the Dblp2008 network is a mixture of people from various
domains, not every one collaborates with the other and the phenomena of local peaks is

49



Chapter 3. Analysis using Topological Decomposition

evident as shown in Figure 16.

The CDG values for Opte network are shown in Figure 24(e) and (f). The network is
not classified as a small world as it is has very low clustering coefficient of 0.003. Using our
metric, we do not find any presence of densely connected nodes neither in the CDGMaxd

nor in the CDGMind
graphs thus reflecting the correctness of the metric. As we analyzed

the structure of this network using Maxd-DIS, we realized that this network has star like
structures that are not at all dense, and thus the low values of CDG are observed for this
network.

The AirTransport network is an interesting example(Figure 24(g) and (h)). Using our
metric, we are able to find densely connected nodes as we get high values for Mind−DIS.
The densely connected subgraphs found for high values of Mind−DIS are shown in Fig-
ure 14(b) and (c) where all the worlds widely connected airports are linked to each other
through a direct flight. This makes sense as the worlds most important airports like New
York, Paris, London all have a direct flights to each other. On the contrary, we did not
find any dense components in the Maxd−DIS as this is because regional airports that do
not have many connections rarely have alternate paths to connect to each other, they
usually pass through a central hub to connect to other less widely connected airports. So
if you live in a small city, you probably have to go to a local hub, to take a connecting
flight to far off cities.

Finally the Protein network where the CDG values are shown in Figure 24(i) and (j).
The high values in CDGMind

suggest that the high degree nodes are well connected to each
other as compared to the low degree nodes. This reveals the networks similarity with the
Geometry and AirTransport network where both these networks have densely connected
nodes for high degree nodes.

Inferences and Observations:
Apart from identifying the presence of densely connected nodes in different networks,

interesting properties of real world networks can be observed using the CDGMaxd
and

CDGMind
graphs. We list these below:

> Networks are usually classified as either Random, Small World, Scale Free or both
Small World-Scale free at the same time. Using the proposed metric, we can have
further insight in these networks by understanding how the edges are distributed in
low or high degree nodes of these networks. Dense subgraphs can exist in nodes that
have a low degree in the graph (as is the case with the two Co-authorship networks),
or they can exist only in high degree nodes (Geometry, AirTransport and Protein
network).

> The absence of communities can have two consequences, either the network is Ran-
dom or it consists of star like structures where many nodes connect to a single node.
Typical example is the routing information of servers in case of the Opte network.
From the proposed metric, we are able to find the same behavior in the low degree
nodes of AirTransport network.

Although this preliminary analysis reveals some interesting facts about the different
data sets, a more detailed study by the domain experts might reveal more information.
A huge advantage of this metric is that it is highly efficient in terms of time complexity.
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As discussed previously, the overall time complexity for the calculation of CDGMaxd
and

CDGMind
takes O(2 ∗maxd ∗ (n+ e)) time. The factor maxd representing the maximum

node degree in the network is quite low in reality and varies from one network to the
other. Furthermore, for varying values of d, the subgraphs contain much less nodes and
edges than n or e, which makes the algorithm run quite fast in reality and scales almost
linearly with the factor (n+ e).

3.5 Findings and Future Research Prospects

In this chapter we have introduced a method to analyze networks based on the topological
decomposition and visualization of networks. The most important contribution of this
method is that it enables us to visualize networks and see how nodes and edges connect
to each other in different networks. Combining metrics and visualization technique to
analyze complex large size networks proves to be quite useful as the method allows us to
understand different connectivity behaviors as networks change from one domain to the
other.

As one of the applications of the proposed method, we introduced a metric for group
level analysis called component density which can be extended to the decomposed sub-
graphs. The metric helps us to identify the presence of densely connected components in
real world complex networks. Calculation of this metric takes almost linear time in terms
of number of edges and proves to be very fast when applied to large size data sets. We
have tested the metric with different data sets and show the effectiveness of the metric
by comparing the results with small world and random network models. We found some
interesting behavior in the way the edges are distributed in high and low degree nodes.
Based on this distribution, we can actually see that as a function of degree, dense sub-
graphs can be present in high degree nodes, low degree nodes, both or no where in the
network. Some interesting results about the structure of networks were discovered, or
re-discovered such as the presence of triads, cliques of higher degree, star-like structures,
showing the effectiveness of the proposed method.

The topological decomposition proposed opens new dimensions in the field of visual
data mining as complex networks can be simplified using the proposed method. Con-
nectivity of nodes can be studied as a function of varying node degree of a network and
helps us to discover how edges are distributed in a network. We see this method as a
step forward towards the better understanding of complex networks and an important
tool to analyze networks for various applications such as searching in networks, finding
interesting patterns, studying the connectivity behavior of nodes in networks and develop
local as well as group level metrics.

Throughout this thesis, we use the DIS decomposition in a number of different ways.
In Chapter 4, we analyze the structure of a number of models to generate artificial graphs.
As another application of the presented DIS decomposition, in Chapter 5, we present a
hierarchical clustering algorithm with a low asymptotic complexity.
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Figure 24: Component Densities of Graphs for the 5 data sets.{(a)(c)(e)(g)(i)} rep-
resent the CDGMaxd

and {(b)(d)(f)(h)(j)} represents the CDGMind
values.

52



Chapter 4

Structure of Networks

4.1 Introduction

An important aspect in the study of complex networks is how they are structured in the
real world. Watts and Strogatz presented a model [170] to explain how the two prop-
erties of small world networks, high clustering coefficient and low average path length
appear in networks. Barabási and Albert gave a model [13] to explain how networks
with power-law degree distribution arise in networks. From these two ground breaking
results, many researchers have introduced different models to explain the appearance of
networks with small world and scale free properties in the real world. In this chapter, we
study a number of these models in the light of several concepts borrowed from the field
of sociology to understand the structure of real world social networks. We analyze the
artificial networks produced by these network models using the Topological decomposition
presented in Chapter 3. The differences and similarities of these models are highlighted
and their shortcomings are identified. Further more, we present a new model which pro-
duces networks with both small world and scale free properties to overcome the identified
shortcomings.

As a general classification, these different models can be grouped into two categories;
Evolving models and Static models. Evolving models are the models that explain the
evolution of complex networks as a function of time where the idea is to model the growth
behavior of these networks. A good example is the Barabási and Albert model for scale free
networks. Nodes are introduced continuously in the network and following the principle
of preferential attachment, power-law degree distribution appears. Static models are the
models that are concerned with how networks are structured so that certain properties of
complex networks are present. Here, the term structure means the arrangement of nodes
and edges, how they connect to each other. The Watts and Strogatz model is such an
example, as they start with a certain number of nodes and edges, that do not increase
with the passage of time but explain how high clustering coefficient and low average path
lengths appear in a network.

Both evolving and static models are of interest as they serve different purposes. Evolv-
ing models try to identify the principles that govern the evolution of the physical systems
around us. Static models propose methods to understand the structure and formation of
networks. Both these types of models can be used to construct artificial networks with
properties similar to real world networks to facilitate experimental and empirical studies.
Since the introduction of small world and scale free properties, many researchers have de-
veloped network models that generate artificial small-world and scale free networks. We
review a number of these models in section 4.3.
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In this chapter we focus particularly on social networks. Described in Chapter 2, a
social network can be defined as a set of people, or groups of people interacting with
each other [148, 169]. Social network modeling and analysis allows us to understand the
different types of relationships that can either facilitate or impede knowledge creation and
transfer in a society on the whole, in an organization in particular, and in individuals,
providing an insight on the underlying patterns and the social structures present in these
networks [173, 43].

An important aspect of social network study is their substructure in terms of clusters.
Sociologists use the term community structures or communities [37] as compared to the
statistical and data mining domain where people use the term clusters [160] to refer
to the same concept. We earlier defined a community as a decomposition of vertices
into ‘Natural Groups’. There is no universally accepted definition of clusters [57], most
researchers describe a cluster by considering the internal homogeneity and the external
separation as the fundamental criteria for defining a cluster [69, 79, 88].

The properties of clusters in a network can tell us a lot about the likely behavior of the
network as a whole. How fast will some information propagate across the network? How
to identify representative nodes of a network? How do the clusters and social structures
communicate and overlap one another? All of these aspects about structure of a network
can be very relevant to predicting the behavior of the network as a whole [89, 173].

We explicitly target social networks and argue that using concepts from social network
study, we can generate artificial networks replicating real world social networks. These
concepts are discussed in section 4.2. For the sake of discussion and explanatory purposes,
throughout this chapter, we are going to discuss four social networks, two of which are well
studied and well structured and two of them although hypothetical, are yet common in
our every day life and easy to comprehend. One of the two well structured social networks
is the collaboration network of authors where nodes represent people and two people are
connected to each other if they have written an artifact together [125]. The other is the
actor collaboration network from the movies where two actors are connected to each other
if they have appeared in a movie together [13] introduced earlier in Chapter2. We refer to
it as the Actor or Imdb network. We also consider two cases from everyday life. Consider
a person joining a new organization as an employee and a person joining a sports club
as a leisure activity. We will refer them as Actor, Author, Employee and Club networks
respectively throughout this chapter.

In this chapter, we study a number of network generation models that produce small
world-scale free networks. We show that there are considerable structural differences in
these artificial networks and real world networks. We propose a new static model to
generate artificial networks with small world-scale free properties.

The rest of the chapter is organized as follows: In section 4.2, we discuss a number of
different social characteristics and argue that with a little modification to these concepts,
we can understand how networks have community structures in the real world. Next, we
compare the existing network models in the light of these concepts and show their inability
to produce networks which are close to the real networks studied in detail in Chapter 3. We
then present a network generation model in section 4.4. In 4.5, we evaluate the proposed
model as compared to other models. Next, in section 4.6, we present comparative results
with real world networks to demonstrate the correctness of the proposed model. Finally
we conclude by giving possible future directions of our research in section 4.7.
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4.2 Structure of Social Networks

In this section, we discuss a number of concepts from the domain of sociology in an attempt
to better understand how social networks in the real world are structured.

Social Ties
People in the real world are linked to each other through social ties. A wide range of

ties exist in the society and their study has attracted lots of research activity [169]. As
discussed in Chapter 1, the simplest form of a tie is Dyad [150] where two people are
linked to each other. This is considered as the unit of studying relationships in a social
network. Triads are relationships between three people and have been the focus of many
social network studies [169]. Groups of larger size are also possible but since a variety of
relationships can form in them, they are less stable [150] and often less studied in sociology.
They are often identified by their dense connectivity and clear bounds forming a cluster.
Common questions studied in the analysis of these groups are how large they are in a
network? How does their sizes vary in a society? how sparsely connected they are to one
another? To what extent people belonging to multiple groups connect different groups?

Due to dense interconnectivity, these ties are termed as strong ties [102] where nodes
that are loosely connected to each other are said to have weak ties [70]. A significant work
to highlight the importance of these weak ties is by Granovetter [70] where he concludes
that effective social coordination does not arise from dense interlocking but from the
presence of occasional weak ties. Each of us in the society has these weak ties along with
strong relationships. These weak ties or acquaintances are important for developing new
relationships and possibly joining new social communities. There is a fine mix of both
these weak and strong ties that exist in our society and both should be considered to
develop a model to generate artificial social networks.

Homophily
An important human characteristic is homophily, tendency of actors or entities to asso-

ciate with other actors or entities of similar type [141, 142]. Homophily helps to explain
why you know the people that you do, because you all have something in common, but
one might also wonder how people you know at present determine the people you will
know in the future. This also introduces the idea of dynamics in triadic closures. Two
people who have a mutual friend will tend to become acquainted in time [141]. A model
based on these ideas was proposed by Rapoport who called it Random Biased Nets. The
idea was to modify the traditional random model of networks such that it incorporates
social behaviors. Rapoport also concluded that we occasionally do things that are derived
entirely from our intrinsic preferences and characteristics, and these actions may lead us to
meet new people who have no connections to our previous friends at all. Although these
actions might appear to be random, but can be justified as having strong social back-
ground with logical explanations. We limit our study to address this characteristic and
refer it as random connectivity pattern. In the light of homophily and social dynamics, we
can conclude that new connections between people are formed based on two properties,
random connectivity and homophily.

Extraversion-Introversion
It is interesting to note that in our society, we come across people that are well known
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and famous, and then there are people who have very few friends and contacts. These ideas
are the direct implication of the human trait of extraversion-introversion [93]. Extroverts,
who are open to meeting new people and developing new relationships are expected to
have high degree of connectivity in a social network as compared to Introverts, who tend
to be more reserved, less outgoing, and less sociable.

An important use of this human characteristic is to explain the scale free degree be-
havior of social networks. A famous person is likely to become more famous as compared
to a person who is not well known in the social community. Termed as the principle of
Preferential Attachment [13], it explains the growth behavior of networks with power law
degree distribution. The idea is that in real world networks, nodes having high degree,
have a high probability of attracting more connections as compared to nodes with low
connectivity. Thus new social connections have to take this property into consideration
as well.

In our society, we do not form individual relations with people, but with groups of
people. These relations are defined by particular circumstances, interests or some context
like our school, work place, family [142, 70] and can be explained by homophily. Since
these groups are densely connected to each other, often forming cliques, their social ties
are considered as strong ties. Since our society is built using these cliques, we call them
‘Building Blocks’ of our society.

Each of these ‘building block’ or ‘group’ is like a small cluster joined to each other
by people belonging to more than one group [171]. When these small clusters have many
connections to each other, they form bigger size clusters. The size of clusters in a network,
vary to a large extent, and so does the number of clusters. Both these parameters depend
largely on how the individuals and their ties evolve in a society, how new connections are
formed and older ones maintained or destroyed.

Let us consider the example of the actor network. When an actor acts in a movie, the
social interactions will take place within the entire cast of the movie and form new ties
between actors if they do not exist previously. These interactions will be represented with
a clique where all the nodes representing the actors will be connected to each other. The
authorship network is no different as people co-authoring an artifact will form a clique.
Similarly in the real world, usually groups of larger size are formed. Continuing with
the two examples, a new employee will most likely interact with different colleagues in
the same organization who work together on the same project or with whom a person
shares an office for example. For a person joining a sports club, he will interact with
people sharing similar activities instead of just one or two others. This is to highlight the
idea that a person not necessarily interacts with only one or two other people, but more
than two people and this is the reason why we obtain cliques of larger sizes as shown in
Chapter 3.

Addressing the principle of Preferential Attachment, we argue that for every node in a
group (or Clique), few nodes have higher connectivity with other nodes. For example, in a
group representing the actors playing in the same movie, the famous actors will have many
connections with others as they would have played a role in many movies, and the actors
who are starting their career, or are not so well known will have only a few connections.
Similarly, in the authorship network, an experienced researcher would have published an
artifact with many other researchers and thus would have a high number of connections.

Finally, we look at the society on the whole where we consider the average path length
of the networks. We earlier discussed in Section 3.2.1 that the low average path lengths
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are due to high degree nodes as they are responsible of connecting many disconnected
components that we see as a result of Maxd-DIS. Another way to have low average path
lengths in a network is by random connectivity of nodes, where Watts and Strogatz [170]
used this method to have low average path lengths in small world networks.

The model we are about to present exploit both these ideas. Combining all these
principles, we can conclude that the important elements to capture in the structure of a
social network are:

1. Social networks consists of many small groups that are densely connected within
themselves forming cliques.

2. These groups overlap due to individuals having multiple affiliations.

3. Some groups have many overlaps which creates large size communities or clusters.

4. A certain degree of randomness exists where we occasionally do things that are
derived entirely from our intrinsic preferences and characteristics. These actions
lead us to meet new people who have no connections to our previous friends at all.

5. The random connectivity pattern and the presences of high degree nodes are both
responsible for the low distances between any two people on average.

6. Every group of people has a few Extroverts and many Introverts, where extroverts
are responsible for interconnecting people from different domains and the society at
large.

Let us reconsider the Geometry network using the Max15-DIS decomposition where
we consider six connected components only. The idea is to show that some components
are loosely connected as shown in Figure 25(a)(b), some components are relatively well
connected as in Figure 25(c)(d) and some are densely connected as in Figure 25(e)(f).
The calculation of Component Densities in section 3.4 and Figure 23 also reinforces the
idea that in a network, there are regions of vertices that are better connected within as
opposed to some regions with loosely connected vertices. This variable behavior in the
node-edge density suggests that certain nodes favorably connect with each other giving
us these dense regions, and thus creates clusters in a network. So we can say that when
the building blocks of a network are densely connected to each other, we get sets of nodes
with high interconnectivity representing clusters in a network. On the other hand, these
dense regions are loosely connected to other nodes in the network.

4.3 Existing Network Generation Models

In this section, we review a number of network generation models proposed in the literature
having small world and scale free properties. A comparative summary of these models is
presented in Table 2.

Holme and Kim [82] modified the well known Barabasi and Albert model [13] to obtain
graphs that are small world as well as scale free. The idea is pretty simple and effective.
A Triad formation step is added after the preferential attachment step where every node
introduced in the network, connects not only to node w, but also to a randomly chosen
neighbor of w thus resulting in a triad formation. This results in the formation of lots
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Figure 25: Six connected components from Max15-DIS of Geometry network. (a) and
(b) are loosely connected, (c) and (d) are well connected and (e) and (f) are densely
connected. The variation in node-edge density suggests the presence of community
structures in the network.

of triads in the network increasing the overall clustering coefficient. A parameter m0 is
used to decide the initial number of vertices with no edges. Another parameter m is
used to decide the number of edges a newly added node will have in the network. This
parameter can be used to control the node-edge density of the network. The newly added
vertex connects to m different nodes based on the probability which is proportional to
their degree. As a result, every new node introduced in the network will form a triad with
the highest degree node, which results in lots of triads around high degree nodes. But
since the m vertices are chosen solely on the basis of their degree, no clear community
structure appears. Another drawback of this model is that it does not generate cliques
of larger size as it only forces the presence of triads. We show Max15-DIS of the network
generated using this model in Figure 26. The parameters are set to generate a network of
approximately the same size as that of NetScience network.

The idea of Holme and Kim is similar to another model separately proposed by Doro-
govtsev et al. [48] in the same year where every new node added to the network is con-
nected to both ends of a randomly chosen link where one of the nodes of this link is
selected through preferential attachment. Similar behavior is obtained in terms of connec-
tivity as lots of triads are created and the absence of large size cliques remains a drawback.
Moreover no other criteria is used to enforce the presence of community structures in the
network.

