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Résumé

Le volume de données audiovisuel disponible continue a augmenter rapidement avec le
développement d’applications telles que, par exemple, les réseaux en ligne du type Youtube,
des systemes fermés de vidéo-protection ou encore des archives professionnelles. Les princi-
paux challenges technologiques concernant ce type d’applications concernent le stockage, la
distribution ainsi que 'analyse et 'indexation automatique de ces données. De plus, 'acces
a ces contenus doit étre supportés par des plateformes diverses, allant de stations de tra-
vail a des dispositifs mobiles. Un prérequis important pour un stockage et une distribution
efficace est 1'utilisation de schémas de codage source performants. Le dernier standard en
date de la famille MPEG, le codeur H.264 et son extension scalable AVC remplis les préreq-
uis nécessaires et a de ce fait été largement adopté dans une large variété d’applications
commerciales ou non. Dans le cadre de cette thése, nous nous sommes concentrés sur la
problématique de 1’analyse et de I'indexation automatique de vidéos, ce qui permet de jeter
les bases pour permettre un acces efficace aux données. En partant du constat que les vidéos
sont, dans la plupart des cas, stockées et transmises sous une forme encodées, nous avons
abordé la problématique d’une analyse dans le domaine compressé, ce qui représente un
compromis entre d"une part la complexité opératoire, et d’autre part, la qualité des résul-
tats. Les informations les plus pertinentes dans les flux compressés H264 sont les vecteurs
de mouvement associées a la structure en macroblocs dans les frames prédites temporelle-
ment (type P et B) Nous présentons ici différentes techniques non supervisées permettant de
déterminer le mouvement de la caméra, et de détecter et suivre les objets en mouvement a
partir des vecteurs de mouvement. Puis nous présentons l'efficacité de I’analyse dans le do-
maine compressé pour plusieurs contextes applicatifs tels que I’analyse du trafic routier, ou
la détection des copies. Les limitations provenant du fait que nous utilisons des informations

de mouvement le plus souvent bruités dans le domaine compressé sont évaluées.

Les principales contributions de ce travail sont les suivantes: 1) une évaluation en pro-
fondeur des possibilités et limitations de 1’analyse dans le domaine compressé en utilisant
les dernieres versions du codeur H264, et 2) des schémas robustes d’analyse combinant les
avantages des méthodes classiques d’analyse dans le domaine image avec les avantages des

approches dans le domaine compressé.






Abstract

The amount of generated audiovisual content continues to increase. Applications that heav-
ily rely on video include web-based networks such as Youtube and closed systems such
as surveillance networks and professional video archives. The main technological chal-
lenges concerning these types of applications are efficient storage, distribution and auto-
mated video analysis and indexing. Furthermore, content access should be supported by
many platforms, ranging from centralized workstations to mobile devices. A prerequisite
for efficient storage and distribution is the employment of powerful source coding frame-
works. The latest standard of the MPEG-family — H.264/AVC and its scalable extension
SVC — meets the necessary requirements and was therefore adopted as the codec of choice
in a variety of commercial and non-commercial applications.

In this work, we concentrate on the challenge of automatic video analysis and indexing,
which builds the basis for efficient information access and retrieval. Taking advantage of the
fact that video in most cases is stored and transmitted in encoded form, we pursue the ap-
proach of compressed domain processing, which represents a reasonable trade-off between
computational complexity and quality of analysis results. The most valuable information
encoded in H.264 streams is the motion vectors (MVs) that are associated with macroblocks
in temporally predicted frames of type B and P. We present a number of completely unsu-
pervised techniques to determine the camera motion and to detect and track moving objects
from the extracted MV fields. We furthermore present the potential of compressed domain
processing through several example applications, including traffic surveillance and video
copy detection. The limitations that arise from the noisy and sparse information in the H.264
domain are evaluated, leading to processing schemes that combine both the computational
benefits of compressed domain processing and the rich information found in the image do-
main. The main contributions of this work are: i) an in-depth evaluation of the possibilities
and limitations of compressed domain analysis with respect to state-of-the-art H.264 coded
video, and ii) new robust analysis schemes that combine the advantages of classic image

domain methods with the benefits of compressed domain approaches.
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Content-Based Video Retrieval
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High Definition. Also HDTV, High Definition Television
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Motion vector
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Chapter 1

Introduction

Over the past few decades, digital video has become omnipresent in both private and profes-
sional life. Besides classic broadcasting applications, video cameras are now used in indus-
trial production environments, video surveillance networks, mobile phones, photo cameras
and personal computers, to name a few examples. Furthermore, visual entertainment in the
form of television, DVD or Internet-based video portals like YouTube is more popular than
ever. With the growing amount of available content, efficient automated analysis techniques
to understand and organize the generated information are needed. Numerous related fields
of research such as computer vision, image processing or video indexing and analysis focus
on such problems, which underlines the difficulty of the task.

The traditional approach for computing information about the content of video sequences
starts with the smallest entities of visual information: the individual pixels. While frame-
wise, pixel-level brightness and color information is extremely rich, the methods are compu-
tationally expensive and consume a lot of memory. This problem becomes worse when ana-
lyzing High Definition (HD) content, where resolutions of up to 1920x1080 pixels are reached.
Digital cinema employs resolutions of up to 4K, and the next generation standard Ultra High
Definition (UHD) or Super Hi-Vision (SHV) currently in development have resolutions of up
to 8K.

Different approaches exist in order to handle this flood of information. The most com-
mon is to down-scale the individual input images prior to processing. Since downscaling
reduces the amount of information to be processed, the images initially have to be read in
full resolution, and proper down-scaling is both a computationally expensive and memory-

demanding operation.

In this work, we pursue another approach to decrease the computational overhead: Com-
pressed domain analysis. In contrast to image domain analysis, this approach does not require
full stream decoding back to pixel level. The coded image representation itself is used in
order to compute high-level information about the actual video content. This approach is
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motivated by the fact that videos are most often distributed and stored in compressed form.
Therefore, decoding back to pixel level can be avoided. With MPEG-type videos in mind,
a second advantage is the presence of motion information, which is otherwise expensive
to compute. Block-wise displacement vectors and transform coding coefficients, if they are
available, are the main source of information in MPEG coded streams.

Compressed domain indexing and analysis is an interesting and challenging research
topic, where the goal is to save computing time by reusing information already present in
the stream. Possible applications of such algorithms include video surveillance networks,
video retrieval and fast scene analysis. Although image and video analysis tasks working in
the pixel domain are usually more precise and reliable, they are often too computationally
expensive to employ in real-world applications. The decrease in robustness of compressed
domain approaches usually stems from the lack of color information, from block-based cod-
ing and from the sparse and noisy nature of the motion vectors (MVs) that are optimized
for coding efficiency and not in terms of true optical flow. These motion vectors, which
are associated with macroblocks (MBs) in inter-predicted pictures, are nevertheless the most

valuable source of information in MPEG streams.

In this thesis, we focus on the analysis of sequences encoded in the state-of-the-art com-
pression format H.264, also know as MPEG-4/Part 10. Due to its superior design and per-
formance, H.264 has replaced former standards like MPEG-2 in a wide range of applications,
ranging from the distribution and storage of High-Definition (HD) content to streaming me-
dia on mobile devices. Up to now, most applications employ H.264 in its original version,
known as Advanced Video Coding (AVC). The most recent extension to H.264 is Scalable Video
Coding (SVC), that enhances the AVC standard by providing spatial, temporal, and quality
scalability. Media scalability becomes more relevant in the context of modern applications
and heterogeneous distribution networks. End-user devices connected to the same networks
range from smart phones to high-definition television sets, raising the need for adaptable
solutions. H.264/SVC addresses this issue and provides support for scalable video in a
coding-efficient manner.

A goal of this thesis is to provide insight into the possibilities of compressed domain in-
dexing and analysis of H.264 coded video. We present efficient methods for tasks like the es-
timation of global scene motion and unsupervised detection and tracking of moving objects.
The versatility and limitations of compressed domain analysis is demonstrated through sev-
eral example applications such as traffic surveillance and copy detection in video databases.
Results are provided on a variety of videos, ranging from broadcasting content to surveil-

lance sequences.

It has to be pointed out that, except from Chapter 7, the integral part of this work is
about compressed domain analysis, which represents a special case of compressed domain

processing. In pure analysis, the content - in our case the bit stream - is not altered.
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1.1 Contributions

This thesis contributes in the following way to the challenging field of compressed domain

video indexing and analysis.

* The first contribution is the evaluation of previous compressed domain approaches in
the context of state-of-the-art AVC or SVC streams. As a result, we adapted a robust,
MPEG-2-based algorithm for global motion estimation to the H.264 domain. Based on
these results, a simple object detection and tracking technique using only the motion
vectors is proposed. The technique is completely unsupervised, allows for multi-object
tracking, temporary occlusions and the presence of camera motion.

¢ As a second contribution, we used compressed domain motion information on single-
view sequences to estimate basic geometric scene properties such as the relative dis-
tance of moving objects and the orientation angle of the camera. Knowledge about
scene geometry is an important step towards a better scene understanding and facili-

tates tasks like segmentation and object classification.

* The third contribution is the demonstration of the suitability of compressed domain
techniques in the context of traffic surveillance and video copy detection. The lim-
itations of pure compressed domain analysis are discussed, leading to schemes that
combine the flexibility of traditional image domain approaches with the efficiency of

compressed domain analysis.

1.2 Organization

This thesis is organized into three principal parts. Part I introduces the basics and concepts
of compressed domain indexing and analysis. Chap. 2 provides a brief introduction to video
coding and the coding mechanisms behind H.264/AVC and SVC. We focus on technical de-
tails and properties that influence the design and performance of compressed domain anal-
ysis methods. Chapter 3 describes a series of unsupervised analysis techniques that solely
rely on the motion information present in H.264 streams. A robust global motion estimation

algorithm is presented and object detection and tracking algorithms are proposed.

Part II demonstrates how different types of applications can benefit from compressed
domain analysis. Chapter 4 presents a framework combining the benefits of image do-
main techniques with the efficiency of compressed domain methods in the context of traf-
fic surveillance. A novel compressed domain method for camera orientation estimation
through object motion from a single view is described in Chap. 5. In Chap. 6, we propose

3



CHAPTER 1. INTRODUCTION

and evaluate retrieval schemes based on scalable compressed domain features in a video

copy detection framework.

We conclude this work with Part III. In Chap. 7, we present an approach to mitigate the
negative effects of noisy and corrupted displacement vectors on the quality and robustness
of compressed domain analysis methods by correcting the motion field already on encoder
side. Finally, conclusions and possible future directions in the challenging field of com-

pressed domain video analysis are provided in Chapter 8.
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Chapter 2

Scalable Video Coding

The market and demand for efficient, scalable video coding solutions is continuously grow-
ing. This is mainly due to two major developments: On the end-user side, recording and
viewing devices like handheld, low-power smartphones are becoming more and more pop-
ular while at the same time, an increasing number of users is equipped with high-definition
cameras, TV sets and home cinema systems. On the network side, on-demand solutions for
content distribution are gaining increasing importance in addition to classical broadcasting.
Distribution is more and more performed on heterogeneous IP networks and over a large
variety of connections, ranging from slow, wireless links to high-speed networks. Scalable
source coding schemes have been introduced as a response to these changing conditions.

The term scalability with respect to video streams comprises three aspects of adaptability:

* Spatial scalability refers to the possibility to encode different spatial resolutions in one
single video file or stream. The resolution levels have to be pre-defined by the service

provider prior to encoding.

* Temporal scalability enables the extraction or decoding of the stream at different frame

rates.

* Quality scalability denotes the capability to vary the visual quality by maintaining the
spatial and temporal resolution.

The main motivation behind scalable video coding is to enable a single system to dy-
namically adapt to different environments. Up to now, this is usually achieved by encoding
and storing multiple versions of the same source video (e.g., simulcast), which is inefficient
with respect to pre-computation time and storage space, and impractical when deploying

streaming applications.
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This chapter gives an overview of the most promising, standardized approaches to scal-
able video coding. No proprietary solutions like Real' or Microsoft Windows Media* are cov-
ered and focus is put on the two international, scalable coding standards JPEG2000 and
H.264/SVC. Before going into technical details, the main motivation behind video coding in
general is briefly explained.