These models inspired Jian-Guo et al. to introduce another similar model [109]. The
network starts with a triangle and at each time step, a new node is added to the network
with two edges. The first edge would choose a node to connect preferentially, and the
second edge will choose a node connected to the first node, again based on preferential
attachment. This is different from the previous two models where the second node is
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Figure 26: Max15-DIS of a network generated using Holme-Kim model with m0 = 5
and m = 1, which gives a network of size approximately equal to the NetScience
network. Higher degree cliques are clearly missing. The subgraph contains 373 nodes
and 584 edges as compared to the entire network with 379 nodes and 757 edges.

Figure 27: Network generated using Wang et al. model for random pseudofractal
networks. We see how the network evolves from t = 0 to t = 5.

randomly chosen. No structural changes occur with this modification in terms of cluster
formation, the clustering coefficient is increased by the presence of triads but bigger size
cliques are still missing and nodes do not attach to each other based on their domain or
surroundings but only on their degree.

Wang et al. [167] proposed a model to generate random pseudofractal networks with
small world-scale free properties. The model starts with two nodes connected through an
edge. At each time step, a new node is added with two edges. The new node is connected
to the two ends of an edge and the process is repeated for every existing edge in the
network. There is obviously no community structure present in the network. We show
the evolution of the network in Figure 27.

Fu and Liao [63] proposed another extension to the Barabasi and Albert model which
they called the Relatively Preferential Attachment method. At each time step, the newly
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Figure 28: Network generated using Klemm and Eguiluz model.(1) Network starts
with m = 4 (2) A new node (red) is added connecting to all existing nodes (3) A node
is disactivated (black) based on probability proportional to its degree (4) Another
node is added (red) (5) Another nodes is disactivated.

introduced node in the network connects to a node w with preferential attachment, the
nodes in the immediate neighborhood of w have higher probability of connecting to this
new node as compared to other nodes. The only difference in this model with the already
proposed models is that the new node can have m edges instead of two edges where
the value of m is chosen as an initial parameter which remains constant throughout the
execution of the algorithm. As a result, cliques of variable sizes do not appear in the
network. For values of m greater than 2, triads appear in the network increasing the
overall clustering coefficient.

Klemm and Eguiluz [100] also proposed a model, where each node of the network is
assigned a state variable. A newly generated node is in the active state and keeps attaching
links until eventually deactivated. At each time step, a new node is added to the network
by attaching a link to each of the z active nodes. The new node is set as active. One of the
existing nodes is deactivated where the probability of a node being deactivated is inversely
proportional to its degree i.e lower the degree, higher the probability of deactivation. To
reduce the average path length of the entire graph, at every step, for each link of the
newly added node, it is decided randomly whether the link connects to the active node
or it connects to a random node. Figure 28 shows the evolution of network and the way
new nodes are connected to existing nodes. Again the model does not impose any other
constraint so as to form community structures. Figure 29(a) and (b) show the Max5-DIS
and Max10-DIS of the network generated using this model where the size is approximately
equal to that of the NetScience network. We can easily observe that cliques are absent
from these subgraphs and the higher clustering coefficient is due to the presence of triads
in the network.

Catanzaro et al. [35] present a model taking into consideration the assortativity of
social networks. At every step, a new node is added to the network based on preferential
attachment and a new edge is added between two existing nodes. These existing nodes
are chosen on the basis of their degree thus forcing links between similar degree nodes.
The model is innovative as it allows addition of new links between old nodes. Since the
addition of new nodes is only based on node degrees, nodes of similar degree connect to
each other randomly and no clear community structure appears.

Newman et al. [132] study models of the structure of social networks with arbitrary
degree distributions. The proposed model can also be used to generate networks with scale
free degree distribution. The authors introduce the idea to generate affiliation networks
similar to co-authorship networks using random bipartite graphs. This idea is used by
Guillaume and Latapy [73] as they identify bipartite graph structure as a fundamental
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Figure 29: Network generated using Klemm and Eguiluz Model where size is approx.
equal to the NetScience network. Figure (a) and (b) show the Max5-DIS and Max10-
DIS respectively. The absence of cliques and the presence of giant component are
clearly observable.
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model of complex networks by giving real world examples. The two disjoint sets of a
bipartite graph are called bottom and top. At each step, a new top node is added and its
degree d is sampled from a prescribed distribution. For each of the d edges of the new
vertex, either a new bottom vertex is added or one is picked among the pre-existing ones
using preferential attachment.

A more generalized model based on similar principles was proposed by Bu et al. where
instead of using the bipartite structure, a network can contain t disjoint sets (instead
of just two sets, as is the case of the bipartite graph). In the paper, they discuss the
example of sexual web [108] which is based on the bipartite structure. A sexual web is
a network where nodes represent men and women having relationships to opposite sex,
and similar nodes do not interact with each other. At each time step, a new node and
m new edges are added to the network with the sum of the probabilities equal to 1. The
preferential attachment rule is followed as the new node links with the existing nodes with
a probability proportional to the degree of the nodes.

Wang and Rong [166] proposed a slightly different model, which is still a modified
form of the preferential attachment model. Instead of adding one node at a time, the
model proposes to add n nodes at each time step which are connected in a ring formation.
Any two nodes in the n new nodes are connected to the existing network where these
connections are determined through preferential attachment. The network breaks into
cliques of different sizes but since there is no biased connectivity among the nodes, the
cliques are spread uniformly over the network and we cannot find any densely connected
set of nodes. Figure 30(a) and (b) show the the Max5-DIS and Max6-DIS respectively.
Again the network is generated to be equivalent to the size of the NetScience network.
Figure 30(a) shows the presence of cliques of different sizes and Figure 30(b) shows the
uniform distribution of these cliques in the network without any clear community structure
and cliques are connected to each other through edges. As compared to our society, where
people belonging to multiple groups connect these small groups forming our connected
society at large.

Guo and Kraines [75] proposed a model to study how the clustering coefficient affects
the formation of a giant component. The model generates a random social network with
finely tunable clustering coefficient. The generator is composed of three steps: first, a
degree sequence is generated following a power law. Next, the generator constructs a
random network using the algorithm of Molloy and Reed [120]. Finally, the network
connections are modified to achieve the desired clustering coefficient. The model is a
static one, as it adds all the nodes initially to the network following a prescribed degree
distribution. Next, the network is modified to introduce triangles which increases the
overall clustering coefficient.

Generation models for clustered graphs exist in the literature such as the work of
Condon and Karp [39] and Virtanen[164] where the idea is to generate graphs that are
already clustered as opposed to random graph models of Rapoport [141] and Erdos and
Renyi [55]. But these generation models do not produce graphs with small world and scale
free properties which are fundamental to most real world networks. Thus the study and
comparison of these other models remain out of the scope of the paper.

Comparing the different network generation models (See Table 2), the first five models
are quite similar to each other, as they try to force the triad formation step, one way
or the other. Another common aspect in the first five models is that in every step, only
one node and two edges are added to the network. The only other taxonomical grouping

62



4.4. Proposed Network Generation Model with Communities

Figure 30: Network generated using Wang and Rong Model where size is approx.
equal to the NetScience network. (a) Max5-DIS: shows the presence of cliques of
different sizes (b) Max10-DIS: shows the uniform distribution of these cliques in the
network and cliques rarely overlap. Cliques are connected to each other by edges
as compared to real social networks where these small social communities overlap to
form our society.

possible is the three models where the bipartite and n-partite structures are used as the
fundamental property of real world networks. The model of Wang and Rong is slightly
different as it allows the addition of m new nodes at every time step. The idea of Klemm
and Eguiluz, Catanzaro et al. are quite original and provide another way to look at the
evolution and structure of complex networks.

4.4 Proposed Network Generation Model with
Communities

As described earlier, the proposed model generates a static network. There are three basic
steps in the model which are discussed below.

In the first step, we introduce what we call building blocks in the network. As described
in the previous sections, our society is composed of many small groups. So, instead
of adding one node at a time, we add cliques of various sizes representing these small
groups of the real world. This results in the network having high clustering coefficient. In
comparison to various models described earlier, where one node at a time is added to the
network. These cliques represent the building blocks of our society as described earlier in
Section 4.1.

The next step is to join these cliques to form a connected society. These cliques are
connected to each other because people belong to multiple groups. From the property
of Extraversion-Introversion, we know that there are people with many social contacts as
well as people with only a few contacts. These ideas lead us to define for every entity, the
number of groups, it belongs to. For a node belonging to two different groups, we simply
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Comparative Summary of Existing Network Generation Models

Model, Year n m Innovation

Holme and
Kim, 2002

1 m Triad formation step, forcing a new node to connect
to the neighbors of the first node it links to, in order
to have triangles and increase the clustering coefficient.

Dorogovtsev et
al., 2002

1 2 Randomly chose an edge and attach both ends of
this edge with the new node where the probability of
choosing an edge is based on the degree of the nodes
at its ends.

Jian-Guo et
al., 2005

1 2 Each new node attaches to existing node with prefer-
ential attachment and choses one of its neighbors again
based on preferential attachment (and not randomly
as compared to Holme and Kim).

Wang et al.,
2006

1 2 For each edge, a new node with two edges is added,
which is attached to both end nodes of the edge.
Produces Fractals rather than a random graph.

Fu and Liao,
2006

1 m Once a new node attaches to a node, its neighborhood
has a higher probability of connecting to the new node.

Klemm and
Eguiluz, 2002

1 m Activate and deactivate nodes based on node degree
where nodes having low degree have a high probability
of getting deactivated.

Catanzaro et
al., 2004

1 m Assortativity &
Allows growth in old nodes by allowing new edges.

Newman et al.,
2002

1 m Random network following a prescribed degree dis-
tribution is generated. Bipartite graphs are used to
generate affiliation networks and obtain high clustering
coefficient.

Guillaume and
Latapy, 2004

1 m Bipartite Structure identified as a fundamental char-
acteristic for real world graphs (similar to Newman et
al., 2002).

Bu et al., 2007 1 m n-partite Structure, where nodes do not connect to
similar node types.

Wang and
Rong, 2008

n m Add m new nodes and any two nodes in the m
new nodes link together from each other and they
link to existing nodes based on preferential attachment.

Guo and
Kraines, 2009

- - Static model that generates a random network with
scale free degree distribution for n nodes. Next,
the connections are modified to achieve the desired
clustering coefficient.

Table 2: Comparing and Summarizing different Artificial Network Generation Models
existing in the literature. n=nodes, m=edges64
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merge two nodes from different groups, as a result, two cliques are combined with a single
node being part of the two cliques as shown in Figure 32.

To achieve this, we associate a possible connectivity attribute drawn from a degree
distribution following power law. Few nodes when being part of many groups, will end up
having many social contacts and represent the extroverts in the society.

For each node, this connectivity attribute, called Open connections (OC) determines
the number of merges for each node. Note that the number of merges are directly propor-
tional to the final node degree. If a few nodes are merged with many nodes, these nodes
will end up with many connections and thus the scale free degree distribution will appear
in the network. This attribute is an integer between [1,P] where P is some constant value
and represents the maximum node degree a node can have in the network.

Finally, based on these number of merges which represent open connections of nodes
(OC), we merge two nodes to build a connected network. We do this by randomly selecting
two nodes from the network with open connections (OC). These nodes are merged together.
In case, where two nodes of different building blocks are selected and that are already
connected to each other by some other node, multiple overlaps appear. This results in
small groups connected by more that one node. This represents the phenomena of the
real world networks where two small groups are connected to each other by more than
two people.

As the network is built from cliques and the connections are directed by scale free de-
gree distribution, we get a network with high clustering coefficient and degree distribution
following power law. The average path length of the overall network remains low due to
two connectivity patterns, the random connections and the scale free degree distribution.
The random connectivity of nodes has been shown to be one of the reasons for low average
path lengths by [54, 55]. As for the scale free degree distribution, from the analysis of
AirTransport network in Chapter 3, we saw that airline companies use the hub strategy
to minimize the number of hops (or in other words, the path lengths) to improve the
efficiency of the network.

We explain the details of the proposed algorithm below. The following mathematical
notations are used throughout the explanation: G(V,E) represents an undirected multi-
graph where V is a set of n nodes and E is a set of e edges. The graph G is initially
empty and the nodes and edges are added as the algorithm progresses. C represents a set
of cliques such that C = {C1, C2, · · · , Ck} are different cliques each comprising of several
nodes.

Step 1: Building Blocks
In contrast to existing network generation models, instead of adding one node or triad

at a time, to generate the network, we start by adding cliques of variable sizes to G.
Recall from Chapter 3, we identified cliques as one of the fundamental patterns present in
networks and the Author and Actor network considered as examples here have cliques by
construction.

The algorithm takes as parameter, the number of cliques to be generated (k), the
minimum (minSize) and the maximum size (maxSize) of the cliques to be generated.
A random number is generated between these two limits and for each random number, a
clique Ci is added to the graph G such that nodes and edges of the clique become members
of V and E respectively. As a result, G contains nodes that are well connected to each
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other as a clique, and nodes from different cliques are not connected to each other. G
becomes a graph comprising of C = {C1, C2, · · · , Ck} as shown in Figure 31.

If we use a random number generator, for large values of k, the distribution will be
equally spread and we will have the same number of cliques for all possible size values. In
real networks, this might not be the case as often, cliques of large sizes are rare compared
to cliques of small sizes. To take the correct decision, it is important to understand what
type of network we are trying to generate. If the network to be generated is expected
to have cliques of varying sizes equally distributed, the random generation will serve well
our purpose. On the other hand, if we expect that all the cliques will have the exact
same size, the minSize and maxSize parameters can be set to that exact value to have
all the cliques of the exact same size. And in the case where we expect a non-uniform
distribution of different sizes, we can draw the different sizes of cliques using the type of
distribution we require our final network to follow. The parameters minSize and maxSize
can also be used to control the node edge density. If the values of these parameters are set
as 1 and 5 respectively, the cliques generated will have nodes of degree 0 and 1, which in
turn, will reduce the overall node edge density. On the other hand, if we want to increase
the node/edge density, we can set high values of minSize and maxSize which will generate
dense group of nodes and increase the overall node/edge density.

The real networks that we are using for analysis do not have a uniform distribution
of cliques. Since these real networks contain many nodes with degree between 1 and 4.
While generating networks of equivalent size, we take this information into account and
ensure the increased presence of these small degree cliques. For every iteration, whenever
a random number is generated having a low degree, another one is added of the same size.
Thus for every random number generated between 1 and 4, we add two cliques instead of
one. Experimental results show that this method is effective as we get networks similar
to real world networks.

We consider the example of co-authorship network and explain how these values effect
the algorithm. We use k = 10, minSize=1 and maxSize=5 and a random generation
for the size of the cliques. After the execution of this step, we get a network as shown
in Figure 31. The idea of introducing cliques, comes from the work of [132, 73] where
affiliation networks and the bipartite structure was identified as an important structural
property of the way, the Author and the Actor networks are constructed in the real world.
People interact to co-author an artifact, as a result we get cliques representing an artifact.
The idea is equally applicable to the Actor network, where the cast of every movie forms
a clique. This phenomena was explained in detail in section 4.2 earlier and equally holds
for the Employee and Club network.

Note that the size of the cliques can be forced to be exactly 3, in which case we
would have forced the presence of only triads just as the other network generation models
presented in section 4.3. Due to the presence of cliques (or triads), the average cluster-
ing coefficient of the entire graph increases as compared to a random graph which is a
fundamental property to identify a small world network.

Step 2: Determine Number of Merges
Since our goal is to control the frequencies of the node degrees, we want to enforce a

certain degree distribution. In order to have the degree distribution of G follow a scale
free behavior, we generate a scale free degree distribution using a power law function. We
associate this distribution on the nodes of graph G as an attribute and call this as open
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Figure 31: Step 1: Network after execution of step 1 with minSize=1, maxSize=5 and
k=10.

Figure 32: Merging two nodes from two different cliques so that a node becomes part
of two cliques.

connections OC. This attribute is used to determine how the nodes are interconnected to
each other in the next step.

An important variation to this step can be the assignment of an equal value to all
nodes. As a result, the network produced will have only small world properties, i.e. high
clustering coefficient and small average path length. The equal value assignment will
ensure that the degree of all the nodes is approximately equal and thus the final degree
distribution will not follow a power law, rather a Poisson distribution.

Step 3: Merge Nodes
Recall from Chapter 3, section 3.2.1 where we identified two connectivity patterns, one

in the presence of higher degree nodes, and the other, when very high degree nodes appear.
Two cliques can be combined by considering that one or more than one common authors
are part of the two cliques, and these nodes play the role of combining these cliques (see
Figure 32). This is true for other real world networks as discussed earlier in section 4.2.

Merging two nodes creates connections between previously disconnected cliques. More-
over, the merged node plays the role of a bridge between the two small clusters. In terms
of the degree, the node gets many new connections. The more the node is merged with
other nodes, the more it gets connections and higher would be its node degree. This is
the reason why we draw the number of merges from a power law function, as a result, the
final degree distribution follows a power law.

An important decision while merging two nodes say n1 and n2 with OC values oc1
and oc2, how to decide the ocn for the new node nn. We experimented with the following
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different methods:

> Max: Assign the new node the maximum of the two OC values ocn = Max(oc1, oc2)

> Min: Assign the new node the minimum of the two OC values ocn = Min(oc1, oc2)

> Avg: Assign the new node the average of the two OC values ocn = Avg(oc1, oc2)

> Rand: Assign the new node one of the two OC values randomly ocn = Rand(oc1, oc2)

Assigning maximum value forces the degree distribution of the network to take a more
linear decay as most of the low degree nodes disappear quickly from the network and lots
of high degree nodes are left for connectivity. On the other hand, assigning minimum
value removes the few nodes with very high degree and the characteristic long tail in the
degree distribution disappears from the network. As similar behavior is observed with the
average assignment as the long tail disappears and the average node degree increases with
this assignment. The best results are obtained by a random assignment as nodes with high
and low degree are equally removed and thus the overall degree distribution follows scale
free behavior. We show the experimental results using the random method in section 4.6.