2.1 Video Coding Basics

Efficient video coding is a challenging task due to the enormous amount of data that is gen-
erated by visual sensors. Fortunately, video signals usually contain a lot of spatial and tem-
poral redundancy that can be exploited during encoding. Furthermore, certain properties
of the Human Visual System (HVS) allow to omit parts of the video signal prior to encoding
without decreasing the perceived quality. In order to better understand some basic pre-
filtering and compression principles, the most important findings on the limitations of the
HVS and their implications on video compression are listed below:

¢ The HVS has limited resolution and is more sensitive to brightness than color. This
allows for low-pass filtering of the input signal and subsampling of the chroma com-

ponents without loss in the perceived visual quality (e.g., 4:2:0 sampling).

¢ Human motion perception is limited in frequency, so 25 frames per second are enough

to create the impression of continuous motion.

¢ Errors in high spatial frequencies are less noticeable, so high frequency components
can be quantized more coarsely.

The efficiency of todays video codecs is illustrated by a small sample calculation. A
raw video stream in the high definition format 1080p (1920x1080 pixels, progressive scan)
at 25 fps, with 24 bit color depth and 4:4:4 sampling requires the enormous bit rate of
1244.16 Mbps®. By taking the low color sensitivity of the HVS into account, the bit rate
can already be cut in half to 622.08 Mbps by performing 4:2:0 subsampling of the chroma
components. However, high rates like this are still very impractical or impossible to handle,
so almost all audiovisual content is stored and distributed in compressed form. After lossy
encoding with MPEG-2 in DVD quality, bit rates of typically 12-20 Mbps are achieved. With
the newer and more efficient H.264 codec, bit rates of around 6-12 Mbps can be obtained at
similar visual appearance, so the initial data volume is reduced to up to 0.5 % while almost

preserving the perceived quality.

1http ://www.real.com
Zhttp://www.microsoft.com/windows/windowsmedia/
31920x1080 pixels x 3 channels x 8 bit x 25 fps = 1244.16 Mbps
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These tremendous bit rate savings become possible due to spatial and temporal predic-
tion mechanisms, transform coding, quantization and sophisticated entropy coding schemes.
Scalable codecs additionally apply prediction between different stream layers. Spatial and
temporal prediction is very effective since most scenes contain large visually similar regions
that only change slowly over time. Transform coding like Discrete Cosine Transform (DCT),
Integer Transform (IT) or Discrete Wavelet Transform (DWT) project the video signal from the
spatial in the frequency domain. Like for audio signals, the frequency domain is better suited
to compression because the limitations of human perception can be better exploited than in
the spatial domain. Since reconstruction errors in high frequency parts are less noticeable,
high frequency coefficients can be quantized more coarsely. Quantization is the fundamen-
tal reason for quality loss in most compression schemes, because it represents the coding
step where information is irreversibly lost. After quantization, entropy coding is performed,
which represents a lossless compression technique where fixed size input symbols are trans-
lated into variable length output symbols. The length of the output symbol depends on the
probability of the input symbol; frequent input symbols are mapped onto short output se-
quences and vice versa. Examples for well-known entropy coding schemes are Huffman
coding [5] and arithmetic coding [6].

Besides compression, another important aspect of video coding is to provide mechanisms
to store, access and distribute the encoded data. Furthermore, error concealment strategies
should be included to recover and conceal data loss during transmission or because of de-
fective storage devices. A review of such strategies is not within the scope of this work and

the interested reader is referred to the respective literature, e.g., [7].

In the following sections, the video coding parts of the two international standards Mo-
tion [PEG2000 and H.264/SVC are briefly reviewed. Emphasis is put on H.264 since the re-
mainder of this work concentrates on the analysis of compressed H.264 streams.

2.2 Motion JPEG2000

Motion JPEG-2000 is defined in ISO/IEC 15444-3 and replaces the former Motion JPEG stan-
dard. It is based on the JPEG2000 (J2K) format and does not provide temporal prediction
mechanisms of any kind, so each video frame is encoded independently without exploiting
the temporal redundancy. This enables direct access to each frame and delivers high quality
streams, which are the main reasons why it was adopted as the codec of choice by the Digital
Cinema Initiatives* (DCI). It provides both lossy and lossless coding schemes based on the
Discrete Wavelet Transform (DWT).

4Official DCI website: http:/ /www.dcimovies.com/
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Compared to JPEG, J2K offers superior performance with respect to rate-distortion [8]
and various other advantages like the mentioned lossless mode, the possibility for progres-
sive download and error correction mechanisms. The use of the DWT is the fundamental
difference between J2K and JPEG, which applies a DCT on blocks of 8x8 pixels. The basic
coding steps and the DWT transform behind J2K is briefly explained in the following in or-
der to better understand the spatial and quality scalability that is provided by the standard.
Since no inter-frame prediction is performed in Motion J2K, temporal scalability is simply
achieved by discarding unwanted frames. The five encoding steps that are repeated for each
video frame are illustrated in Fig. 2.1 and are briefly explained in the following.

Color - o Entropy
Transform M Tiling M DWT MQuantlzatlonM Coding

Figure 2.1: Block diagram of frame-level JPEG2000 encoder

Assuming an RGB input image, the first step consists of separating the luminance and
the chrominance components. This step is common to most image and video codecs and
enables to treat brightness and color information in different ways, which is desirable re-
garding the properties of the HVS (see Sec. 2.1). The standard provides two possible color
transform choices, namely the Irreversible Color Transform (ICT) and Reversible Color Trans-
form (RCT). Since the ICT operates with floating point values, irreversible rounding errors
are introduced. The RCT algorithm is implemented in integer arithmetic, so no rounding er-
rors are introduced and the transformation back to RGB happens without information loss.
Opposed to DCT based codecs, subsampling of the chroma components (C,C; for ICT and
UV for RCT) has no to be performed prior to encoding and is handled later in the multi-

resolution wavelet domain.

Tiling is the second, optional coding step and may be used to cut the input image in even-
sized rectangular regions that are coded separately. Tiling reduces the coding efficiency and
can introduce block artifacts, so it is often omitted by using one tile that covers the whole
image. The idea behind tiling is to reduce memory consumption during encoding/decoding

and to enable partial decoding.

Transform coding in J2K is performed via a 2D DWT using Cohen-Daubechies-Feauveau
(CDT) wavelets [9]. As for the color transformation, an irreversible and a reversible ver-
sion of the DWT is part of the standard, using floating point and integer arithmetic, respec-
tively. The original pixel values of each channel are converted from the spatial domain into
the wavelet domain and the resulting wavelet coefficients are organized in four equal-sized
sub-bands. The total number of coefficients equals the number of input pixels, so no data
reduction is introduced by the DWT itself.

10
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The four sub-bands are referred to as LL, HL, LH and HH, where L and H represent the
low- and high-frequency parts of the signal, respectively. LL is basically a low-pass filtered,
down-scaled version of the input image, HL covers the vertical, LH the horizontal and HH
the diagonal high-frequency details. The same decomposition can be recursively applied on
the LL sub-band, leading to a multi-level wavelet representation like illustrated in Fig. 2.2,
which shows a two-level wavelet decomposition of a sample image. It can be noticed that
the DWT captures both frequency and location, i.e., the initial spatial structure of the input
image is preserved in all four sub-bands. It also becomes clear that spatial scalability is
inherently supported. The lowest LL band represents the smallest possible resolution and
subsequent spatial layers can be reconstructed by performing the inverse DWT on each level

until the image is fully decoded back to its original size.

Figure 2.2: Example of DWT sub-bands. Coefficients are shown inverted and amplified for better
visibility. Input image ©Pierre Lasserre

In lossy mode, the wavelet coefficients are then quantized in order reduce the amount of
data. The remaining bits are finally coded to produce the J2K bit stream. The coding process
is designed to provide quality scalability by simply truncating the bit stream at arbitrary
positions. Therefore, the bits are re-ordered so that the most important information is coded
first and the least important last. The wavelet sub-bands are split into code blocks which are
processed by the so-called Embedded Block Coding with Optimal Truncation (EBCOT) scheme.
Given all code blocks, EBCOT starts by encoding the most significant bit plane and succes-

11
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sively continues with the less significant bits. Additionally, the coefficients within each bit
plane are processed with decreasing importance in three coding passes named Significance
Propagation, Magnitude Refinement and Cleanup pass. After arithmetic coding, the coded bits
are arranged into packets and layers. The resulting bit stream can be arbitrarily truncated to

yield lower quality versions.

For more details on the JPEG2000 standard, the interested reader is referred to [10]. Al-
though a number of 2D+t wavelet video coding schemes have been presented in the litera-
ture [11, 12], their discussion is not within the scope of this thesis. We will focus on MPEG
coded video in the following due to its wide acceptance and popularity regarding a vari-
ety of systems and applications, like storage and distribution of content, surveillance and

streaming.

2.3 MPEG approaches

End of 2003, the Moving Picture Experts Group (MPEG) issued a call for proposals concern-
ing the system design of a scalable video coding standard. Among the fourteen proposals,
twelve were based on the wavelet transform and two were extensions to the well-established
H.264/AVC codec. The MPEG committee decided in favor of one of the H.264/AVC based
approaches, which proved to be superior to the presented wavelet coding schemes with re-
spect to the targeted applications. After the finalization of the so-called Scalable Video Coding
(SVC) standard, first industry applications appeared, and SVC is expected to make an impact

in a number of applications like surveillance and large-scale media distribution.

Since the remainder of this work is centered around the analysis of compressed SVC
streams, an introduction to SVC coding is provided in the following. Technical details are
presented from the indexing and analysis perspective, i.e., important properties that can be
exploited for tasks related to computer vision and indexing are highlighted, while others
are omitted. We start with a short history of selected MPEG standards in order to provide a
better understanding of the SVC system design.

2.3.1 MPEG-2

The international standard MPEG-2, also known as ISO/IEC 13818 or ITU-T H.262, is the
core of most digital television and DVD formats in Standard Definition (SD) to date. It is
mainly similar to the former MPEG-1 standard but provides better support for the coding of
interlaced video, added more profiles that are tailored to specific application domains and
allows for input color sub-sampling schemes other than 4:2:0.

12
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In the following, focus is put on the video part of the standard, ISO/IEC 13818-2. Fig-
ure 2.3 illustrates the basic components of a MPEG-2 coded video stream and introduces
some important MPEG related terms that will reappear throughout this work.

Group of Pictures (GOP)
Ly e {s](eflr]le][s|{B|[r][B][B]

Slice (169_;)“3'5) Block

:EEEED—— .-——)D Ig pixels

Picture

Macro-block (MB)

Figure 2.3: Overview of MPEG-2 video stream

An MPEG-2 video stream is composed of different types of coded pictures: Intra-coded
I-frames, predicted P-frames and bi-predicted B-frames. They are arranged in a periodically
repeated pattern, the so-called Group-of-Picture (GOP).

Intra-coding: I-frames

The en- and decoding of I-frames does not depend on any other frame and is very similar to
JPEG coding of still images. The input picture is transformed into the YC,C, color space and
is sub-divided into non-overlapping macroblocks (MBs), quadratic regions that cover an area
of 16x16 pixels of the original input image. Each of these MBs is further sub-divided into
four blocks of size 8x8 pixels, which are then processed independently by transform coding
and quantization. MPEG-2 applies a two-dimensional, irreversible Discrete Cosine Transform
(DCT) to map from the spatial domain into the frequency domain. The initial 8x8 bright-
ness values result in 8x8 frequency coefficients, where the constant component of the signal,
i.e., the average brightness value, is referred to as the DC-coefficient. The high-frequency
components are called AC-coefficients. The ensemble of DC-coefficients represents a sub-
sampled version of the input image, where each original region of size 8x8 pixels is replaced

by its mean value.