4.5 Evaluating Generated Networks

The proposed model is very close to the model proposed by Guillaume and Latapy [73] or
that of Newman [132]. Although our approach is slightly different from these two models.
We differentiate between the connectivity within group and connectivity in the society.
The connectivity within group depends on the building blocks, which in this case are
cliques. Connectivity in the society depends on the human trait of Extraversion and In-
troversion. The connectivity within group is responsible for the high clustering coefficient,
as opposed to many other models where forcing triads raises the over all clustering coeffi-
cient. The connectivity with the society is responsible for the overall degree distribution
following power-law. These steps can be modified in the model to obtain networks with
different properties. For example, if we modify the number of merges drawn from the scale
free behavior to follow a Poisson distribution, the model will produce networks which are
only small world and not scale free. On the other hand, if we modify the building blocks
by replacing the cliques by a star-like structure, where one node is connected to many
nodes, we will get networks with only scale free properties with low clustering coefficient.
These networks will be similar to the Opte network discussed in Chapter 3.

Thus, as compared to the model of Guillaume-Latapy [73] and Newman [132], from
the proposed model, we are able to capture the principles of the bi-partite structure of
many real world networks by introducing a different approach. Moreover the same model
can be used to generate scale free networks with a simple modification to the network.
We leave the proof of this variation as part of future work.

Next, we evaluate the networks generated by the proposed model using the Maxd-
DIS decomposition. Figure 33(a) shows the entire network generated where the network
has size similar to NetScience network. Figure 33(b) shows the Max5-DIS of the network
where the network breaks into small connected components just as the co-author networks
studied in Chapter 3, the Geometry network in Figure 6(b) and the Dblp network in
Figure 9(a).
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Figure 33: Network generated using proposed network model where the size is approx.
equal to NetScience network. cliques=200 minSize=1, maxSize=7 (a) Entire network
(b) Max5-DIS.

69



Chapter 4. Structure of Networks

Similar observations can be made about the network generated equivalent in size to the
Geometry network. Figure 34(a) shows the Max5-DIS of the network where the network
breaks into small connected components just as the co-author networks studied in Chap-
ter 3. Figure 34(b) shows the Max10-DIS of the network with the appearance of the giant
component. Since the model is based on cliques as the building blocks to construct the
entire network, it is obvious that using the topological decomposition, we find the presence
of these small densely connected group of nodes. As the node degree is increased, in the
case of Figure 34(b) where Max10-DIS contains nodes of at most degree equal to 10, we
find a similar behavior in the connectivity of nodes just as we analyzed in the previous
chapter, a phase shift take place and a single giant connected component appears.

Figure 35 shows the degree distribution of the networks generated using the pro-
posed model. We have generated networks of size equivalent to three social networks,
the NetScience, Geometry and Imdb network. The degree distribution clearly shows that
the networks generated follow the power law.

4.6 Results and Discussion

We have used the NetScience, Geometry and Imdb data sets for a comparative study.
These are well studied examples of social networks and have been used by several re-
searchers for empirical and experimental studies.

We calculate a number of statistics using various Network generation models and
compare them with the real world networks of equal sizes. The results are shown in
Table 3, Table 4 and Table 5. We have included the statistics for a random network
for the three data sets. In some cases, the models are not parameterized and thus the
node-edge density could not be controlled. We tried to generate models of similar size in
terms of number of nodes, and where possible, similar number of edges. An important
observation about these networks is that since all of them use the preferential attachment
to produce the scale free property, the degree distribution for all the models follow a
power law. To the best of our knowledge, there is no metric which tries to identify the
presence of communities in a network by analyzing the graph on the whole in a global
perspective, thus the presence of community structure in the proposed model is only
justified by construction.

Looking at some individual results for the various models in comparison to the real
world networks. For example, graphs generated using the model of Guillaume and Latapy,
the node-edge density in every case is very high and could not be controlled. The model of
Fu and Liao, in all the three examples, have a very low clustering coefficient as compared
to the respective real world network and thus could not really be classified as generating
similar networks to the real world networks used as examples in our study. Looking at
the clustering coefficient of the model by Wang and Rong in Table 4, it is quite clear that
the model fails to generate a high clustering coefficient for a similar size network. An
observation about the model of Holme and Kim, In Table 5, where the node-edge density
of the network is comparatively high to other two networks but the the network has a large
size, the clustering coefficient drops considerably. The model of Klemm and Eguiluz scales
well in terms of clustering coefficient, and the average path length can controlled through
a parameter (see Table 3) which gives a good approximate result. Also, from Table 5, the
average path length in case of a number of models is 1.99, which is a direct implication
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Figure 34: Network generated using proposed network model where the size is approx.
equal to Geometry network. cliques=3000 minSize=1, maxSize=9 (a) Max5-DIS (b)
Max10-DIS.
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Figure 35: Degree Distribution of equivalent size networks generated using the pro-
posed Model. (a,c,e) Represent the bar charts and (b,d,f) represent the Log-Log plot
of the Frequency-Degree distribution.

Comparison between NetScience and Other Network Models

Model Nodes Edges APL CC HD

NetScience 379 914 6.04 0.74 34

Random Graph 379 914 3.94 0.01 11

Zaidi et al. 364 935 4.7 0.65 22

Holme and Kim 379 757 4.86 0.77 42

Fu and Liao 379 744 4.03 0.75 31

Klemm and Eguiluz 379 755 6.40 0.5 24

Catanzaro et al. 379 898 2.42 0.58 197

Guillaume & Latapy 379 5315 2.30 0.54 109

Bu et al. 379 755 3.05 0.37 80

Wang and Rong 379 943 4.32 0.37 14

Table 3: Comparing different models with the Collaboration Network of Scientists
from the NetScience data. APL=Average Path length, CC=Clustering Coefficient,
HD=Highest Node Degree
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Comparison between Geometry and Other Network Models

Model Nodes Edges APL CC HD

Geometry 3621 9461 5.31 0.53 102

Random Graph 3621 9461 5.15 0.001 15

Zaidi et al. 3682 10928 5.71 0.65 67

Holme and Kim 3621 7241 7.3 0.79 90

Fu and Liao 3621 10662 4.22 0.72 101

Klemm and Eguiluz 3621 10857 2.27 0.72 197

Catanzaro et al. 3621 8896 2.47 0.48 1720

Guillaume & Latapy 3621 528499 * * 1275

Bu et al. 3621 10856 3.13 0.24 607

Wang and Rong 3621 10828 4.6 0.10 30

Table 4: Comparing different models with the Collaboration Network of Scientists
from the Computational Geometry data. APL=Average Path length, CC=Clustering
Coefficient, HD=Highest Node Degree

Comparison between Actor and Other Network Models

Model Nodes Edges APL CC HD

Imdb 7640 277029 2.94 0.87 1271

Random Graph 7640 277029 2.48 0.009 102

Zaidi et al. 7413 244905 3.1 0.98 352

Holme and Kim 7640 274865 2.35 0.09 2303

Fu and Liao 7640 29972 4.00 0.76 163

Klemm and Eguiluz 7640 274374 1.99 0.97 7627

Catanzaro et al. 7640 28127 1.99 0.78 7639

Guillaume & Latapy 7640 2378281 * * 2614

Bu et al. 7640 274935 1.99 0.83 12151

Wang and Rong 7640 273355 3.28 0.94 83

Table 5: Comparing different models with the Imdb network from the IMDB dataset.
APL=Average Path length, CC=Clustering Coefficient, HD=Highest Node Degree

of a node having a very high degree. As a result, most of the nodes are connected to this
high degree node and thus have a low average path length of the entire network.

From the above examples, one obvious problem that can be inferred is that these
models have problems with scalability, as the node edge density is varied for a network,
the models are not able to reproduce comparative values with real world networks for
various statistics. On the other hand, the proposed model in this paper has the ability to
control the size of cliques as the starting point, which helps us to control the density and
at the same time, generate small world and scale free networks. The values are quite close
to the ones expected and thus the proposed model is quite flexible.

4.7 Findings and Further Research Prospects

In this chapter, we have studied the concepts of homophily, triads and preferential at-
tachment as the important properties for the structure of social networks. We use these
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concepts to present a model to generate artificial social networks. We evaluated a number
of network generation models that successfully generated small world and scale free net-
works but fail to capture another important characteristic of real world network i.e. the
presence of Community Structures. We compared the existing and the proposed network
model with real world social networks using a number of statistics. Results show that
the proposed model indeed generates networks that have community structures and are
topologically similar to real world networks as compared to the other existing models that
generate small world and scale free networks. Moreover, we identified another problem
for the existing models, the scalability in terms of node-edge density, where it is difficult
to maintain the high clustering coefficient and low average path length as networks of
varying sizes are produced.

We intend to extend our study to other types of networks such as biological and
technology networks to propose network generation models for these types of networks as
well. Although experimentation is required, but we believe that by replacing the building
blocks in this model, we can generate different types of networks as such as the Internet
Router networks and AirTransport network.
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Chapter 5

Organization of Complex Net-
works through Clustering

5.1 Introduction

Organization is an important process to arrange and group vertices in a network. Or-
ganization of a network presents users and analysts a macro level view of the network
i.e. instead of focusing on individual elements in a network, nodes are grouped together
based on some criteria and the behavior of the entire network is studied by analyzing the
behavior of these subgroups. There are a number of ways to group similar nodes where
methods from the domain of Data Mining and more precisely, Graph Mining have been
used frequently to summarize networks. Three broad methods are Clustering, Classifica-
tion and Association [111]. The most widely used method is Clustering which we defined
earlier as a method to decompose vertices into ‘Natural Groups’.

We like the definition of a cluster given by Wasserman and Faust [169], a cluster can
be defined as a group of elements having the following properties:

> Density: Group members have many contacts to each other. In terms of graph
theory, it is considered to be the ratio of the number of edges present in a group of
nodes to the total number of edges possible in that group.

> Separation: Group members have more contacts inside the group than outside.

> Mutuality: Group members choose neighbors to be included in the group. In a
graph-theoretical sense, this means that they are adjacent.

> Compactness: Group members are ‘well reachable’ from each other, though not
necessarily adjacent. Graph-theoretically, elements of the same cluster have short
distances.

The topic of clustering has been studied extensively in pattern recognition and machine
learning [88, 179]. The goal of clustering is to divide a data set into subgroups such that
the items in a group are similar in some predefined sense and, dissimilar to items of other
groups. Clustering is viewed as an unsupervised form of discovering patterns as no prior
information is required about the group labels that are expected to be found. In network
or graph terminology, clustering is the task of grouping similar vertices together in a
cluster. Often this similarity is defined in terms of edges such that similar vertices are
well connected to each other by edges, not necessarily through direct edges but by a short
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path. For further details, Schaeffer [147] provides a good summary of the literature on
graph clustering.

Detection of clusters has a wide range of applications in various fields. For example, in
social networks, clustering could lead us towards a better comprehension of the interactions
taking place between people, or for biological networks, a useful application of clustering
is in the identification of biomarkers in a protein-protein interaction network. Other
applications of clustering include a wide range of domains such as marketing to find groups
of customers with similar behavior, earthquake studies to cluster observed earthquake
epicenters to identify dangerous zones, libraries and electronic documents to group and
organize similar information resources together.

Different clustering techniques have been proposed to suit a variety of application do-
mains and user requirements. Clusters produced by an algorithm can be organized in a
hierarchy, or, on a single level called flat or partitional clustering. Hierarchical clustering
algorithms can be further classified as agglomerative or divisive. An agglomerative algo-
rithm starts with each vertex in a single cluster, these clusters are repeatedly merged into
larger groups until all clusters are merged into a single cluster or some stopping criteria
is reached such as number of clusters or depth of the hierarchy. A divisive algorithm
starts with all the vertices in a single cluster which are repeatedly divided into subgroups.
The process continues until clusters have only single nodes or some predefined criteria
is reached. If the result of a clustering algorithm associates vertices to a single cluster,
they are called Hard clustering algorithms, whereas, if vertices are allowed to belong to
multiple clustering algorithms, they are called Fuzzy or Soft clustering algorithms.

An important issue that needs to be addressed while developing clustering algorithms
for real world networks is their Time Complexity. Due to large size real networks, it
becomes almost impractical to use slow clustering algorithms. Algorithms exist in the
literature addressing the clustering problem for large size complex networks but a trade
off exists between Clustering Accuracy and the Time Complexity. We discuss a number
of these algorithms in section 5.2. Thus it is evident that faster algorithms are required
to achieve high speed clustering as well as high accuracy to handle large size networks.

The motivation of this work comes from the fact that in the absence of high de-
gree nodes, a network breaks into smaller connected components as discussed in detail in
Chapter 3 where we presented the DIS-topological decomposition. The process of detect-
ing whether these components are densely connected using Component Densities proves
to be very efficient and runs in O(maxd ∗ (n + e)). A simple intuition is to group these
densely connected nodes as clusters, repeated application of this process for varying values
of d can give us an algorithm which will be quite fast in terms of time complexity.

Along with this basic idea, we also noticed a high presence of low degree nodes as
most of the real world networks had nodes of degree below 5. From this observation, we
introduce some high speed heuristics that help to reduce the size of a network in linear
time in terms of the number of edges. This further helps in increasing the time efficiency
of the algorithm maintaining high cluster quality. Note that since the algorithm is based
on DIS, it works only for networks with non-uniform degree distribution. As most real
world networks exhibit this property, the algorithm is quite useful for real world networks.

The rest of the chapter is organized as follows: Section 5.2 discusses a number of clus-
tering algorithms present in the literature where the idea is to focus on their asymptotic
time complexity. Based on the topological decomposition presented in Chapter 3, we in-
troduce our proposed algorithm in section 5.3. In section 5.4, we present the experimental
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setup, the data sets, other clustering algorithms and metrics to evaluate cluster quality.
We compare the results of the proposed algorithm with existing algorithms in section 5.5,
finally concluding in section 5.6.

5.2 Review of Clustering Algorithms

Many different approaches have been proposed to discover clusters in complex networks.
For example, Girvan and Newman [68] used edge betweenness to produce a divisive hier-
archical clustering algorithm. The basic idea is to identify intra cluster edges as compared
to inter cluster edges. Edges lying between clusters will have a higher betweenness central-
ity as compared to edges within a cluster. The clustering algorithm removes edges with
high betweenness centrality to identify clusters and recalculates the betweenness central-
ity. The algorithm performs well in the detection of clusters but suffers from high time
complexity. The worst case time complexity is given by O(e2n).

Wu et al.[176] introduce a multilevel mesh structure to cluster large networks. The
clustering algorithm uses Betweenness centrality and node degree to identify a set of
representative nodes. All the other nodes are assigned the nearest representative nodes to
obtain clusters. The agglomerative process is repeated to obtain a hierarchical clustering
which they call multilevel mesh. At each level, the user chooses a branching factor which
determines the number of clusters for that level. This number might not represent the
actual number of clusters in the dataset as they are determined by the user without the
use of any heuristic or statistical measure. The overall complexity of the algorithm is
given by O(e2n).

Boccaletti et al. propose a clustering method based on the cluster de-synchronization
properties of phase oscillators [21]. Starting from a fully synchronized state of the network,
a dynamical change in the weights of the interactions that retain information on the
original betweenness distribution, yields a progressive hierarchical clustering that fully
detects the dense communities. Since the initial calculation of betweenness takes O(n2),
the algorithm scales quadratically as the number of nodes increase.

Newman [130] presents a faster agglomerative hierarchical clustering algorithm which
is based on a quality function called modularity Q. The algorithm repeatedly joins com-
munities together in pairs, choosing at each step, the join that results in the greatest
increase in Q. The time complexity for the algorithm is given by O((e+n)n) which scales
quadratically in terms of number of nodes in the graph.

Boutin et al. [27] used a focus based filtering and clustering technique for complex
networks. This technique extracts a tree-like graph so that the resulting structure can be
drawn using any force directed algorithm leaving the final drawing easily readable. One of
the drawbacks of this system is that the user has to choose an initial entry point to filter
the graph. Moreover since edges are removed to simplify the structure of the network,
important information can be lost.

Efficient algorithms to cluster networks with only small world properties have been
proposed like [9] [162]. These systems perform well if the topology of the network follows
small world properties but fail to perform in the presence of scale free properties. This
is due to the fact that in a scale free network, a few nodes dominate the entire networks
connections and makes it difficult to identify the clusters. Similarly methods to cluster
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networks with only scale free properties have been proposed. For example [136] pro-
posed a method based on Minimum Spanning tree(MST). While constructing the MST,
they take into account the nodes having high degrees and increase the importance of the
edges connected to these high degree nodes which are called hubs. This makes the edges
connected to the hubs more important and thus are retained during the construction of
the spanning tree. This approach works well if the underlying network structure has only
scale free properties but in the presence of small world phenomena, it does not perform
well. This is because the approach assumes that the high degree nodes are the probable
cluster centers. While in reality, it is possible to have a clique in the network in which
two nodes connect to two different hubs, the MST method will force the clique structure
to break and assign the nodes to two different clusters resulting in loss of information.

An important class of clustering algorithms called Spectral Clustering algorithms have
attracted considerable interest [153]. They are based on computing the eigenvectors of
the adjacency matrix, or some other matrix representing the graph structure. The biggest
advantage of these algorithms is that they are able to detect clusters without a specific form
as compared to classical algorithms such as k-means. They are well suited for large size
networks as well. But these algorithms are suited only for data sets where the similarity
graphs are sparse [110]. Furthermore, choosing a good similarity graph is not trivial, and
spectral clustering can be quite unstable under different choices of the parameters for the
neighborhood graphs.

In this section, we presented a number of clustering algorithms designed for complex
networks. This review is not an extensive one as the clustering problem has been addressed
in many different research domains and it is quite difficult to perform an extended study
of all these algorithms. For more details, readers can refer to surveys on the topic of
clustering such as [88, 179, 147].

5.3 Proposed Clustering Method: TDHC

Consider the example of the Geometry network which we analyzed in detail in Chapter 3
and shown here in Figure 36. The entire network is shown in Figure 36(a), where as
Figure 36(b) shows a small portion being focused where the encircled nodes represent
densely connected nodes or more precisely cliques. Figure 36(c) and (d) show portions of
the Max5-DIS and Max10-DIS. In these two figures, it is quite easy to visually detect the
cliques or the densely connected nodes.

The inspiration of our clustering algorithm comes from this visualization. We explained
that calculation of component densities can be performed in O(maxd ∗ (n + e)) time for
all the Maxd-DIS graphs. The idea is to group the densely connected components for
increasing values of d as we iterate over Maxd-DIS. As a result, we end up agglomerating
vertices into clusters producing a hierarchical clustering algorithm. Thus we call the
algorithm, Topological Decomposition for Hierarchical Clustering abbreviated as TDHC.