The two-dimensional DCT of size NxM is defined as [13]

2 NZEMEL (2x +1)um 2y+1om .
F(u,v) = WC(u)C(v) ,;) y;() f(x,y) cos N Cos o , with

2.1
for u,v = 0. @1)

V2
1 otherwise.
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The inverse DCT (IDCT) is defined as

N—1M-1 X y .
flx,y) = \/i ; ; C(u)C(v)F(u,v) cos 2 —zi-]\1]) 7 cos (Zy;\/ll) 7'[/ (2.2)

where (x,y) are spatial co-ordinates in the image block and (u,v) the co-ordinates in the
DCT coefficient block [14].

Like the wavelet decomposition presented earlier, the DCT is performed because com-
pression can be carried out more efficiently in the frequency domain by quantizing the sep-
arated frequency components. High-frequency components can be usually quantized more
coarsely than low-frequency parts because the human visual system is less sensitive to er-
rors in high-frequency regions. After quantization, many AC coefficients tend to be zero,
most notably in the high-frequency range. The coefficients of a block are scanned in zig-zag
order to produce long runs of zeros. This allows for more efficient Run-length encoding (RLE),

which represents the last compression step.

Predictive Coding: P- and B-frames

Natural video scenes show high temporal redundancy, i.e., two successive frames usually
are not substantially different and almost share the same background with similar objects,
though often slightly displaced due to camera operation and object motion. This property is
exploited in MPEG-2 by performing motion-compensated inter-frame prediction. Since nat-
ural scenes are composed of multiple independent objects and regions, prediction in MPEG-

2 is not performed on the image as a whole but independently on a MB basis.

The first type of predicted frames are called P-frames, which take a previous I- or P-frame
as reference and which may also be used as a reference for further prediction. For each 16x16
region covered by a P-frame MB, the encoder searches for the most similar region of equal
size in the reference picture. This algorithm is called block matching and choses the best
fit according to the minimum error between the block being coded and the prediction. To
determine the block displacement with minimum error, a large number of trial offsets are
tested by the coder using the luminance component of the picture. Only translational block
motion is considered, so no changes in scale or rotational motion is taken into account. The
prediction error contains mostly high-frequency parts and is coded and quantized in the
DCT domain.

The optimal MB displacement is stored as a motion vector (MV) in half-pel precision
together with the respective MB. Figure 2.4 shows an example of the MB grid and the MVs of
a random MPEG-2 video stream. Motion vectors are optimized in terms of coding efficiency,
so they do not necessarily reflect the real scene motion.

14
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In cases where block matching leads to poor results in terms of prediction error, the trans-
mission of the MV together with high-valued DCT coefficients would introduce unnecessary
overhead. MBs in predicted frames may be coded in intra-mode to overcome this problem.
On the other hand, if the prediction error with respect to the reference frame is already be-
low a certain threshold without motion compensation, the MB is coded in SKIP mode, so no
information except its mode is transmitted. Static background is the most common reason
for skipped MBs.
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Figure 2.4: Example of MBs and the associated MVs in a MPEG-2 stream. Original sequence
©Taurus Media Technik

Bidirectionally predictive pictures (B-frames) can use the previous and next I- or P-frame
for motion-compensation and offer the highest degree of compression. Each block in a B-
picture can be either intra-coded or forward, backward or bidirectionally predicted. To en-
able backward prediction from a future frame, the coder reorders the pictures from natural
display order to coding order so that the B-frame is transmitted after the previous and next
pictures it references. This introduces a reordering delay dependent on the number of con-

secutive B-pictures.

While keeping the decoded picture quality constant, coding using different picture types
produces a different number of bits. In a typical example sequence, a coded I-frame is about
three times larger than a coded P-frame, which is itself approximately 50 % larger than a
coded B-picture.

Profiles and Levels

The MPEG-2 standard defines a number of coding tools, algorithms and mechanisms. De-
pending on the target application, only a subset of all possible features needs to be sup-
ported by an encoder for a particular use. A set of different so-called Profiles and Levels are
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introduced in order to limit the complexity and the implementation overhead in real-world

applications.

Profiles define sets of allowed tools and coding mechanisms, while more quantitive mea-
sures like maximal resolution or bit rate are defined in levels. Not all possible combinations
of profiles and levels are allowed.

The two non-scalable profiles are called Simple Profile (SP) and Main Profile (MP). The SP
only includes a rather basic subset of MPEG-2 functionalities and is mostly aimed at low-
performance applications like video conferencing and streaming to mobile devices. One of
the most drastic limitations of the SP is the exclusion of B-frames, so only I- and P-frames
are allowed. Furthermore, no interlaced source material is allowed in the SP, making it
unsuitable for television and broadcasting purposes. The MP adds support for B-frames
and interlaced video and is by far the most widely used profile. It has been adopted as the
coding standard for video DVDs and also in first generation Digital Video Broadcasting (DVB)
services, replacing analog broadcasting standards like SECAM, PAL or NTSC.

MPEG-2 also defines two scalable modes, the SNR profile (SNRP) and the spatial profile
(SP). The SNRP adds support for quality scalability and the SP enables the coding of multiple
spatial layers. However, both profiles received very little attention and are barely used.
Finally, the High Profile (HP) aims at high-performance applications and includes all features
from the before mentioned lower profiles, including scalability and 4:2:2 sampling, making

in suitable for studio applications.

Limits on the allowed frame size, the frame rate or the maximal bit rate are defined
in four so-called Levels, namely the Low Level (LL), Main Level (ML), High 1440 (H-14) and
High Level (HL). The most popular combination of profile and level is MP@ML for DVDs
and DVB in Standard Definition (SD). High-Definition (HD) applications are supported by
MPEG-2 and usually apply MP@HL.

For more details on MPEG-2, the interested reader is referred to one of the numerous
sources available, including the contributions from Tudor [14] and Sikora [15]. In the follow-
ing, an introduction to MPEG-4/Part 2 (MPEG-4/Visual) will be omitted and focus is put
on state-of-the-art video coding with MPEG-4/Part 10 and its extensions, better known as
H.264.