As introduced in earlier chapters, from the topological decomposition, we can identify
densely connected sets of nodes that can be grouped to form clusters. The notion of how
to define density is addressed in section 5.3.3. As the process is repeated for different
values of d, the number of iterations do not depend on nodes n or edges e of G but on the
factor d which is the maximum degree a node can have in G. Along with the detection
of densely connected nodes through Maxd-DIS, we also introduce several heuristics that
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Figure 36: Geometry Network (a) Entire Network (b) Focus on a Small Portion (c)
Part of Max5-DIS (d) Part of Max10-DIS

optimize the performance of the clustering algorithm. All these steps are highly efficient
in terms of time complexity as we discuss the details in the following sections. First we
introduce all the major processing steps used in the algorithm before listing the algorithm
itself.

Node Sink using K-Sink Operation
We define the K-Sink operation as follows: The nodes having degree 1 in a network are

connected to a single node. We merge the 1-degree nodes into their neighbors creating
a new node for each such merger. The 1-degree nodes merged into the neighbors are
called the Sinkers. The nodes in which the 1-degree nodes get merged are called the
Sinkholes. This operation is justified because a 1-degree node cannot be clustered with
any other node as it is simply connected to only one node. We call this operation, a 1-Sink
operation and it is illustrated in Figure 37(a) where node 2 is the sinker and node 1 is
the sinkhole. If two nodes have degree 1 and are connected to each other, this means that
they are disconnected from the rest of the network and in this case either of the node can
be chosen to be the sinker and the other as the sinkhole.

Similarly we define a 2-Sink operation, consider two nodes, say node 2 and node 3 both
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Figure 37: K-Sink operation illustrated (a) 1-Sink (b) 2-Sink Type A (c) 2-Sink Type
B.

having a degree 2 (Figure 37(b)). If they are connected to each other, and to a common
neighbor, say node 1, with a higher degree, nodes 2 and 3 can be sinked into node 1 as
they are only connected to either each other or node 1. This operation is illustrated in
Figure 37(b) and we call this 2-Sink operation as Type A. Just as in the case of 1-Sink, if
we find a set of nodes each having degree exactly equal to 2 and connected to each other,
this means that they are not connected to the rest of the graph, in this case any node can
be chosen to be the sinkhole and the other two nodes to be the sinker.

Another type of 2-Sink operation, Type B, is when a node of degree 2, is connected
to two other nodes of degree more than 2. Irrespective of whether these two high degree
nodes are connected to each other or not, the two degree node can only be clustered with
either one of these two nodes as shown in Figure 37(c). What we do is simply put the two
degree node with the neighbor having a higher degree and create an edge between this
cluster and the other neighbor. If its two neighbors have equal node degree, one neighbor
is chosen randomly.

For the implementation of the algorithm, we only use 1-Sink and 2-Sink operations
although the idea can be generalized to sink nodes up to some constant K. Both 1-Sink and
2-Sink operations can be performed in time O(n). But a generalized implementation to
incorporate K-Sink operation will no longer remain linear and since our goal is to keep the
time complexity bounded by a linear function or as close as possible to a linear function
we avoid using a generalized K-Sink operation.

The order in which these K-Sink Operations are performed, produces slightly different
hierarchies. We illustrate this difference in Figure 38 where the order of execution of sink
operation is different for (a) and (b) and thus the hierarchy produced is different. The
grouping is consistent as nodes end up in the same cluster at the end, it is just the order in
the hierarchy that changes. For our implementation, first, we perform a 1-Sink operation,
followed by a Type A and Type B 2-Sink Operations. Then the Type A 2-Sink operation
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Figure 38: Changing the order of K-Sink operation changes the hierarchy slightly but
it remains consistent as the nodes find themselves grouped together in the same cluster
(a) 1-Sink Operation first, sinking node 4 into node 3 followed by a 2-Sink operation
of Type A where nodes 1,2 and 5 are grouped together. (b) 2-Sink operation of Type
A first, where nodes 1 and 2 are grouped together as node 7, followed by a 1-Sink
operation where node 4 gets sinked into node 3.

is repeated finally followed by a 1-Sink Operation. The choice to perform the operations
in this order is based on experiments where the convergence is faster and higher accuracy
is achieved for the clusters produced.

Another aspect is that both the 1-Sink and 2-Sink operations can be iterated several
times. Choosing a fixed number of iterations for these two operations will not effect
the overall time complexity but if they are executed until no more nodes can sink in
other nodes, the overall time complexity will no longer remain linear, and thus we avoid
iterating over these operations. Moreover our experimental evaluation suggests that we
do not increase the quality of clustering to a large extent by repeating these operations
many times.

Maximum Degree Induced Subgraph
The next step in the algorithm is to create a Maxd-DIS with a small value of d. Due to

this small value, the network might break into several components disconnected to each
other as shown in Figure 36(c) and (d). In the clustering algorithm, the value iterates
from a start value of 2 and goes on till the maximum degree value possible.

Tightening: Disconnect Loosely Connected Nodes
After obtaining the Maxd-DIS, we perform an operation that we call Tightening. We

look at the nodes having degree 1 in this subgraph and we simply remove the edges
connecting degree 1 nodes from the induced subgraph. This process helps us to make the
connected components found in the subgraph more dense as shown in Figure 39 where
nodes 1 and 2 are disconnected by removal of edges. This step delays the decision of
putting node 1 and 2 with the other nodes in a cluster. Recall that this operation is
performed on the induced subgraph, nodes 1 and 2 can thus be densely connected with
other nodes in the entire graph. Due to this reason, the step delays aggregating degree 1
nodes with densely connected nodes. The step can be performed in time O(n) where n
has small values as compared to the entire graph G.
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Figure 39: Tightening Operation where Nodes 1 and 2 get disconnected leaving the
other nodes densely connected.

Calculation of Connected Components
Once we have the Maxd-DIS, another important step is to calculate all the connected

components in the subgraph. We use a breadth first search algorithm (BFS) starting from
a node and iterating through its neighbors to find the connected component it belongs
to. Once we have identified nodes connected to the start node, we restart the BFS from
a node that has not yet been visited. All the connected components of a graph can thus
be calculated in O(n+ e) time.

Grouping Densely Connected Components
The final step is to group the connected components that are densely connected to

each other. We need to evaluate if the component is dense enough to be clustered in
graph G or not. The density function we use is explained in section 5.3.3. Once we have
found the densely connected components in the subgraph, we cluster these nodes in graph
G. We replace this cluster of nodes with a single node in G. Multiple edges connecting
this new cluster node to other nodes are removed to make sure that the graph remains
simple. Note that we only consider components of size greater than 2 nodes to be clustered
together. Small size components containing nodes with node degree 1 and 2 are clustered
using K-sink operation and thus we do not require them to be clustered in the induced
subgraphs.

5.3.1 Clustering Algorithm

Now that we have explained all the necessary steps, the Topological Decomposition for
Hierarchical Clustering (TDHC) is presented as algorithm 1. The algorithm starts by
calculating a Max2-DIS in order to search for triangles representing three nodes and con-
nected to each other. For nodes having degree 1, they get sinked in the 1-Sink step and
thus we do not need to run the algorithm for Max1-DIS. Note that in the algorithm, when
a step is performed on G, the size of G in terms of number of nodes is decreased as nodes
within G are grouped together to form clusters.

There are two stopping criteria for the algorithm, either the nodes converge to a single
cluster node, or the algorithm is executed for every possible value of node degree. The
convergence of nodes to a single cluster node depends on the density function used, i.e. if
only highly dense nodes are grouped together, there is a strong possibility that at the end
of execution, the network will not converge to a single cluster node. On the other hand,
if the density function allows grouping of only connected components, the network will
surely converge to a single cluster node.
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Algorithm 1: TDHC Algorithm

Input G(V,E)
i← 2
increment← 1
MaxDeg=Find Maximum Degree(G)
while (Number of Nodes(G) > 1 or i < MaxDeg) do
G=K-Sink(G)
G′ = Create Maxi−DIS(G)
G′ = Tightening(G′)
Calculate Connected Component(G′)
G=Group Densely Connected Component(G′)
d← i+ increment

end while

All the processing steps have a linear time complexity as shown in previous sections.
The number of iterations required to converge towards a solution no longer depends on the
number of nodes nor the edges but on the maximum degree a node can have. Moreover, as
in the given algorithm, we have chosen an increment of 1 at every iteration. There are two
stopping criteria, in this case, the algorithm executes at most d times. The choice of the
value for the variable increment depends on the user, which can be increased depending
on how the results vary as a function of this value. A high increment value means less
number of iterations, but risks in less dense components found.

The average case time complexity of the entire algorithm can be expressed as O(maxd∗
(e + n)) where d is the maximum degree of a node in graph G. Remember that in the
worst case scenario, the maximum number of nodes a graph can have is (n ∗ (n − 1)/2)
and the maximum degree a node can have, is equal to the maximum number of edges e
in the entire network for a simple graph but this upper limit is not possible for real world
sparse networks.

An important observation about the clustering algorithm is that it uses both the Divi-
sive as well as Agglomerative approaches to cluster graphs. The divisive part comes from
the fact that we build degree induced subgraphs and the agglomerative part is represented
when we cluster nodes during K-Sink operation and grouping densely connected compo-
nents. Thus in effect, we have combined both the agglomerative and divisive approach to
cluster graphs, which to the best of our knowledge, has never been tried before.

5.3.2 Flattening the Clusters

The hierarchical clustering thus produced can have many clusters with 2 or 3 nodes due
to the K-Sink operation explained earlier. We simply parse recursively through different
clusters to remove these small size clusters and merge them into bigger size clusters. To
produce a partitional (flat) clustering, using the same algorithm, all we need to do is
replace the condition in the algorithm where we want to converge to a single node by the
number of clusters we want to obtain in the network. As this algorithm repeatedly groups
nodes into clusters, a stopping condition can be used to stop the iterations based on the
number of nodes left in the graph. Once we get to this number, each node represents a
cluster and all the nodes grouped under this nodes hierarchy can be flattened to obtain
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a partitional clustering. We have used this same approach to compare the results of the
TDHC algorithm with the other clustering algorithms.

5.3.3 Density Function

There are several definitions of how to calculate the density of a graph, the readers are
recommended [113] for details. For simplicity we use the node to edge ratio (m/n) to refer
to the density of the graph. [113] argues that the density of a graph varies as a function
of application domain giving real world examples. For the proposed clustering algorithm,
we use a density function to determine how well a set of nodes is connected to each other.
Based on the arguments and examples provided in [113], we argue that we cannot have
a generic density value set as a threshold to decide whether a set of nodes is connected
well enough or not. Moreover, the question of whether a set of nodes are connected well
enough to be clustered, depends not only on the density of the entire graph but on the
underlying structure of the network. This issue was discussed previously in Chapter 3
for networks such as Opte and AirTransport network where Maxd-DIS did not contain
densely connected nodes.

To resolve this problem, we propose a floating density function i.e. we propose a set of
functions starting from high density values to progressively less dense functions. The idea
is to try to find highly dense communities first, for all possible values of the Maxd-DIS,
and then replace the density function with a less dense function. We start by looking for
the maximum number of edges possible for a set of nodes and eventually end up looking
for the minimum number of edges possible for a set of nodes to be connected. We cluster
a set of nodes if the number of edges m is:

e = n(n− 1)/2

e ≥ n(n− 1) ∗ 0.8/2

e ≥ n(n− 1) ∗ 0.6/2

e ≥ n(n− 1) ∗ 0.4/2

e ≥ (2 ∗ n)

e ≥ n− 1

The set of equations represent a gradual decrease in the node-edge density required
for a group of nodes to be considered as dense enough to be clustered together. The
first equation represents the maximum number of edges possible for a set of nodes, the
second, third and fourth equation represents 80%, 60%, 40% of the possible edges. The
fourth equation requires twice as many edges as nodes for a set of nodes to be considered
as dense and finally the last equation represents the minimum number of edges required
by a set of nodes to remain connected. Note that this final case can occur in real data
sets such as the Opte network or the AirTransport network discussed earlier in Chapter 3
as these networks do not contain highly dense components.

Although using the floating equation idea can effect the number of iterations required
to cluster the entire data set, it assures that the clusters found are as dense as possible.
This is the only control parameter that is required by the proposed algorithm and varies
from one dataset to the other depending upon the average density of a data set as discussed
previously in Chapter 3. The overall complexity of the algorithm remains the same as the
number of equations ranges from a constant value of 2 to 6. So in effect the final algorithm
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is run once for each of these equations in the given order until all the nodes converge to
a single node. As mentioned earlier, the choice of these equations depends upon the data
set being used and the inherent network structure but as our experiments show, this order
and set of equations seems to give good results for the different data sets that we have used
for experimentation. Apart from the density function, the other control parameter for the
algorithm is the number of clusters required to generate, which by default, agglomerates
the entire data into a single cluster.

An important exception in the algorithm is when it is executed for the last equation,
Tightening step is not executed as we do not need to add an extra hierarchical level since
we are no longer looking for dense components.

5.4 Experimentation

We use different data sets to compare the performance of the proposed TDHC algorithm
with other clustering algorithms using a number of evaluation metrics to judge the cluster
quality.

Data Sets
We have used the NetScience, Opte and Protein network. Since the Divisive Clustering

algorithm has a high time complexity, we only consider a subset of the Opte data set
constructed by considering a hub and the nodes connected at distance 5 from it. The
subset consists of 1049 nodes and 1319 edges.

The choice of these data sets is based on the criteria that all these networks belong
to different classification of networks as described in the literature [129]. The author
network represents a social network of collaboration, the internet network represents a
technological network and the protein network represents a biological network. We have
used networks that contain a few thousand nodes and edges only, since we want to compare
the results of the proposed algorithm with slow but highly efficient algorithms in terms of
cluster quality.

Clustering Algorithms
To cluster these data sets, we use two known clustering algorithms, the Bisecting K-

Means algorithm [154] and the Divisive Clustering algorithm based on Edge Centrality [68].
The choice of these algorithms is based on the criteria that these algorithms do not try
to optimize or influence the clustering algorithm based on the density or some other
cluster quality metric as compared to other algorithms present in the literature such
as [130]. Moreover they are known to perform well for a number of real world data sets
[181, 68]. We also use the Strength Clustering algorithm proposed by [9] which was initially
introduced to cluster social networks. The algorithm has been shown to perform well for
the identification of densely connected components as clusters.

The Bisecting K-Means algorithm and the Divisive Clustering algorithm based on Edge
Centrality are both divisive algorithms, i.e. they start by considering the entire graph as
a single cluster and repeatedly divide the cluster into two clusters. Both these algorithms
can be used to create a hierarchy where the divisive process stops when each cluster has
exactly one node left. Instead of generating the entire hierarchy, we stop the process as
soon as the number of clusters reaches around 20. Moreover since we do not propose
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Cluster Quality Metric

Data Set Algorithm MQ Q RD

NetScience
Div. Clus. 0.53 0.77 0.63
Bis. K-Means 0.42 0.77 0.63
Strength 0.83 0.26 0.23
TDHC 0.55 0.82 0.42

Opte
Div. Clus. 0.32 0.79 0.69
Bis. K-Means 0.41 0.59 0.58
Strength 0.50 0.35 0.55
TDHC 0.42 0.85 0.49

Protein
Div. Clus. 0.31 0.63 0.49
Bis. K-Means 0.41 0.33 0.31
Strength 0.52 0.16 0.29
TDHC 0.38 0.44 0.23

Table 6: Comparing the results of Divisive Clustering based on Edge Distribution
(Div. Clus.), Bisecting K-Means (Bis. K-Means) and Strength Clustering (Strength)
algorithms with the TDHC algorithm.

a method to evaluate the quality of a hierarchical clustering algorithm, we consider the
leaves as a single partitional clustering. Note that the clustering algorithm might create
singletons but we do not consider these smaller clusters while generating 20 clusters and
these clusters are also neglected while evaluating the quality of clusters.

Cluster Evaluation Metrics
We used three different metrics to evaluate the quality of clusters produced by the

algorithms. Modularity(Q) [126] (Q metric) is a metric that measures the fraction of the
edges in the network that connect within-community edges minus the expected value of the
same quantity in a network with the same community divisions but random connections
between the vertices. If the number of within-community edges is no better than random,
we will get Q = 0. Values approaching Q = 1, which is the maximum, indicate strong
community structure. The second metric used by Auber et al. [9] is called the MQ
metric. It comprises of two factors where the first term contributes to the positive weight
represented by the mean value of edge density inside each cluster. The second term
contributes as a negative weight and represents the mean value of edge density between
the clusters. Finally the Relative Density (RD) [116] of a cluster calculates the ratio of
the edge density inside a cluster to the sum of the edge densities inside and outside that
cluster. The final RD is the averaged sum of the these individual relative densities for all
clusters. Note that all these metrics are normalized between [0,1] where 1 signifies perfect
clustering. More details on evaluating the quality of clusters can be found in Chapter 7.

5.5 Results and Discussion

We discussed the algorithm’s average case time complexity is O(maxd∗(n+e)). In reality,
the algorithm runs much faster than its average case. This is because as the algorithm
progresses, the nodes are aggregated into clusters and the size of the network becomes
smaller.
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Data Set Algorithm Execution Time (sec)

NetScience
Div. Clus. 13
Bis. K-Means 7
Strength 2
TDHC 2

Opte
Div. Clus. 163
Bis. K-Means 21
Strength 4
TDHC 3

Protein
Div. Clus. 527
Bis. K-Means 39
Strength 4
TDHC 3

Table 7: Comparing the execution times of Divisive Clustering based on Edge Dis-
tribution (Div. Clus.), Bisecting K-Means (Bis. K-Means) and Strength Clustering
(Strength) algorithms with the TDHC algorithm.

We compare the results of the TDHC clustering algorithm with [68, 130, 9] in Table 6.
From the different values, it is quite clear that the TDHC algorithm performs well if the
performance is evaluated using Q and MQ metric as compared to the other clustering
algorithms. On the other hand, using the RD metric, its performance is not as good as
the other clustering algorithms. These differences highlight the behavior of various cluster
evaluation metrics present in the literature. Nevertheless, considering the time complexity
of TDHC compared to the other algorithms, empirical results of TDHC show that the al-
gorithm performs well on different data sets. We do not claim that our algorithm produces
better quality results for different types of networks and cluster evaluation techniques but
we show that our algorithm performs as well as other algorithms. The major contribu-
tion of the algorithm is the low asymptotic time complexity which enables us to run the
algorithm for large size networks. Moreover, the algorithm tries to exploit the benefits of
divisive and agglomerative clustering techniques. Mathematically we can justify that the
use of density function helps to group dense components in the graph and thus justifies
the clustering procedure.

To the best of our knowledge, there is no formal method to compare two hierarchical
clustering algorithms. Comparing two hierarchies can be trivial specially the way [68, 130]
work, as compared to TDHC. [68, 130] are divisive algorithms, which in every iteration,
breaks a cluster into two sub clusters. Thus any cluster can have only two sub-clusters
which is the not the case with the TDHC algorithm. Moreover the algorithm repeats the
divisive step until there is only a single node left in the cluster. This is not the case with the
TDHC algorithm as it groups nodes together as soon as a dense component is found. This
certainly changes the depths of the hierarchies produced by the two clustering algorithms.
So, we have only compared the algorithms using the partitional clustering produced by
each of the given algorithms. The version of strength clustering used here produces a
partitional clustering so a flattening process was not required.

Table 7 contains the execution times of the various algorithms for the different data
sets used for experimentation. The TDHC algorithm clearly stands out as the fastest
algorithm in terms of number of seconds. Table 8 shows the execution time of TDHC
algorithm for graphs of increasing size in terms of number of nodes. The graphs were
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Size (nodes) Execution Time (sec)

100 1

1000 10

10000 95

Table 8: Execution time of TDHC for graphs of increasing size.

Figure 40: Graph showing linear behavior of running time in secondes of the TDHC
algorithm with increasing graph size.

generated using artificial network generation model from Chapter 4. Figure 40 shows the
plot of these execution times clearly showing the linear behavior of the running time of
the algorithm for the generated data set.

Analyzing the algorithm, we try to exploit two important characteristics of networks,
the degree distribution and the clustering coefficient. The Topological decomposition uses
the fact that real world networks do not have a uniform degree distribution, thus the
decomposition helps to break the network into several components. On the other hand,
the networks having high clustering coefficient represent the presence of densely connected
nodes in the network, which can be grouped together to form clusters. The idea of a
floating density function works well for networks that do not have high clustering coefficient
(for example Opte Network) as we try to group nodes which are less densely connected.
The results show that the algorithm performs well for different types of networks.

5.6 Findings and Future Research Prospects

In this chapter, we have used heuristics and a technique based on the Topological Decom-
position of the network to develop a high speed clustering algorithm. The low asymptotic
time complexity of the algorithm opens new horizons to the domain of network analy-
sis and clustering. As shown by the results, the proposed algorithm performs as well as
other existing algorithms in terms of accuracy but largely outperforms them in terms of
asymptotic time complexity.

From this study, there are many questions that need to be further explored in detail and
presents new and challenging research opportunities. For example the K-Sink operation as
an important utility to reduce the complexity of scale free networks and clustering them
based on this operation only. The Maxd-DIS as an important decomposition of small
world networks for clustering. We intend to perform extensive study using the presented
topological decomposition and expect to find new and interesting results. Moreover the
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choice of density function at the moment is trivial and can vary from one data set to
the other. Another approach to cluster networks which requires more exploration is the
fact that the density function can be replaced by some other criteria, depending upon the
inherent network topology, the motifs found in those networks. We also intend to perform
a user evaluation by domain experts to further validate the performance and quality of
the proposed clustering algorithm.
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Chapter 6

Co-Occurrence Networks from
the Web: Clustering and
Visualization

6.1 Introduction

Another domain where the presence of complex networks is commonly observed is the
web [1]. Web pages are a common resource of information containing textual information.
Usually a set of key words can be extracted from these web pages to represent the contents
of the web page. Using these key words, a co-occurrence network can be built where
nodes represent key words and edges represent a link between two key words if they
appear together on the same page. Other examples of co-occurrence networks can be
when one considers a novel and construct a co-occurrence network of characters if they
appear in the same paragraph or on the same page [59]. Looking at the properties of these
co-occurrence networks, they follow small world and scale free behavior and present an
interesting example of complex networks for study and experimentation as web pages are
widely used to collect information.

Recall from Chapter 1, visualization is an important method to analyze these networks.
In Chapter 3 we used layout algorithms to show a number of real world complex networks
but the drawings produced were highly entangled and cluttered. One important result that
we have extracted from the analysis using DIS is that in the absence of high degree nodes,
these networks break into smaller connected components making it easier to visualize. We
used this motivation to simplify co-occurrence networks produced using key words from
web pages to produce readable drawings so that we can easily understand and analyze
web documents. The research domain concerned with the extraction of knowledge from
documents is called Information Analysis (IA) or more precisely Content Analysis (CA).
This is an active area of research where the goal is to explore and analyze contents of
a set of documents in order to discover patterns and hidden knowledge [156]. Weare
provides a good overview of the challenges presented to the CA research community by
the World Wide Web [172]. Document Content Visualization Systems can be used as
a tool for CA where the goal is to represent textual contents of a set of documents in a
visual form so as to facilitate the process of mining and discovering patterns in a collection
of documents [124, 71]. We use the co-occurrence networks of key words extracted from
web pages to perform CA. The exponential increase in the information available on the
web requires efficient organization and visualization systems to facilitate faster access to
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Figure 41: Screen shot of the top seven Search Results returned by Google for the
searched term Jaguar.

information [96] and thus presents us an opportunity to test our methods of simplification
of complex networks.

Two typical applications of CA in the domain of web are web searching and web
browsing. Web searching refers to the task where a user inputs key words in a search
engine to find related web pages. Web browsing, in the current context, refers to the task
where given a web page, a user needs to explore links present in the web page to gather
more information.

In terms of web search, Search engines such as Google, Yahoo and Msn tend to return
long lists of search results with titles, small images and short paragraphs. Users have
to open each and every web page to assess its utility and relevance to the searched topic
which can become tedious and unproductive [105]. In terms of browsing a web page having
external links, sometimes it is imperative for the users to browse each and every external
link if further information is required. This task is not only time consuming but makes
it difficult for users to relate contents of web pages to each other. Moreover apart from
going over a single web page, most of the time, users tend to collect a set of web pages
rather than a single web page to obtain information [177].

Let us consider an example of searching for the word Jaguar using Google Search
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Figure 42: Wikipedia web page for CAC 40 showing a number of links to web pages
in sections ‘See Also’, ‘References’ and ‘External Links’.

Engine. Looking at the top seven results returned by Google (see Figure 41), these results
are distributed heterogeneously in the list, i.e. pages 1, 2, 3 and 6 are about the car
manufacturing company called Jaguar, Pages 5 and 7 are about the animal also called
Jaguar and Page 4 is about a super computer called Jaguar. If we look further in the
list, we will find pages related to a software solution provider, a musical group, a guitar
manufacturing company all having the name Jaguar.

As an example of browsing, let us consider browsing the web page ‘CAC 40’ on the
Wikipedia encyclopedia. CAC 40 is a benchmark for French stock market index which
represents a capitalization-weighted measure of the 40 most significant values among the
100 highest market caps on Euronext Paris 1. There are many links on this page in sections
‘See Also’, ‘References’ and ‘External Links’ as shown in Figure 42. Users searching for
more details would use these links to jump to other web pages and look for further
information. Usually they will go through these web pages one at a time to find more
information which is not only time consuming but makes it difficult to relate what they
have already found as information and what else they require.

Ideally we would like to group the collection of pages together based on their content
so that users can immediately realize the multiple themes related to the searched topic
as shown in Fig. 43. This would also give the user an idea about the sub-topics that
revolve around the major topic. To represent the contents of these groups, displaying
noun phrases and keywords would allow users to glance contents of search results without
reading or scanning individual web pages and thus reduce their effort in locating relevant
information [177]. Once they have located the pages of interest, a more detailed analysis
can be conducted by visiting the relevant pages.

Moreover the users would like to see how these sub-topics are related to each other.
Words appearing in more than one document can play a role of bridges between these
groups thus creating a link between words from two different groups. Nodes organized into
circles in Figure 43 correspond to keywords extracted from a set of documents. Clearly,
the figure shows that documents roughly organize into several sub topics such as Jaguar
Cars and Jaguar Animal. In other words, Figure 43 shows the clusters of web pages
[68, 9]. Additionally, a few nodes have been isolated and bridge these subgroups, further
indicating topics that link the different subgroups. The bridging nodes thus sit out of the

1 http://en.wikipedia.org/wiki/CAC_40
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Figure 43: Visualizing Clusters and Bridges of the entire jaguar network. Distinct
clusters (yellow nodes) clearly separate according to the different meanings of this
keyword across web pages.

community structure (the structural hole as Burt names it [33]) and act as broker between
communities. This provides an additional benefit to understand the underlying topics and
their relationships of the entire collection of web pages, either returned as search results
or collected as a result of browsing links existing on a single web page.

The automated text processing systems that help in the process of analysis suffer
from two major drawbacks. One, the textual data is highly redundant due to synonymy
(different words having same meaning e.g. singer, vocalist) and two: the data is highly
ambiguous due to homonymy (same word having different meaning e.g. bank can be a
financial institution or a river bank) [71]. Thus a visual representation of the contents
can quicken the process of focusing the search process, help in analysis and discovery of
knowledge and develop a better understanding of the set of documents.

Our starting point is thus the network of links between words extracted from web
pages. As we shall see in the coming sections (see Figure 45), the co-occurrence network we
obtain after the extraction process is actually quite complex and its structure forbids to use
it as a graphical representation as such. The problem we address in this chapter is to reveal
hidden community structures in complex networks. We use the term ‘hidden’ because the
visual layout of the co-occurrence networks conceals the presence of these communities
as shown in Figure 45. Our approach also allows us to identify the bridges within these
networks. The uncovered structure can then be used to build a graphical representation
of the whole network to help visualize and interactively explore these relationships.

We know that due to the presence of high degree nodes in co-occurrence networks
(see Figure 44 and Figure 45), it is difficult to visualize networks and the communities
present within the network structure [6]. As we saw from the analysis of various complex
networks in Chapter 3, this is largely due to the fact that a few nodes have a very high
degree and they create links between the underlying community structure hiding the
communities. Figure 45 shows the co-occurrence network obtained by browsing pages on
the Wikipedia encyclopedia starting from the CAC 40 page. Again, we have used a force
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Figure 44: Plot of the node degree distribution : degrees appears on the x-axis and
the frequencies associated on the y-axis.

Figure 45: Co-occurrence Network of Words: Pages Browsed from CAC 40 Wikipedia
web page

directed algorithm FM3 which puts the nodes that are densely connected to each other
closer hence making it easier to locate the community structures. But from Figure 45, it
is quite evident that in the presence of very high degree nodes it is very hard to identify
different communities visually.

The proposed system addresses two main problems in the analysis of complex net-
works. First is revealing the community structures hidden in the network through simpli-
fication of the graph and clustering. As an example we consider the co-occurrence graph
of words extracted from a set of web pages. The second is the identification of words that
are interesting from a user perspective to study the relationship between clusters but have
a low frequency in the entire document corpus. These words can help us to uncover hid-
den information and discover relationships that are not apparent in the original network
or difficult to locate. For example a company linking web pages from CAC Next 20 and
CAC 40 might be a good candidate of a company that has interests in equities from CAC
Next 20 and CAC 40. This company name should be represented separately as a bridge
that the user can find easily without having to go through the two web pages and deduce
this relationship. We use an extension to the Micro/Macro graph layout algorithms [18]
and propose a dedicated layout to visualize the final network which helps us to develop
an overall picture of the distribution of the contents of the collected set of web pages.

The rest of the chapter is organized as follows: In Section 6.2 we present the related
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work. We describe the data set used as an example in section 6.3 and the proposed system
in section 6.4. Section 6.5 discusses the results that we obtained by the application of
our framework on the sample data sets. Section 6.6 contains the conclusion and future
research prospects, advancements and improvements possible to the current system.

6.2 Related Work

Document Content Visualization has been studied in details by various researchers and
different visualization systems have been proposed such as [71] [61]. Most of these systems
are useful to identify the key words in a document collection. They use the classical tech-
niques to calculate the relationships between documents like the tf-idf score [146] which
makes it difficult to focus on low frequency words that appear in only a few documents.

Different visualization systems for web search results can broadly be grouped into
two categories: List Based Systems and Graphical Visualization systems. The list based
systems keep the traditional ordered list visualization adding visual aids such as bolding
words in the paragraphs [97] or clustering web pages and presenting a tree view [184, 177]
along with the list. Graphical systems represent search results in a graphical environment
where the visualization can either be 2D [135] or 3D [24]. The effectiveness of both
list based systems and graphical systems has been investigated by different comparative
studies but no formal proof exists and thus remains an open area of research [11]. In
this paper we propose a Graphical Visualization System and give a brief account of the
research done in visualizing search results as Graphical Visualization Systems.

WebSearchViz [135] is a graphical system that uses the metaphor of the solar system
where the user query is placed at the center and the relevant pages placed around it as a
function of the similarity to the user query. It uses a vector-based similarity measure to
compute the degree of relevance but does not take into account the small world-scale free
behavior of the keywords.

Kartoo 2 is a cartographic, visual meta-search engine. Kartoo labels the links between
nodes in an attempt to give an idea about the kind of relationship between two connected
nodes (sites), but these labels are frequently confusing and incorrect [26]. WebBrain 3

is another such utility on the web that helps users search and explore the web visually
through a graphical representation. The search engine uses an egocentric [60] approach
again placing the searched keyword at the center of the display area and the related
web pages as a list on one side. The web pages are displayed at the bottom screen as
we navigate through different searched keywords. The elements are not clustered which
makes it difficult for the user to have an idea about the topics revolving around the key
words searched.

LightHouse [105] is an information retrieval system that integrated both the list based
and graphical based visualization to represent the clusters. The visualization uses spheres
to represent web pages and two spheres overlap if they are semantically very close to each
other. Although this is useful in case of a few web pages, but if many overlaps occur,
it becomes difficult to visualize the web pages. And also, the user cannot see how the
web pages are related to each other whereas this is possible through our system. The
readers are recommended to read [135] which provides a good overview of the different
visualization systems for web search results.

Most of the research has been directed towards two objectives. One is, towards showing
the connection between the user query and the resulting web pages [135] and two, effective
organization and clustering of search results [24]. None of these systems perform content
analysis as their primary task is to help users find web pages relevant to their query. Some
of these systems perform clustering based on the content of the web pages [184] but none
of these focus on showing the bridges that create links between these documents.

Clustering and Visualization of a network or graph having small world and scale
free properties at the same time, to the best of our knowledge, has not attracted much

2 http://www.kartoo.com/
3 http://www.webbrain.com
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attention in the clustering domain. We referred to the work of Boutin et al. [27] in the
previous chapter where they proposed a clustering algorithm for small world and scale free
networks. They also present a method to visualize these networks based on user-focus.
This technique extracts a tree-like graph so that the resulting structure can be drawn
using any force directed algorithm leaving the final drawing easily readable. One of the
drawbacks of this system is that the user has to choose an initial entry point to filter the
graph. The system we propose requires no such information. Moreover since edges are
removed to simplify the structure of the network, important information can be lost. We
preserve the original network without removing any edges or nodes thus no information
loss occurs and the user is free to navigate in the entire network all the time.

Methods have been proposed to cluster and visualize scale free networks based on
filtering [136, 92] of nodes or edges but some loss of information occurs at the same
time. For example, we earlier discussed in Chapter 3, the k-core decomposition which
is a recursive pruning method to simplify large scale free networks for visualization. It
progressively allows the detection of central nodes in the network but the grouping is solely
based on the topology and does not reflect the similarity of the nodes. [136] proposed a
method based on the Minimum Spanning tree(MST) , where the goal is to construct a
MST of the network thus reducing the network from a graph to a tree. This essentially
requires deletion of edges and loss of information does occur.

Two other algorithms that were also referred in the previous chapter to cluster and
visualize small world networks are [9, 162]. These systems perform well if the topology of
the network follows small world properties but fail to perform in the presence of scale free
properties. This is due to the fact that in a scale free network, a few nodes dominate the
entire networks connections and makes it difficult to visually identify the communities.

6.3 Collection and Preprocessing of Data

We consider two examples from the searching use case and one for the browsing use case.
We use the Jaguar, Hepburn and CAC 40 data sets described in Chapter 2. In all the data
sets, we choose the top 50 pages. This choice is influenced by the study [85] which shows
that users will try a new search after browsing at most 30 web pages in case of searching
a web page on the Internet. Thus we did not require an extensive collection of web pages.
The data sets can be represented by 3 tuples. First for the Words (words), second for the
documents (document title, hyper link) and the third representing relationship between
the documents and the words, Relationship(Document title, words).

From a single data set, two different graphs can be constructed. A graph of Web
page-Word and a Word-Word graph. In a Web page-Word graph, the nodes represent the
web pages and the words where an edge between a web page and a word represents that
the word appears in that web page. This graph by construction forms a bi-partite graph
where there are no edges between words and similarly there are no edges between the web
pages. We use this graph to find the words that appear in many web pages as the degree
of a word represents the number of web pages it appears in.

The other graph is the word-word graph which we eventually use for visual analysis
of the network. The nodes represent the words and an edge between two words represent
that they appear together in at least one web page. An important observation about this
graph is that the words that appear in a single web page would be connected to each other
thus forming a clique. Looking carefully at Fig. 45, the set of nodes that form a group
and are densely connected to each other most probably belong to the same web page.

6.4 Framework of Proposed System

The inspiration to the proposed system comes from the analysis performed in Chapter 3
where we discovered that in the absence of high degree nodes, it is easier to visualize these
networks. In other words, if we can somehow remove the long tail like structure and reduce
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Figure 46: Framework of the proposed system. There are three basic steps, simplifi-
cation of the network through node duplication, removal of bridges and identification
of clusters, visualization of clusters and bridges.
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a complex network to a small world graph without scale free property, we can successfully
visualize the network. To remove these high degree nodes, we duplicate nodes with a very
high degree thus leaving us with only a small world network. In our case, duplicating the
high degree nodes means that the words that are present in a majority of documents are
duplicated such that they are assigned a new identity in each and every document they
appear. Thus they are treated as words that appear only in a single document. This is
done in order to reduce the inter-cluster edges which in turn, results in a more readable
visualization of the network. Thus revealing the community structure visually.

Another way to handle the high degree nodes would have been to simply delete these
nodes from the network, but duplication is a better option as it preserves knowledge and
no filtering takes place. Other works in handling Scale Free graphs have proposed different
filtering methods but one of the important characteristics of the proposed framework is
that we preserve all knowledge in the original network.