2.3.2 H.264/Advanced Video Coding (AVC)

H.264/AVC, formally known as ISO/IEC 14496-10 or MPEG-4/Part 10, is the result of the
combined efforts of two standards bodies - the ITU-T Video Coding Experts Group (VCEG) and
the ISO/IEC Moving Picture Experts Group (MPEG), who together formed the Joint Video Team
(JVT). It arose from the need for a more efficient video coding framework that is applicable
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over a wide range of applications and underlying distribution systems. At similar decoded

picture quality, H.264 achieves about 50 % savings in bit rate compared to MPEG-2.

The first version of AVC was finalized in 2003. By now, multiple extensions and more
profiles have been added to the original standard. For example, a set of extensions that target
professional production environments, known as the Fidelity Range Extensions (FRExt), have
been added to H.264 in 2004 [16] and the scalable extension SVC was finalized end of 2007
(see Sec. 2.3.3).

Due to its superior performance in a wide range of applications, H.264 has already been
adopted in many major solutions and systems like Adobe Flash Video®, Apple Quicktime®,
the second generation of DVB in Europe and Japan, in the ITU-T video conferencing spec-
ification H.241 and also for video coding in mobile phones. Furthermore, H.264 has been
ratified as mandatory in both the HD-DVD and Blu-ray specifications for high definition

content.

A brief introduction to H.264/AVC is provided by pointing out some major improve-
ments over MPEG-2 (see Sec. 2.3.1) with main focus on technical details of the actual video
coding part which play an important role in the analysis of compressed H.264 streams.

Intra-Coding: I-Slices

Series of intra-coded MBs in H.264 are referred to as I-slices. Since most of the time, an I-
slice covers an entire frame, we use the terms slice and frame interchangeably throughout
this work. Like in MPEG-2, the coding of MBs in I-frames does not depend on any other

frame. Some important improvements over the I-frame concept in MPEG-2 are listed below.

* Intra-coding in MPEG-2 is always performed on fixed size blocks that cover 8x8 pixels
of the input image. For each luma block in H.264, the encoder adaptively choses be-
tween one of the newly introduced intra-coding modes called Intra_4x4, Intra_16x16
and I_PCM. In order to improve efficiency, most regions are coded in Intra_4x4 mode,
whereas low-textured areas are coded as Intra_16x16. The I_PCM mode bypasses all
prediction and transform coding processes and transmits pixels values uncoded as is,
which is advantageous for lossless coding or in case of anomalous content like regions
of white noise.

* For transform coding of pixel values and prediction residuals, the formerly used DCT
is replaced by a separable integer transform (IT) of size 4x4 or 8x8. Since the inverse

transform is defined by exact integer operations, inverse-transform mismatches are

Shttp://www.adobe.com/devnet/video/
6http ://www.apple.com/quicktime/
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avoided. In order to transform regions of size 16x16 (Intra_16x16 mode), a 4x4 trans-
form is applied and the 16 resulting DC coefficients undergo a second 4x4 transform

coding run. The transform matrix H is given as

1 1 1
1 -1 -2
-1 -1 1
-2 2 -1

(2.3)

—_ = N

¢ H.264 employs intra-prediction in the spatial domain, i.e., prior to transform coding,
each 4x4 block is predicted from spatially neighboring samples on the left and above
the current block. This is illustrated in Fig. 2.5, together with the eight possible predic-
tion directions. Pure vertical prediction (Mode 0) would result in predicting the block
a — p from the upper samples A — D. Four of the nine possible prediction modes are
illustrated in Fig. 2.6.

QABCDETFGH 3
Ilabcd

Jle £f gh 6
Kljkl 3 4
Limnop 7T L B

Figure 2.5: left: Samples used for Intra_4x4 prediction of AVC. right: Eight of nine possible pre-
diction modes [1]
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Figure 2.6: Illustration of five of the nine possible prediction directions [1]

In H.264, the notion of Instantaneous Decoder Refresh (IDR) frames is introduced, which
are a special case of standard I-frames. They technically do not differ from normal I-frames
except from one constraint on their position in the video stream, i.e., no frame after the IDR-
frame can refer back to any frame before the IDR-frame. Since any decoder can only begin
playback starting with an IDR-frame, their frequency determines the random access capa-
bilities. The IDR rate is to be set by the user prior the encoding. If the minimum IDR-frame
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interval is set to one, each I-frame is considered as IDR and playback can start at the begin-

ning of every new GOP.

Predictive Coding: P- and B-Slices

H.264 inherits from MPEG-2 the concept of predicted pictures of type P and bidirectionally
predicted B-frames. A lot of improvements and new techniques have been introduced in
H.264 in order to further increase the efficiency of predictive coding. Some important en-
hancements are briefly presented in the following. The list is not exhaustive and a complete
revision would go beyond the scope of this work. We focus on details that have an impact

on compressed domain processing.

* H.264 features Variable Block-Size Motion Compensation (VBSMC). For each MB of size
16x16, the encoder dynamically decides to further sub-divide it into sub-MB partitions
or blocks of variable size. The decision is based on coding efficiency, so after trying
multiple different configurations and MB modes, the encoder choses the one for which
the least number of coded bits is needed. To limit the computational overhead, the
number of MB partition sizes is limited to seven possible choices, illustrated in Fig 2.7.
If a MB is coded in one of the first three modes (16x16, 16x8, 8x16), it cannot be subdi-
vided any further. For the fourth MB coding mode 8x8, the encoder decides for each
of the four 8x8 blocks independently if it will be subdivided a second time. The four

possible block partition sizes in this case are 8x8, 8x4, 4x8, and 4x4.

—>

8x4 4x8 4x4

16x16 16x8 8x16 8x8
Figure 2.7: The seven possible MB partition sizes in H.264

e In H.264, multiple reference pictures per B-frame are allowed which are organized in
two lists: LIST_0 holds the reference frames that lie temporally in the past and LIST_1
references future frames. Up to 16 reference frames may be used per B-frame, in con-
trast to MPEG-2, where the imposed limit is two in B-frames and one in P-frames.
Hence, for a 16x16 MB in H.264, a maximal number of 32 MVs may be present, where
a corresponding region in MPEG-2 can hold only up to two. This particular feature al-
lows modest improvements in bit rate and quality in most scenes, but in certain types
of scenes, such as those with repetitive motion, back-and-forth scene cuts or uncovered

background areas, it allows a significant reduction in bit rate while maintaining clarity.
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¢ The accuracy of the motion compensation process has been improved from half-pel
precision in MPEG-2 to quartel-pel precision in H.264. This results in increased MV
accuracy and lower prediction residuals.