Next, we use the Betweenness Centrality introduced in [62] (see also [30] for imple-
mentation) to identify the nodes that lie between communities of words representing the
small world structure. These are the words that are present in a few documents only
and play the role of bridges between web pages, i.e. they link different web pages. After
identifying these words, we remove them temporarily further simplifying the entire net-
work to reveal disconnected components in the network. These connected components
are grouped together as clusters.

Once the clusters are found, the words that were initially duplicated might find them-
selves in the same cluster. We remove the duplicated nodes within clusters so as to
keep a single copy of the duplicated nodes. Then we reintroduce the nodes having high
betweenness centrality that were removed temporarily and we identify them as Bridges.

Finally the network of clusters and Bridges is drawn using a graph drawing algorithm.
We associate a different color to identify the nodes that are duplicated in the network so
as to show users the nodes that are present in other clusters as well. Thus we have nodes
that have two different colors (see Fig. 53(a)), representing nodes that appear only once
or are duplicated. A simple interaction by clicking a duplicated node is introduced to
trace the presence of a duplicated node in the entire network by associating a third color
(see Fig. 53(b)). The following sections discuss our framework in detail.

6.4.1 Using Scale Free structure to find cut off point and duplicate
nodes

In order to find the words to be duplicated, we use the bi-partite graph of words and
documents as described in section 6.3. Once we have the Web page-Word graph, we
need to identify the words that are present in many documents. The degree of the nodes
in this graph represents the number of documents a word appears in. Fig. 48 shows the
frequency distribution of the words and the web pages. The x-axis represents the number
of documents and the y-axis represents the frequency of words. For example the point ‘a’
in the Figure 48 means that there are just a little over 30 words that appear in exactly
three web pages.

Since the idea is to duplicate words that appear in many documents, we need to
find the proper definition of what ‘many documents’ mean for this network. Looking at
Figure 48 we calculate the slope of every two consecutive points. At point b the slope
becomes equal to zero. This gives us a heuristic which suggests that as the slope becomes
zero or close to zero (values of -1 or -2) this point can be considered as the cutoff point.
In the given example, it turns out to be 6, meaning that all the words that appear in 6
or more documents must be duplicated. Although this heuristic provides a good starting
point for the system, the user is free to manually choose a value for the degree a part
from which the nodes would be duplicated. Lower the value chosen, higher would be the
number of words being duplicated and the eventual word-word graph would become more
disconnected.

An example of a word that might be duplicated is the word ‘France’ since CAC 40 is an
index for French stock exchange, it is quite obvious to find this word in many documents.
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Figure 47: (a) Word-Word Graph constructed from browsing CAC 40 and related web
pages (b) Graph after node duplication (c) Graph after removing bridges (d) Graph
with Clusters and Bridges using proposed visualization.

Figure 48: Histogram of degree distribution for the Cac40 data set.
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This step introduces new nodes in the word-word graph but keeps the number of edges
exactly the same. Thus the graph gets simplified as shown in Figure 47(a) and 47(b).

Note that in graph drawing terminology, this duplication is called node splitting as
several copies of a node are created, but these copies do not carry all the edges with them,
instead, a small subset of edges is connected to each copy of the node.

6.4.2 Iterative removal of Nodes with high Betweenness Centrality

Once we have the word-word graph with duplicate nodes, we calculate the betweenness
centrality of the nodes which is a metric proposed by Freeman [62]. It calculates the
relative importance of nodes within a network by calculating the shortest paths between
pairs of nodes. Nodes that occur on many shortest paths between other nodes have higher
betweenness than those that do not. This metric is a good representation of the nodes
that play the role of connecting different communities and thus helps us in identifying the
bridges.

Girvan et al. [68] have used a clustering algorithm which is based on a modified form
of this metric. They calculate edge betweenness based on the same principal where they
find edges that are central to a network. Then they iteratively remove the most central
edge in the network and recalculate the edge betweenness until no more edges are left.

Since our goal is to find the bridges we apply the same method on nodes to identify
the bridges. We calculate the betweenness centrality of the nodes, remove the node with
the highest betweenness centrality and repeat this process a certain number of times.
Girvan repeated the process until there were no edges left as the goal was to produce a
hierarchical clustering. We use a heuristic to determine the number of iterations which is
based on the total number of documents used for extraction of words and the number of
bridges we want to see between groups of documents. For the given example we choose
15 as it would give us a bridge for nearly every three documents.

Number of Iterations = bNumber of Documents/3c (3)

Where de represents the ceiling function.

The user is free to choose any value depending on the requirements, higher the num-
ber of iterations and higher would be the number of bridges and smaller would be the
size of clusters. Figure 47(c) represents the graph after the removal of nodes with high
betweenness centrality.

6.4.3 Finding Communities through Clustering

Removal of high betweenness nodes results in disconnected components in the graph as
shown in Figure 47(c). We then group the connected components as clusters. Once the
clusters are found, each and every cluster is scanned for nodes that were duplicated and
found themselves in the same cluster. We remove this node duplication within a cluster
and keep a single instance of a duplicated node within a cluster.

6.4.4 Reintroducing Nodes with High Betweenness Centrality and
Identification of Bridges

The next step after clustering of the nodes is to re-introduce the nodes that were earlier
removed due to high betweenness centrality. These nodes are considered to be the Bridges
as they are responsible for connecting different clusters. Keeping in view that the words
that were present in many web pages were duplicated and thus their degree was reduced,
the nodes having high centrality in this final network are words that appear in a few web
pages only. These words are important from the user perspective as they link web pages
and might play an important role to understand the relationship between web pages.
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As a result of the proposed method, We obtain a bipartite graph G(B,C,E) where B
is a set of bridges, C is a set of clusters and E is a set of edges connecting nodes from set
B and C. An edge exists between b ∈ B and c ∈ C if b appears on the same web page as
at least one of the nodes (keywords) present in the cluster c.

6.4.5 Visualization of Clusters and Bridges

Now that we have a set of nodes representing clusters and bridges as separate entities,
a visualization system is required such that it helps the user analyze, understand and
navigate through this graph. It is important to have a clear picture with clusters laid
out such that bridges between clusters are well placed to give the user an idea of how the
clusters are related to each other. Node and edge overlapping also needs to be taken into
account as it is one of the fundamental criteria to produce readable drawings.

Foremost, we try to position the nodes of graph G(B,C,E) in such a way that sim-
ilar nodes are placed closely to each other, while dissimilar nodes are more separated
geometrically. By using the lengths of shortest paths in the network, the proximity in
a graph-theoretical sense serves as a proxy for topical similarity. In the graph drawing
literature, this approach is often called ‘organic’; positions are computed by a simulation
of physical forces or numerically minimizing an objective function [29].

In some preliminary experiments with different types of layout approaches and li-
braries, we found that existing implementations and traditional general-purpose layout
algorithms are only of limited usefulness when particular aspects of the data are to be
emphasized. Therefore, we adapt existing layout algorithms to produce a more dedicated
layout method which explicitly takes into account the particular structure of our net-
works. It is more specific to the analytic perspective in our context and thus facilitates
interpretation of clusters and bridges. Recall that the size of clusters is much bigger than
that of bridges which needs to be accounted for when existing layout algorithms are used.
The details of the dedicated layout algorithm can be found in [145] and remains out of
scope of this document.

6.4.5.1 Navigation and Interaction

Visualization of clusters and bridges help users to build an overall picture of the search
results. For a profound understanding and exploration of the returned results we propose
different interactions to the user. Mouse rollover effect over a cluster displays the list of
all the keywords present in the cluster as the tool tip (see Figure 49). This helps the user
to instantly identify what the cluster is about and take a decision about further exploring
it. Moreover, the labels of the bridges are displayed which are useful to understand
the relationships between clusters. Clicking on a cluster expands a cluster showing all
the keywords in the cluster as nodes and clicking on it again, collapses the cluster (see
Figure 53). A Right click on a cluster displays the links to the web pages that are grouped
in the cluster where the user can open any particular web page as shown in Figure 50.

Apart from these interactions with the cluster, we can also interact with individual
nodes within a cluster. Moving the mouse on a node, the label is displayed as the tool tip.
We have used two colors to distinguish the split nodes (keywords) shown in Light Green
Color as compared to the other shown in Dark Green. Upon clicking a split concept,
all the instances of this keyword change their color to pink (see Figure53) and increase
the size so as to locate the high degree nodes that were split in the node splitting step
described earlier.

Two different colors are associated to the nodes within a cluster. (Light green and
dark green as shown in Figure 53.) The light green color represents the nodes that are
duplicated throughout the network. An important interaction is clicking on a duplicated
node, which highlights all of its instances in the entire network as shown in Figure 53(b)
using a different color (Pink) and size. This is to help locate the duplicated instances of
a node in the network.
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Figure 49: A tool tip allows to easily browse keywords of a cluster and figure out its
intrinsic semantics.

6.5 Case Studies

6.5.1 Searching Example: Jaguar

As a first example, we searched the word jaguar. As discussed in the section 6.1, this
word represents completely different subjects like the Jaguar Cars, the animal etc.

Typically, semantic ambiguity of a word leads a search engine to return pages that are
not semantically related, listing them in no particular order with respect to the possible
meanings of the word jaguar. This is also present in the co-occurrence network, where
keywords found in pages about Jaguar cars will be connected to keywords present in
pages about the animal. The node splitting step identifies jaguar as a high degree node
and disconnects keywords belonging to web pages related to cars or to the animal. This
justifies our approach as nodes that have a high degree of connections need not to be
grouped together in a single cluster as they are usually generic terms appearing with high
frequency but not necessarily useful in terms of grouping related information together.

As a consequence, the visualization clearly positions different groups (cars, animals,
video games, etc.) as distinct visual entities as shown in Figure 43. Distinct clusters
are placed apart and already indicate that the search results organize into groups of
pages addressing different topics. Using the tool tip and browsing keywords contained in
a cluster, users can quickly identify the underlying trends of the associated web pages.
Figure 49 illustrates this, showing keywords associated with pages dealing with a Japanese
gag Manga named Pyu to Fuku! Jaguar.

Right-clicking on a cluster shows the URL of web pages associated with keywords. As
Figure 50 shows, in some cases the URLs already provide information about the underlying
topic of a cluster. In our example, all pages obviously relate to different models of Jaguar
cars.

6.5.2 Searching Example: Hepburn

The second example represents a type of social network. We searched the word Hepburn
which is a famous family name in Scotland. It is also quite frequent in some other areas
of Europe, and we expect to find a social network of people belonging to that family.

Figure 51 show the entire network obtained after applying the proposed visualization.
This example again shows the effectiveness of the proposed method as the node splitting
and bridge removal does not disconnect the clusters that are semantically related to each
other. As shown in Figure 52, we focus on four clusters that are connected to each other.
These clusters are pages related to two actresses Audrey Hepburn and Katherine Hepburn.
They are not completely disconnected from the other clusters since they have the cinema
as a common field. Let’s take the example of the bridge Tiffany’s which is extracted
from a web page about a film called Breakfast at Tiffany’s (1961) thus linking Audrey
and Katherine with the cinema industry. Similarly, Audrey Hepburn appeared in a T.V
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Figure 50: Right-clicking on a cluster reveals URL’s of all web pages associated with
keywords. In the example, URLs already indicate that the cluster gathers pages about
Jaguar Cars.

Figure 51: Visual Layout of Clusters and Bridges for the keyword Hepburn where a
set of clusters are disconnected to other clusters.

commercial for the KLM airlines and Katherine played the role of Ann Hamilton in a
film called Undercurrent. Thus the four clusters connected to each other are semantically
related to each other. The clusters that appear apart from these clusters are pages related
to politicians, writers belonging to the Hepburn family.
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Figure 52: Focus on a connected set of clusters for the search keyword Hepburn.

Figure 53: (a) A small part isolated from Figure 47(d) showing Titles of Web pages
clustered together and Bridges(b) Duplicated nodes highlighted after selection
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6.5.3 Browsing Example: Cac40

Figure 53 shows a small part isolated from Figure 47(d). Figure 53(a) shows the three
clusters represented by circular structures having many small nodes and the bridges which
are labeled ‘A novo’, ‘AXA’, ‘Accor’ and ‘number’. The first three represent French
companies and the bridge ‘number’ is a noise. the clusters are associated with titles of
the web pages, which are CAC Small 90, Investment Management in a cluster, CAC 40
and Euronext Paris in another cluster and the third cluster containing only the document
List of French Companies. In Figure 53(b), the word Finance was selected in a cluster,
which is a duplicated node and is present in two clusters.

CAC 40 and Euronext Paris represents the stock exchange of Paris, where CAC 40
is an index based on the 40 biggest equities of France. The web page CAC Small 90 is
an index representing the 90 biggest equities after CAC 40, CAC Next 20 and the CAC
Mid 100. The page Investment Management is about the companies that are interested in
investment. The page List of French Companies contains a list of all the French companies.

Looking at the clustering, the first cluster, which contains the CAC 40 and the Eu-
ronext Paris, it is obvious that these two pages find themselves in the same cluster as they
both represent the Paris Stock Exchange. ‘AXA’ and ‘A Novo’ are two companies where
AXA is listed in the CAC 40 and A Novo is listed in CAC Small 90. Finding CAC Small
90 with Investment Management makes sense as AXA is a French company interested in
investments and targets companies in the CAC Small 90 as a possible investment oppor-
tunity where A Novo is an example of a possible future investment. Similarly the relation
between List of French companies and CAC 40 through Accor suggests that Accor is a
French company listed in CAC 40.

All this analysis is a direct result of the visual representation of the network. Clusters
group things that have similarity based on the content and Bridges are responsible for
creating relationships between these clusters giving an overall understanding of the data
set.

6.6 Findings and Further Research Prospects

In this chapter we have presented a system to visualize and explore complex networks
revealing clusters and detecting bridges in a set of web pages. The system was tested
with several examples and the in-house informal tests with different users indicate that
the system was found to be very useful to develop and overall understanding of the
collection of web pages. The identification of the subtopics revolving around the primary
search topic was a direct result of the clustering. The identification of the words that play
the role of bridges between these different subtopics was also found to be very useful.

The system was tested with small data sets as the web browsing on a single topic does
not require to evaluate hundreds of web pages at the same time. Similarly the size of
documents was not very huge as web pages usually have a very limited size as compared
to books, newspapers etc. As part of the future work, we would like to test the system to
visualize web search results as compared to browsing. We would also like to ameliorate
the system to incorporate the exploration of complex networks of large sizes such as the
co-authorship networks discussed earlier. We also plan to introduce more interactions to
facilitate the user navigation like deleting nodes, dragging nodes from one cluster to the
other etc.
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Chapter 7

Evaluating the Quality of
Clustering Algorithms

7.1 Introduction

Clustering plays a pivotal role in the organization of complex networks. An important
aspect of clustering algorithms is to evaluate their performance, also known as cluster
fitness measures. From the intuitive definition of clustering as, the best possible decom-
position into Natural Groups, we would like to mathematically express the quality of
clustering algorithms by structural indices. We focus our attention to the numerous real
world networks discussed particularly in Chapter 3 where we studied the varying behavior
of connectivity of nodes in certain regions. The idea is to study how the quality of clusters
produced for these networks can be evaluated through concrete measures.

Generally, the quality indices give a quantitative evaluation of how good the clustering
is and serves the purpose of choosing between alternative cluster algorithms and compare
their performances for various data sets [147]. Another useful contribution of these metrics
can be eventual identification of clusters [130].

There are different approaches to evaluate cluster quality and can be classified as exter-
nal, relative or internal. The term external validity criteria is used when the results of the
clustering algorithm can be compared with some pre-specified clustering structures [77]
or in the presence of ground truth [140]. Relative validity criteria measure the quality of
clustering results by comparing them with the results of other clustering algorithms [111].
Internal validity criteria involve the development of functions that compute the cohesive-
ness of a clustering by using density, cut size, distances of entities within each cluster,
or the distance between the clusters themselves etc [119, 134, 78]. We will discuss these
measures in detail, shortly.

For most real world networks, an external validity criteria is simply not available. In
the case of relative validity criteria, as Jain[88] argues, there is no clustering technique that
is universally applicable in uncovering the variety of structures present in multidimensional
data sets. Thus we do not have an algorithm that can generate a bench mark clustering
for data sets with varying properties. For these reasons we focus our attention only on
internal quality metrics. Further more, we restrict the discussion to quality metrics for
partitional or flat clustering algorithms that are non-overlapping.

We look again at the definition of a cluster given by Wasserman and Faust [169] earlier
introduced in Chapter 5. This time, our perspective is to associate measures to evaluate
the quality of clustering.

A cluster can be defined as a group of elements having the following properties:

> Density: Group members have many contacts to each other. In terms of graph
theory, it is considered to be the ratio of the number of edges present in a group of
nodes to the total number of edges possible in that group.

> Separation: Group members have more contacts inside the group than outside.
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Figure 54: (a) Represents a clique (b) presents a star-like structure and (c) is a set
of nodes connected to each other in a chain-like structure.

> Mutuality: Group members choose neighbors to be included in the group. In a
graph-theoretical sense, this means that they are adjacent.

> Compactness: Group members are ‘well reachable’ from each other, though not
necessarily adjacent. Graph-theoretically, elements of the same cluster have short
distances.

The Density of a cluster can be measured by the equation d = eactual/etotal where
eactual represents the actual number of edges present in the cluster and etotal represents
the total number of possible edges in the cluster. Density values lie between [0,1] where
a value of 1 suggests that every node is connected to every other node forming a clique.

The Separation can be calculated by the number of edges incident to a cluster, i.e the
number of edges external to the clusters. This is often referred to as the cut size and can
be normalized by the total number of incident edges possible to the cluster. Low values
represent that the cluster is well separated from other clusters where high values suggest
that the cluster is well connected to other clusters.

Mutuality and Compactness of a cluster can easily be evaluated using a single quan-
titative measure: the average path length described in Chapter 1. The path length refers
to the minimum number of edges connecting node A to node B. The average path length
represents how far apart any two nodes lie to each other and is calculated by taking the
average for all pairs of nodes. This value can be calculated for a cluster giving us the
average path length of a particular cluster. Low values indicate that the nodes of a cluster
lie in close proximity and high values indicate that the cluster is sparse and its nodes lie
distant to each other.

A common definition of clustering for networks is given as decomposition of nodes
with high intra-cluster density and inter-cluster sparsity. Most of the evaluation metrics
consider density as a fundamental ingredient to calculate the quality of a cluster and
capture the notion of intra-cluster density. Obviously cut size can be used to measure the
inter-cluster sparsity.