¢ H.264 allows for motion estimation beyond the picture boundaries, which was unsup-
ported in MPEG-2. This feature is specially useful in moments of camera motion like
panning or tilting since it allows the motion estimation of boundary macroblocks, even

if pointing beyond the frame limits.

¢ In MPEG-2, P-slice MBs in SKIP mode represent static areas and do not have a MV
assigned. In H.264, they may either correspond to static areas or to regions of constant

motion, so they may have a motion vector assigned that is copied from a neighboring
MB.

¢ The corresponding P-frame SKIP mode is called DIRECT in H.264 B-frames coding. In
this mode, no additional MV information is transmitted, since the MV is derived from
neighboring MBs.

* Weighted prediction is introduced that allows to offset and scale the input signals dur-
ing motion compensation. This is of particular interest during the coding of scene
transitions like fade-to-black or illumination changes in the scene.

An example of MB partitions and the associated MVs of H.264 is shown in Fig. 2.8. When
compared to MPEG-2 (see Fig. 2.4), it can be noticed how the average MB partition size di-
minishes in highly detailed moving regions. As a consequence, H.264 coded frames contain
more MVs on average and their density is unevenly distributed over the image.
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Figure 2.8: Example of MBs and the associated MVs in a H.264/AVC stream. Original sequence
©Taurus Media Technik
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Additional Features

H.264/AVC introduces a large number of additional features, some of which are highlighted
in the following.

e H.264 includes a number of loss resilience features, e.g., Flexible Macroblock Ordering
(FMO), Arbitrary Slice Ordering (ASO), Redundant Slices (RS) and Data Partitioning (DP).
These features provide the ability to separate more important and less important syn-
tax elements into different packets of data, enabling the application of unequal error
protection and generally increasing the error/loss robustness.

* In order to better support professional studio work, the possible sample bit depth can
range from 8 to 14 bits per sample, depending on the selected profile. Furthermore,
coding in lossless coding mode is supported.

* An in-loop deblocking filter helps to avoid block artifacts common to other DCT-based
image compression techniques, resulting in better visual appearance and compression

efficiency.

* Two new entropy coding schemes are introduced, namely the high-performance Con-
text-Adaptive Binary Arithmetic Coding (CABAC) and the lower-complexity alternative
Context-Adaptive Variable-Length Coding (CAVLC). CABAC compresses data more effi-

ciently than CAVLC but requires considerably more processing to decode.

¢ Switching slices, called SP and SI slices, allowing an encoder to direct a decoder to
jump into an ongoing video stream for such purposes as video streaming or bit rate
switching. Switching slices are only supported in the Extended Profile (see below).

Although the introduced coding techniques lead to a significant increase in coding efficiency,
the encoding process is also computationally more expensive compared to MPEG-2. Regard-
ing the complexity of the different coding stages, motion compensation alone accounts for
about 80 % of the encoder complexity [17].

Profiles and Levels

Similar to MPEG-2, H.264 defines a number of profiles and levels that are targeted towards
different application scenarios. Up to now, 16 different profiles are defined. Four of them
specify all-intra coding profiles that are designed for professional production applications.
The latest three introduce scalability features and have been added as a result of the SVC ex-
tension in 2007 (see Sec. 2.3.3 — H.264/Scalable Video Coding). Each scalable profile extends
one of the profiles that are included in the original version of the AVC standard, namely the
Baseline Profile (BP), the High Profile (HiP) and a generalized High Intra Profile (HIntraP).
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The baseline profile aims at low-cost applications with limited resources, so most of all
mobile devices. Hence, the use of computationally expensive and memory consuming B-
slices and the CABAC entropy coding scheme is prohibited. Most of the devices that are
targeted by this profile are usually connected to the network via error-prone wireless links,
so error resilience tools like FMO, ASO and RS are enabled.

The high profile was primarily designed for broadcast and storage applications. Among
other things it features B-slices, CABAC entropy coding and 8x8/4x4 transform coding
adaptivity to increase coding efficiency. The HiP was adopted in both the HD-DVD and
the Blu-ray disc specification.

For professional studio work like production and post-production, four different High
Intra Profiles have been defined: High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra and CAVLC
4:4:4 Intra. All of them are constrained to the use of intra-coded frames only, which enables
direct frame access without motion compensation. It is comparable to Motion-JPEG2000 in
the sense that it does not feature inter-frame prediction since each picture is coded indepen-
dently like a still image.

A complete review of AVC is not within the scope of this work. The interested reader is
referred to the official standard’, introductory articles like the overview paper published by
Wiegand et al in [1] or Richardson’s book entitled H.264 and MPEG-4 Video Compression [7].

2.3.3 H.264/Scalable Video Coding (SVC)

The SVC standard is an extension to H.264/AVC (see Sec. 2.3.2) and enables spatial, tem-
poral and quality scalability. SVC adds three additional, scalable profiles to the H.264 stan-
dard. Scalability with respect to coded video refers to the property that a video stream or
file contains multiple layers, where lower layer versions of the same video can be extracted
by ignoring or removing higher layer parts of the bit stream. The goal of scalable video
coding is to obtain one multi-layer stream that is more efficient than multiple co-existing
single-layer streams with respect to the number of coded bits and regarding decoding com-
plexity. During the design process of SVC, the following essential requirements have been
addressed [2]:

¢ Similar coding efficiency compared to single-layer coding for each subset of the scal-
able bit stream.

e Little increase in decoding complexity compared to single-layer decoding that scales
with the decoded spatio-temporal resolution and bit rate.

¢ Support of temporal, spatial, and quality scalability.

7ISO/IEC 14496-10: http://www.itu.int/rec/T-REC-H.264
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¢ Support of a backward compatible base layer (H.264/AVC in this case).

¢ Support of simple bit stream adaptations after encoding.