From the definition of cluster given above, density is an important factor and a number
of metrics have been proposed to evaluate cluster quality based on the notion of density.
We believe that density should not be the only factor considered while evaluating the
quality of clustering. Having a densely connected set of nodes might be a good reflection
of nodes being adjacent to each other or lying at short distances but the inverse conjecture
might not necessarily be true as illustrated in Figure 54. Consider the set of five nodes in
Figure 54(a,b,c) being identified as clusters by some clustering algorithm. The density of
graph in Figure 54(a) is 1 and that of (b) and (c) is 0.4. Intuitively (b) is more cohesive
than (c). Moreover the average path length of (b) is lower than that of (c) suggesting that
the elements of cluster (b) are closer to each other. From this example, we can deduce that,
if we consider density as the only criteria, then for such an evaluation metric, (b) and (c)
will be assigned a similar value which is not consistent with Mutuality and Compactness.

Another important class of evaluation metric uses connectivity of clusters to capture
the notion of Separation. The simplest way to measure this is the cut size which is defined
as the minimum number of edges required to be removed so as to isolate a cluster. Consider
the graphs in Figure 55(a,b,c) with enclosed nodes representing clusters. Calculating the
cut size for all these clusters will give the same cut size, which is 1 in these examples, as
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Figure 55: Represents three graphs with enclosed nodes being the clusters. All the
clusters have the same cut size which is equal to 1. Based on the cut size alone the
quality of the clustering cannot be judged.

each cluster is connected to the rest of the graph through exactly one edge. The example
suggests that cut-size alone is not a good representation of the quality of clustering as all
the clusters in Figure 55 have the same cut-size.

More sophisticated measures combining density and cut size have been investigated
with the most important example being relative density [116]. Even combining these two
metrics, the clusters in Figure 55(b) and (c) will be assigned an equal score, failing to
incorporate Mutuality and Compactness of a cluster. Calculating the density and the cut
size of these two clusters will result in the exact same value. We present other cluster
evaluation techniques in Section 7.2.

If we consider Density, Mutuality and Compactness together to evaluate the quality
of clusters present in Figure 55, the highest measure should be associated to cluster (a)
as it is the cluster with the highest Density, Mutuality and Compactness. Then cluster
(b) where it has high Mutuality and Compactness but low density and finally cluster
(c) which is the least Dense, Mutual and Compact cluster of the three clusters present
in Figure 55. We show that the existing cluster evaluation metrics do not evaluate the
quality of clusters in this order. We discuss the details in Section 7.4.

Until now, we have argued that ignoring Mutuality and Compactness of a cluster
to evaluate its quality can give inconsistent results. A simple question can be raised
about the importance of these two criterion especially for real world data sets. To answer
this question, we turn our focus towards some real world data sets. Consider the Air-
Transport Network which was discussed in detail using the DIS in Chapter 3. In this
particular case, we took the city of Hong Kong as an example by taking some airports
directly connected to it as shown in Figure 56. On one side, we can see some of the world’s
biggest cities having direct flights to Hong Kong where on the other hand, we have lots
of regional airports also directly connected to Hong Kong. If we consider a cluster by
putting Hong Kong with the regional airports, the resulting cluster will have very low
density and high cut size which are undesirable features for a cluster. In the other case,
where we consider Hong Kong as part of the cluster with the biggest cities in the world,
the cluster with Hong Kong will have a high cut size. Moreover, the regional airports
could not be clustered together as they will no longer remain connected to each other.
We will end up with lots of singleton clusters which again will reduce the overall quality
of any clustering algorithm.

Another example of these star-like structures comes from Opte network. Considering
two hubs from this data set and taking all the nodes lying at distance five from these
hubs, we obtain a structure as shown in Figure 57. The two hubs dominate the number
of connections in these networks presenting the star-like behavior in real world data sets.

In Chapter 3, we identified these star-like structures as a common structure present
in most real world data sets along with triads and cliques. Social networks are good ex-
amples of networks having cliques. Recall that we considered two co-authorship networks
(Geometry and Dblp2008 networks) as examples where cliques are present.

Metrics based on density and cut size prove to be adequate for networks having densely
connected nodes or cliques. Results have shown that different clustering algorithms per-
form well for these networks [68, 126, 9]. On the other hand, in case where lots of star-like
structures exist (see Figure 56 and 57), an evaluation based on density and cut size fails to
perform well as shown in the examples discussed previously. To resolve this problem, we
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Figure 56: AirTransport network drawn using Hong Kong at the center and some
airports directly connected to Hong Kong. We can see the worlds most important
cities having a direct flight to Hong Kong whereas there are lots of regional airports
connected to Hong Kong representing a star-like structure as discussed previously in
Figure 54(b) and 55(b).

Figure 57: Internet Tomography Network representing routing paths from a test host
to other networks. Two nodes clearly dominate the number of connections as they
play the role of hubs to connect several clients. Another example of star-like structures
in the real world.

propose a new cluster evaluation metric which takes into account the underlying network
structure by considering the average path lengths to evaluate the cluster quality.

Apart from these cliques and star-like structures, other interesting topologies exist
in different data sets but are highly dependent on the application domain. Examples
include motifs in Chemical Compounds [42] or Metabolic Networks [103] where the goal
is to search motifs in graphs and not to cluster them based on some similarity. We focus
our attention only to generic data sets as opposed to evaluating clustering algorithms for
specific data sets and particular patterns.

The design principle for the proposed metric is very simple and intuitive. Instead of
considering density as the fundamental component to evaluate the quality of a clustering
algorithm, we use the average path length to determine the closeness of the elements of
a cluster. It is obvious that in case of a clique, the path length between the nodes is 1
which is the minimum possible value for two connected nodes. But the important aspect
here is that a star-like structure will have a higher average path length as compared to a
chain like structure thus providing a way to evaluate how close the nodes are of a cluster,
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irrespective of the density of edges. We discuss the details of the proposed metric further
in Section 7.3.

The rest of the chapter is organized as follows. In the following section, we provide
a brief overview of some widely used metrics to evaluate cluster quality. In Section 7.3
we present the proposed metric and we discuss our findings by performing a comparative
study of the different evaluation metrics in Section 7.4. Finally in Section 7.5 we present
our conclusions and future research directions in light of the newly proposed metric.

7.2 Cluster Quality Metrics

In this section, we review a number of cluster quality metrics designed for networks and
used commonly by researchers.

Coverage [28] measures the weight of intra-cluster edges, compared to the weight of
all edges. With respect to the definition we are using, coverage measures only the density
within the clusters and therefore does not take into account if an individual cluster is
sparse or the number of inter-cluster edges is large.

Conductance [95] measures the degree of connectivity between two clusters as opposed
to Coverage and focuses on inter-cluster density. Ideally, two clusters should not be
connected at all or have a minimum cut size. The standard minimum cut is not well
suited as it neglects the size of each cluster, Conductance tries to overcome this problem
by ensuring that clusters under consideration have roughly the same size and at the
same time, minimum number of edges are required to isolate them from each other. The
drawback of this metric is quite obvious, it does not take into account how dense a cluster
is, and thus fails to differentiate between dense and sparsely connected clusters.

Performance [28] is a metric that combines the two metrics, Coverage and Conduc-
tance. The idea is to count the number of edges within all clusters to measure the intra-
cluster density and count the number of non-existent edges between clusters to measure
the inter-cluster density.

Another metric based on similar principles is the MQ used by Auber et al. [9] to
effectively evaluate the quality of clustering for small world graphs. The metric was
initially proposed by Mitchell et al. [117] as a partition cost function in the field of software
reverse engineering. It comprises of two factors where the first term contributes to the
positive weight represented by the mean value of edge density inside each cluster. The
second term contributes as a negative weight and represents the mean value of edge
density between the clusters. Mathematically, given a clustering C = {C1, C2, · · · , Cp},
MQ is defined as:

MQ =
1

p

p∑
i=1

(Ci, Ci)−
1

p(p− 1)/2

p∑
i=1,j=1

(Ci, Cj) : (i 6= j) (4)

The main draw back of Performance and MQ metric is the handling of very sparse
graphs. Clusterings with good Performance and MQ evaluation tend to have many small
clusters. This is largely due to the fact that most real world networks have low node-
edge density [113] and these metrics try to evaluate the quality as compared to cliques or
highly dense connected components. So if a clustering algorithm groups triads as clusters,
the evaluation quality of such a clustering algorithm would be very high, irrespective of
the size of clusters. If a set of 100 nodes is grouped together as a cluster, for real world
networks it is highly unlikely that this set will be a clique, as a result, these two metrics
will assign a quality based on its density. If there are many triads in this set of nodes,
separating them would result in better quality of the clustering algorithm and thus would
result in many small size clusters.

An alternative to these approaches is the metric Modularity(Q) [126]. The metric Q
measures the fraction of the edges in the network that connect within-community edges
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minus the expected value of the same quantity in a network with the same community di-
visions but random connections between the vertices. If the number of within-community
edges is no better than random, we will get Q = 0. Values approaching Q = 1, which is
the maximum, indicate strong community structure.

Mathematically, for a specific division of a network into C clusters, a symmetric matrix
c can be defined as C ×C whose element cij is the fraction of all edges in the network that
link nodes in community i to nodes in community j. For this clustering, the Modularity(Q)
can be defined as:

Q = Tr c−
∥∥c2∥∥ (5)

The term Tr c refers to the trace of the matrix c which gives the fraction of edges in
the network that connect vertices in the same community. The term

∥∥c2∥∥ is the squared
sum of the elments of matrix c.

The major drawback of Q metric is its inability to distinguish between the star-like
structures and chain-like structures as both clusters with these different structures are
assigned the same evaluation.

Another metric that tries to evaluate cluster quality based on density of the network
is the Relative Density [116] (RD). It calculates the ratio of the edge density inside a
cluster to the sum of the edge densities inside and outside that cluster. The final Relative
Density is the averaged sum of the these individual relative densities for all clusters.

Mathematically, the Relative Density (RD) can be calculated by:

RD =
degint(Ci)

degint(Ci) + degext(Ci)
(6)

The term degint(Ci) refers to the internal degree of cluster Ci defined as the number of
edges connecting nodes in cluster Ci and the term degext(Ci) refers to the external degree
of cluster Ci defined as the number of edges connecting nodes from cluster Ci to nodes of
other clusters.

For our experimentation and comparison, we use the MQ, Q and RD metrics only.
The other metrics like coverage [28], conductance [95], performance [28] are based on
similar principles to evaluate the quality of clusterings so we do not include them in this
study.

7.3 Proposed Metric For Cluster Evaluation: Cluster Path
Lengths

As we discussed earlier, the design principle which makes our metric novel, is the fact
that we consider the path length of elements of a cluster. Our inspiration comes from the
MQ metric [9] and thus is quite similar in the formulation. Just as the MQ metric, the
proposed metric is composed of two components, the positive component(M+(G)) which
assigns a positive score to a cluster and a negative component(M−(G)) which attributes a
negative score to edges between clusters. The positive score is assigned on the basis of the
density, compactness and mutuality of the cluster whereas the negative score is assigned
on the basis of the separation of the cluster from other clusters. The final quality of a
cluster is simply the sum of the two components given by the equation:

M(G) = M+(G)−M−(G) (7)

In the above equation, the two components are weighted equally. An option can be
to assign different weights to the two components, for example a higher weight to the
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positive component, for the sake of simplicity, we have not experimented with different
weights. We discuss the details of how the positive and the negative components are
calculated below.

7.3.1 Positive Component:

The goal is to assign a quantitative value to a cluster based on its density, compactness
and mutuality. Looking at the different clusters in Figure 55, if we calculate the average
path length of the nodes within the cluster, the least value would be assigned to cluster
(a), then cluster (b) and finally (c). This is quite intuitive as we reduce the average
distance between nodes of a cluster, the density tends to increase. Lets call the average
path length of each cluster Cluster Path Length. The best possible average path length
for any cluster can be 1 in the case when every node is connected to every other node
forming a clique.

The upper bound for the average path can be calculated with respect to number of
nodes in the cluster and grows linearly as the number of nodes grow in the cluster. In
case of disconnected set of nodes in the same cluster, there are two possibilities. If the
application does not require the nodes within a cluster to be connected, in this case,
the average path length of each connected component can be calculated separately and
average afterwards. In case where disconnected nodes within clusters are undesirable, a
very large value such as the maximum number of nodes in the network can be assigned
as the average path length. This gives a very poor evaluation to this cluster as we expect
nodes of a cluster to have at least a path to each other. Another option is to assign the
CPLi of this cluster as 0 directly without calculating the average path length.

We calculate the average cluster path length and take its inverse given by the following
equation:

CPLi =
1

AvgPathLeni
(8)

Where CPLi represents the cluster path length of cluster i and AvgPathLeni repre-
sents the average path length of the nodes in cluster i. Higher this value is for a cluster,
better is the quality of the cluster where the values lie in the range of [0,1]. The overall
cluster path lengths for the entire network are then averaged for all clusters where k is
the total number of clusters, giving us the value for the positive component to evaluate
the quality of the clustering:

M+(G) = CPL1···k =
1

k

k∑
i=1

CPLi (9)

7.3.2 Negative Component:

The next step is to assign a negative score to penalize the inter-cluster edges. The value
of M− evaluates the separation of the two clusters. This score is calculated for each pair
of clusters and is based on the number of edges that link two clusters i and j compared
to the total number of edges possible between these two clusters. Let ni and nj be the
number of nodes contained in clusters i and j respectively. Therefore, the edge penalty
for the edges present between these two clusters would be given by the equation:

EdgePenalty(i,j) =
eij

ni ∗ nj
(10)

Where eij is the number of edges present between clusters i and j. The overall Edge
Penalty (M−(G)) is the average calculated for all pair of clusters given by the equation:

113



Chapter 7. Evaluating the Quality of
Clustering Algorithms

M−(G) =
2

k ∗ (k − 1)

k∑
i=1,j=1

EdgePenalty(i,j) where(i 6= j) (11)

The negative score sums all edge penalties over all pairs of clusters and then normalizes
the value by k(k − 1)/2 to produce an overall penalty in the range [0,1]. This value is
linearly proportional to the number of edges present between clusters where low values
correspond to few broken edges and a better clustering quality. Note that the negative
component is exactly equal to the one introduced in the MQ metric.

To summarize the proposed metric, we use the cluster path lengths to assign a positive
score to evaluate the quality of clustering subtracted by a negative score which is based on
the inter-cluster density. The values lie in the range of [-1,1] and are normalized between
[0,1]. Low values indicate poor clustering and high values indicate better clustering. We
refer to the metric as CPL for Cluster Path Lengths (although we subtract the Edge
penalties from the CPLs calculated).

The time complexity to calculate the metric is dominated by the calculation of pos-
itive component. The calculation of average path length can be achieved by Dijkstra’s
algorithm[46] which calculates the shortest path from a node to all other nodes in O(n2)
for a graph with n nodes. The repeated application can be used to calculated the shortest
path between all pair of nodes giving an overall time complexity of O(n3). Since the
metric is applied on clusters, the number of nodes in each cluster is a portion of the total
nodes. As a result, the calculation of the metric runs faster than its worst case time
complexity. One drawback of using this metric is that it cannot be used as a criteria to
obtain clusters for large size graphs due to its high time complexity.

of calculating the average path length o

7.4 Experimentation

For evaluating different cluster quality metrics, we use two different experiments. The
first, where we generate artificial data sets and the second where we use real world data
sets.

7.4.1 Artificial and Clustered Data Set

For the artificial data set, we directly generate clusters to avoid biasing the experiment
using any particular clustering algorithm. We generate three clustered graphs of size n.
We generate a random number k between 1 and Max to determine the size of a cluster.
For the first graph, we add k nodes such that each node is connected to the other forming
a clique as shown in Figure 58(a). For the second graph, k nodes are added such that a
star-like structure is formed and finally k nodes are added to the third graph forming a
chain-like structure as shown in Figure 58(b) and Figure 58(c) respectively. The process
is repeated until the maximum number of nodes in the graphs reach n. The clusters
in each of these graphs are connected by randomly adding RandE edges. This number
decides the number of inter-cluster edges that will be produced for each graph. The choice
of selecting the variables n, Max and RandE are independent of the experiment and do
not change the final evaluation. For our experiment, we used n = 200, Max = 20 and
RandE = 40.

Two important inferences can be drawn from the experiment described above. The
first, where we compare how the different evaluation metrics perform for evaluating the
quality of clusters where each cluster is a clique with some inter-cluster edges. Looking
at the high values for the all the evaluation metrics, we can justify that all the metrics
are consistent in evaluating the quality of clusters including the newly proposed metric.
As discussed previously, density based metrics perform well when the clusters are densely
connected, and so does the proposed metric.
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Figure 58: Artificial and Clustered Networks with predefined intra-cluster edges and
random inter-cluster edges. (a)Clusters with cliques (b)Clusters with Star-like Struc-
tures (c) Clusters with Chain-like Structures.

Cluster Quality Metric Cliques Star-like Chain-like

Cluster Path Length 0.998 0.611 0.374

MQ metric 0.975 0.281 0.281

Q metric 0.998 0.844 0.844

Relative Density 0.862 0.711 0.711

Table 9: Evaluating the quality of clustering using three topologically different and
artificially generated clustered data sets.

The other important result can be derived by comparing the values assigned to the
star-like clusters and chain-like clusters by different evaluation metrics. Clearly the other
metrics fail to differentiate between how the edges are distributed among the clusters
ignoring the Mutuality and Compactness of a cluster whereas CPL does well by assigning
higher values to star-like clusters as compared to chain-like clusters. This justifies the
use of cluster path length as a metric to evaluate the quality of clusters specially where
dense clusters are not expected.

Note that for the three data sets, the number of inter-cluster edges is the same, and
not proportional to the intra-cluster edges. All the metrics when penalizing the clusters
due to inter-cluster edges, assign a low penalty in case of cliques as compared to star-
like and chain-like structures. As a result, the evaluation for cliques results in very good
scores.

7.4.2 Real World Data Sets and Clustering Algorithms

The second experiment uses real world data sets. We use four different data sets, the
Opte Network, AirTransport, NetScience and Protein network. For the Opte Network,
the entire data set contains 35836 nodes and 42387 edges. Since the Divisive Clustering
algorithm has a high time complexity, we only consider a subset of the actual data set
constructed by considering a hub and the nodes connected at distance 5 from it. The
subset consists of 1049 nodes and 1319 edges only.

The AirTransport network is an interesting example for this study as it has some
highly dense components as well as star-like structures. This is quite understandable
because the worlds busiest airports like Paris, New York, Hong Kong, London etc have
flights to many other destinations and small cities or regional airports have very restricted
traffic as shown in Figure 56. The choice of Air Traffic, the Internet Tomography and the
Protein network is purely based on the fact that these networks do not have necessarily
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Cluster Quality Metric

Data Set Clustering Algorithm CPL MQ Q Relative Density

NetScience
Divisive Clustering 0.672 0.531 0.772 0.630
Bisecting K-Means 0.589 0.425 0.775 0.636
Strength Clustering 0.846 0.832 0.264 0.232

AirTransport
Divisive Clustering 0.614 0.399 0.093 0.105
Bisecting K-Means 0.499 0.238 0.012 0.122
Strength Clustering 0.676 0.528 0.024 0.078

Opte
Divisive Clustering 0.498 0.324 0.790 0.697
Bisecting K-Means 0.581 0.415 0.592 0.582
Strength Clustering 0.666 0.503 0.356 0.554

Protein
Divisive Clustering 0.527 0.315 0.638 0.498
Bisecting K-Means 0.595 0.410 0.336 0.316
Strength Clustering 0.683 0.529 0.165 0.291

Table 10: Evaluating the quality of clustering real world data sets using the existing
and the proposed cluster evaluation technique.

have dense connected components. Rather there are components that have chain-like
structures and star-like structures. On the other hand we use the co-authorship network
to show the efficiency of the clustering algorithms used as they perform well in detecting
densely connected communities present in the network.

To cluster these data sets, we use two known clustering algorithms, the Bisecting
K-Means algorithm [154] and the Divisive Clustering algorithm based on Edge Central-
ity [68]. The choice of these algorithms is based on the criteria that these algorithms do
not try to optimize or influence the clustering algorithm based on the density or some
other cluster quality metric as compared to other algorithms present in the literature
such as [130]. We also use the Strength Clustering algorithm proposed by [9] which was
initially introduced to cluster social networks. The algorithm has been shown to perform
well for the identification of densely connected components as clusters.

The Bisecting K-Means algorithm and the Divisive Clustering algorithm based on
Edge Centrality are both divisive algorithms, i.e. they start by considering the entire
graph as a single cluster and repeatedly divide the cluster into two clusters. Both these
algorithms can be used to create a hierarchy where the divisive process stops when each
cluster has exactly one node left. Instead of generating the entire hierarchy, we stop the
process as soon as the minimum number of nodes in the cluster reaches around 20 nodes.
Moreover since we do not propose a method to evaluate the quality of a hierarchical
clustering algorithm, we consider the leaves as a single partitional clustering. Note that
the clustering algorithm might create singletons but while evaluating the quality of clusters
we do not consider clusters having a single element. The results for evaluating the clusters
obtained for the two data sets are given in Table 10.

The Strength clustering algorithm uses the strength metric for clustering. This metric
quantifies the neighborhood’s cohesion of a given edge and thus identifies if an edge is an
intra-community or an inter-community edge. Based on these strength values, nodes are
judged to be part of the same cluster (see [9] for more details). The reason for using
this clustering algorithm is to demonstrate that irrespective of the clustering algorithm,
the CPL metric evaluates the quality of a clustering. Since the other two algorithms do
not force the detection of strongly connected components, we use Strength clustering as
a representative of clustering algorithms that try to detect densely connected nodes.

Analyzing the results presented in Table 10, first we look at the Co-authorship network.
The high values of the Divisive algorithm for all the evaluation metric suggest that the
algorithm does well to find the good clusters. Bisecting K-Means seem to perform quite
well also for this data set although values for the CPL and MQ metric are comparatively
lower than the divisive algorithm. Looking at the results of Strength Clustering using
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CPL and MQ, the values are quite high indicating that the algorithm found high quality
clusters but the low Q metric and Relative Density values create some doubt about the
performance of the algorithm. This variation is due to the large number of clusters
generated by Strength clustering (122) as compared to Divisive (23) and Bisecting K-
Means (38) algorithm. While evaluating the quality using Q metric and Relative Density,
this high number of clusters reduces its quality as it results in high number of inter-cluster
edges.

In case of the Air Traffic network, the clusterings generated by the Bisecting K-Means
and Divisive algorithms are relatively poorly judged as compared to the CPL and MQ
metric. This is a clear indication that when considering the star-like structures as clusters
which are present in abundance in the Air-Traffic network, the evaluation metrics judge
the performance of the clustering algorithms to be poor. This is because there are not
many densely connected airports in the network. High values of CPL indicate that even
though, the clusters are not densely connected, they lie in close proximity and thus are
judged to be good clusters. The overall node-edge density plays an important role as well
since the entire network has a high node-edge density, Q metric and Relative Density
expect highly dense clusters to be found and their absence results in low values for these
metrics. As mentioned in the introduction, there are a few nodes that have a very high
number of connections, airports such as Paris, London and New York, which increases
the overall density of the network, but most of the airports have a very low number of
connections. Thus many clusters found are representatives of regional or with-in country
airports connecting all its cities, as shown in Fig 56. These results are a good justification
of why the CPL is a good cluster evaluation metric as it does not rate the quality of such
clusters poorly as compared to the other metrics.

Next, we look at the Internet Network. Almost all the evaluation metrics rate the
quality of clustering highly for the three clustering algorithms except for the Strength
clustering-Q metric value. Again, we refer to the overall node-edge density of this graph
which is quite low. Due to this, Q metric and Relative Density do not expect highly dense
clusters and thus even though there are lots of star-like clusters found in this network,
their quality is rated as good.

Finally the analysis of the Protein network is quite close to that of the Airport network.
The overall density is not that high, but still the node-edge ratio is 1:3. The network is a
good mix of some highly dense clusters and some star-like and/or chain-like clusters. The
strength algorithm again generates a very high number of clusters (169) as compared to
Divisive (91) and Bisecting K-Means (117). The divisive algorithm has the lowest number
of clusters and thus has relatively high Q metric and Relative Density values.

For all the different data sets and algorithms, the CPL metric assigns high values
consistently. This is an indication that by definition and from previous experimental
results on a wide variety of data sets, these algorithms perform well in grouping similar
items together. The Q metric and the Relative density are heavily dependent on the
overall node-edge density for the evaluation of a clustering. In case of high node-edge
density, these metrics expect highly dense clusters and in case of low node-edge density,
less dense clusters can be rated as high quality irrespective of the underlying cluster
topology, where we have argued that Mutuality and Compactness should be taken into
consideration. The CPL metric is consistent with algorithms and dense data sets where
tightly connected clusters are expected as is the case with the co-authorship network and
to some extent, the protein network.

From the above discussion, comparing different results of clustering algorithms with
different data sets, we can clearly see that CPL has a clear advantage over the other
metrics. As it does not rely on node-edge density, the quality is evaluated irrespective
of density and based on the closeness of the elements of a cluster. CPL successfully
reproduces high values for clusters that have cliques, which is consistent with the other
metrics. It is also able to differentiate between star-like structures where nodes are closer
to each other as compared to chain-like structures that are rated the worst using the
CPL metric. This is not possible using the other metrics. It also performs well for data
sets which have varying local density such as the AirTransport network, overcoming the
drawbacks of Q and RD metric.
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We would like to mention that the experimentation and the results described in this
chapter compare different cluster evaluation techniques and should not be generalized to
compare the different clustering algorithms used. This is because the number of clusters
and their sizes vary from one clustering algorithm to the other. Specially, Bisecting K-
Means and Divisive Clustering based on Edge Centrality can not be compared with the
Strength clustering algorithm in terms of performance and quality of clusters generated
as strength clustering generates many small size clusters as compared to the other two
clustering algorithms.

7.5 Findings and Future Research Prospects

In this chapter we introduced a new metric called the CPL metric to evaluate the quality
of clusters produced by clustering algorithms. We argued that Density and Cut Size
based metrics play an important role in the evaluation of dense graphs but Mutuality
and Compactness are also important for the evaluation of clusters in graphs that are
not densely connected. The proposed metric takes into account the underlying network
structure and considers the average path length as an important factor in evaluating the
quality of a cluster. We evaluated the performance of some existing cluster evaluation
techniques showing that the new metric actually performs better than the metrics used
largely by the research community.

As part of future work, we intend to extend the metric to evaluate the quality of
hierarchical clustering algorithms based on the principles introduced in this paper. A
more extended study is needed to compare different clustering algorithms for data sets
having varying network topologies to comprehend the behavior of different clustering
algorithms which in turn can lead us towards a better understanding of how to judge
these algorithms.

Another important result that can be derived from this study is about the importance
of quality metrics. The most common problem when trying to cluster a data set is
considered the choice of a ‘good clustering algorithm’, but equally important is how to
decide what ‘good’ is? The choice of selecting a good quality metrics goes hand in hand
with the selection of a clustering algorithms and we suggest that both these problems
should be addressed together when looking for a clustering solution to a problem.
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Here is a list of articles that we were able to publish during the course of this these.

1. Zaidi, F.; Sallaberry, A.; Melançon, G. Revealing Hidden Community Structures and
Identifying Bridges in Complex Networks: An Application to Analyzing Contents of
Web Pages for Browsing WI-IAT ’09. Proceedings of the 2009 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and Intelligent Agent Technology, 2009,
198-205.

2. Sallaberry, A.; Zaidi, F.; Pich, C.; Melançon, G. Interactive Visualization and Nav-
igation of Web Search Results Revealing Community Structures and Bridges. Pro-
ceedings of Graphics Interface, 2010, 105-112.

3. Zaidi, F.; Melançon, G. Identifying the Presence of Communities in Complex Net-
works Through Topological Decomposition and Component Densities EGC 2010,
Extraction et Gestion de Connaissance, 163-174, 2010, E-19, RNTI.

4. Zaidi, F.; Archambault, D.; Melançon, G. Evaluating the Quality of Clustering
Algorithms Using Cluster Path Lengths. Advances in Data Mining: Applications
and Theoretical Aspects, 10th Industrial Conference, ICDM, 2010, 42-56.

Apart from the research presented in this thesis, I had the opportunity to work on
some other problems related to complex networks. I have not included them in this thesis,
but I would like to mention them briefly with short abstracts.

Interactive Searching and Visualization of Patterns in Attributed Graphs:
An important process on complex networks is searching for patterns and visualizing the

search results. This is an active area of research with numerous application, notably in bi-
ological and technological networks. Traditionally, these networks are stored in relational
databases where querying these databases often results in multiple solutions. Text-based
systems present search results as a list, and going over all solutions can be tedious. This
research tries to present an interactive visualization system that helps users find patterns
in graphs and visualize them. The interactive system allows the user to draw a source pat-
tern and label it with attributes. Based on these attributes and connectivity constraints,
simplified subgraphs are generated, containing all the possible solutions. The system is
quite generic and capable of searching patterns and approximate solutions in a variety of
networks. For more details, readers can refer to the following publications:

1. Simonetto P.; Koenig, P.-Y.; Zaidi, F.; Archambault D.;, Gilbert F.; Quang T. T.
P.; Mathiaut M.; Lambert A.; Dubois J.; Sicre R.; Brulin M.; Vieux R.; Melançon
G. Solving the Traffic and Flitter Challenges with Tulip, in: IEEE Symposium on
Visual Analytics Science and Technology (VAST 2009), 2009, 247-248.

2. Koenig, P.; Zaidi, F.; Archambault, D. Interactive Searching and Visualization of
Patterns in Attributed Graphs. Proceedings of Graphics Interface, 2010, 113-120.

119



Chapter 8. Publications and Other
Research Activities

Communities and Hierarchical Structures in Dynamic Social Networks:
Another interesting aspect of these complex networks is their dynamic behavior. Social

networks also exhibit dynamic nature and detection and visualization of communities
changing over time is a challenging problem. Often these communities change as a function
of events taking place in the society and the role people play in it. We addressed all
these issues in this research and proposed a system to study the dynamic behavior of
communities in the networks. The system is based on dynamic graph discretization and
clustering and allows the detection of major structural changes taking places in social
communities over time. It also reveals hierarchies by identifying influential people in a
social network. For more details, readers can refer to the following publications:

1. Bourqui, R.; Zaidi, F.; Gilbert, F.; Sharan, U.; Simonetto, P. VAST 2008 Challenge:
Social network dynamics using cell phone call patterns, IEEE Symposium on Visual
Analytics Science and Technology (VAST 2008), 2008.

2. Bourqui, R.; Gilbert, F.; Simonetto, P.; Zaidi, F.; Sharan, U.; Jourdan, F. Detecting
Structural Changes and Command Hierarchies in Dynamic Social Networks, Inter-
national Conference on Advances in Social Network Analysis and Mining, IEEE
Computer Society, 2009, 83-88.

3. Gilbert, F.; Simonetto, P.; Zaidi, F.; Jourdan, F.; Bourqui, R.; Communities and
Hierarchical Structures in Dynamic Social Networks: Analysis and Visualization.
To appear in Journal of Social Network Analysis and Mining, 2010.

Analysis of Ports in Multi-level Maritime Networks:
We also studied the network of ports and the shipping movements taking place in the

Atlantic ocean. Maritime transport handles about 90% of world trade volumes, but it has
not attracted as much attention as other transport systems from a network perspective.
As a result, the relative situation and the evolution of maritime within networks seaports
are not well understood. This research studies the hub-and-spoke strategies of ports and
ocean carriers which has modified the structure of a maritime networks over the past
decade. We apply network metrics and methods of clustering on liner movements on data
sets made available to us from the year 1996 and 2006. The methodology underlines the
ports which are increasing their carrier’s position by circulation patterns on various scales.
More details can be found in the publication listed below:

1. Ducruet, C.; Rozenblat, C.; Zaidi, F. Ports in multi-level maritime networks: evi-
dence from the Atlantic, Journal of Transport Geography, 2010, 18, 508-518.

Organization of Information using Hierarchical Fuzzy Clustering:
Usually information on the web is organized using hierarchical and fuzzy clustering as

a single web page can belong to multiple categories. Common algorithms used for this
purpose require some parameters such as the number of clusters and initial centroids.
Values are not easy to choose for these parameters as some insight or information is
required to give an initial estimation, or different values need to be tried before finding the
correct parameter values. Using the Mind-DIS decomposition on co-occurrence networks
of keywords, we try to solve this problem by proposing an algorithm that identifies the
topics present in a document collection. We compare the results of the proposed algorithm
with existing algorithms in the literature requiring parameters and our results show that
the algorithm performs as well in terms of cluster quality, without requiring any input to
estimate the initial parameters. More details can be found in the following article:

1. Zaidi, F. and Melançon, G. Organization of Information for the Web using Hier-
archical Fuzzy Clustering Algorithm based on Co-Occurrence Networks, WI-IAT
’10: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 2010, 421-424.
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We performed a detailed study of complex networks in this thesis. In our point of view,
the research activities in this field can be grouped into four different categories, Anal-
ysis, Structure, Processes-Organization and Visualization. We addressed several issues
throughout the thesis in all these categories. We can summarize our contributions as
follows:

In Chapter 3, we introduced a visual analytics method to analyze complex networks.
The method uses a decomposition of networks based on node degree. The decomposed
graph is then visualized to find interesting observations and results. We also extend the
method to develop a metric that can be used to measure the presence of densely connected
vertices in networks. The low time complexity to calculate the metric makes it practical
for most real world large size networks.

As part of future work, we discussed the prospects of developing more local as well as
group level metrics based on the proposed decomposition. Examples include quantifying
the presence of star-like structures or the presence of cliques. The method can also be
used to find interesting connectivity patterns in networks, search for paths between nodes
and

In Chapter 4, we study several models proposed to generate small world and scale free
networks. These models generate random networks without clear community structures.
We present a new model which generates networks with these two properties along with
the presence of community structures. The model aims to provide artificial data sets that
are more closer to real world networks.

The model focuses on social networks, but it can easily be extended to produce other
types of networks such as technological and biological networks. This remains an open
area of research and further testing and implementation is required to verify the ability
of the model to produce networks for other domains.

Chapter 5 presents a new algorithm for clustering complex networks motivated by
the ideas introduced in Chapter 3. The algorithm is highly efficient in terms of time
complexity making it applicable on large size complex networks. Results show that the
quality of clustering produced is comparable to other clustering algorithms with high time
complexity. We have tested the quality of clustering using external quality metrics and
the results show that the algorithm performs as good as other clustering algorithms.

A more detailed and in-depth analysis is required by domain experts to verify the
results of the proposed clustering algorithm. We would also like to study the behavior of
the algorithm for weighted and directed graphs and test its sustainability to this change.

In Chapter 6, we propose yet another clustering algorithm, this time our focus is
towards the visualization of complex networks. Inspired by the visualizations produced
in Chapter 3, we introduce a method to reduce the visual complexity of these networks.
Further processing and clustering allows us to produce visual layouts that are much more
readable and easier to analyze these complex networks.

We verified the method by using co-occurrence networks from the web but we would
like to extend the study to networks from other domains. We would also like to test
the robustness of the method with larger size networks and see how the execution time
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varies as large size networks are processed and laid out using the proposed method. An
important aspect of the algorithm is the use of betweenness centrality to identify bridges,
which is asymptotically quite slow. We would like to test other centrality metrics that
are efficient in terms of time complexity to improve the overall time efficiency of the
algorithm.

Finally, in Chapter 7, we study the problem of evaluating the quality of clustering
algorithms. We argue that the existing methods are heavily biased by the node-edge
density to evaluate the quality of clusters. For networks having low density, these metrics
are inappropriate and incorrect. We propose a new metric which overcomes the drawbacks
of existing methods to evaluate the quality of clustering algorithms. We introduced the
idea of closeness between the elements of a cluster and used it to evaluate the quality of
a cluster.

As part of future work, instead of using average path length to calculate the closeness of
vertices in a cluster which is slow in terms of time complexity, we would like to experiment
with other faster metrics that try to capture the same notion. We would also like to extend
the work to use the same idea and build an evaluation metric for hierarchical clustering
algorithms. Another addition to the existing work is to incorporate the evaluation of
weighted networks and their clustering.

In our opinion, the methods and algorithms presented in these chapters are an attempt
to contribute towards the growth of this fast emerging science of networks. Since physical
systems from various domains can be modeled as networks, there is a huge opportunity
to apply these results in a number of different fields. We hope to extend these studies and
collaborate with research colleagues from other domains to further ascertain the results
we obtained.
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