This section gives a brief overview of the provided coding techniques in order to meet
the mentioned requirements. The basic SVC encoder structure is shown in Fig. 2.9. The first
important property to notice is the H.264/AVC compatible base layer (Layer 0 in Fig. 2.9)
that can be fully decoded by any pre-SVC implementation capable of processing H.264/AVC
streams. The internal processing of higher layers is also performed with techniques provided
by AVC, but the traditional single-layer spatio-temporal prediction is extended by inter-layer
prediction of intra-coded frames, of motion information and of prediction residuals.

Layer 1

SNR scalable Scalable
coding bit-stream
A i
texture >
».| Motion-compensated Base layer
and intra prediction > coding
motion >
) >
St Multipl
. Inter-layer prediction of I > Uiprex
s i Layer 0 intra, motion, and residual
decimation i ' | SNRscalable >
coding
A
texture H.264/AVC compatible
__ | Motion-compensated » Base layer base layer bit-stream
“ | andintra prediction > coding
motion

H.264/AVC compatible encoder

Figure 2.9: SVC encoder structure [2]

A short revision of the techniques that enable all three major types of scalability is pro-
vided below, as well as remarks on how each type of scalability influences the coding effi-

ciency.

Temporal scalability

Temporal scalability refers to the ability to extract different temporal resolutions, i.e., to
decode and play video at reduced frame rates while ignoring any information related to
dropped frames. Although former standards like MPEG-2 and MPEG-4/Visual also incor-
porate to concept of temporal scalability, SVC provides a significantly increased flexibility
for temporal scalability because of its reference picture memory control. It allows the coding
of picture sequences with arbitrary temporal dependencies, which are only restricted by the

maximum usable Decoded Picture Buffer (DPB) size.

Hence, for supporting temporal scalability with a reasonable number of temporal layers,
no changes to the design of H.264/AVC have been made. The only related change in SVC
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refers to the signaling of temporal layers, denoted as Hierarchical Prediction (HP). The under-
lying principle is simply that lower layer frames are not allowed to be predicted from higher
layer frames. Through HP, temporal downscaling is achieved by discarding higher layer B-

or P-slices.

group of pictures (GOP)
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Figure 2.10: Hierarchical prediction structures for enabling temporal scalability: (a) coding with
hierarchical B or P pictures, (b) non-dyadic hierarchical prediction structure, (c) hierarchical pre-
diction structure with a structural encoder/decoder delay of zero. The numbers directly below
the pictures specify the coding order; the symbols T specify the temporal layers with k repre-
senting the corresponding temporal layer identifier [3].

Fig. 2.10 illustrates the three supported types of hierarchical prediction, where the most
common and efficient is hierarchical B-picture prediction (Fig. 2.10a) that enables a dyadic
reduction of the frame rate at each temporal level. SVC provides a second scheme for sce-
narios where a non-dyadic step width is required, illustrated in Fig. 2.10b. For time critical
applications like video conferencing, the referencing of future frames may introduce an un-
acceptable structural decoding delay. The third scheme, shown in Fig. 2.10c, is dedicated
to such low-latency applications and only references past video frames during motion com-

pensation.

Temporal scalability can be typically achieved without losses in rate-distortion perfor-
mance [2], most of all by performing hierarchical B-picture prediction. However, the use of
non-dyadic or low-delay schemes typically decreases the coding efficiency.
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Spatial Scalability

Spatial scalability in SVC is based on the conventional approach of multilayer coding, which
can be also found in former standards like MPEG-2 or MPEG-4/Visual. The basic idea is
illustrated in Fig. 2.11, which also underlines the fact that different types of scalability can be
combined. In the shown example, the spatial base layer comes at a lower temporal resolution

than the enhancement layer.

Layer 1

Layer 0

Figure 2.11: Multilayer structure with additional inter-layer prediction for enabling spatial scal-
able coding [2]. Dashed lines denote intra-layer prediction, solid lines inter-layer prediction.

In each spatial layer, intra-prediction and motion-compensated prediction are employed
as for single-layer coding. Different from previous MPEG standards where inter-layer pre-
diction was based uniquely on an up-sampled version of the reconstructed base layer, two
additional inter-layer prediction mechanisms are introduced in SVC to increase efficiency.
The three available inter-layer prediction concepts are chosen on a MB basis, allowing an
encoder to select the coding mode that gives the highest coding efficiency. The three modes

are:

¢ Inter-layer intra prediction: In this mode, illustrated in Fig. 2.12a, the corresponding
reconstructed intra-signal of the reference layer is up-sampled and no additional side
information is transmitted. For up-sampling the luma component, one-dimensional 4-
tap FIR filters are applied horizontally and vertically. The chroma components are
up-sampled by using a simple bilinear filter. Filtering is always performed across
sub-MB boundaries using samples of neighboring intra-blocks. When the neighbor-
ing blocks are not intra-coded, the required samples are generated by specific border
extension algorithms. To prevent disturbing signal components in the prediction sig-
nal, the H.264/AVC deblocking filter is applied to the reconstructed intra-signal of the

reference layer before up-sampling.

¢ Inter-layer macroblock mode and motion prediction: If at least one of the co-located
reference layer blocks is not intra-coded, the enhancement layer MB is inter-picture
predicted as in single-layer H.264/AVC coding. The MB partitioning — specifying the
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decomposition into smaller blocks with different motion parameters — and the asso-
ciated motion parameters are completely derived from the co-located blocks in the
reference layer (see Fig. 2.12b). This concept is also referred to as inter-layer motion

prediction.

¢ Inter-layer residual prediction: This inter-layer prediction tool targets a reduction of
the bit rate required for transmitting the residual signal of inter-coded macroblocks.
With the usage of residual prediction, the up-sampled residual of the co-located ref-
erence layer blocks is subtracted from the enhancement layer residual (difference be-
tween the original and the inter-picture prediction signal) and only the resulting dif-
ference, which often has a smaller energy then the original residual signal, is encoded

using transform coding as specified in H.264/AVC (see Fig. 2.12c).

8x8F—
Layer 0 = I H_

16x16

Layer 1

(@) )

Figure 2.12: Illustration of inter-layer prediction tools: (a) up-sampling of intra-coded mac-
roblock for inter-layer intra prediction, (b) up-sampling of macroblock partition in dyadic spatial
scalability for inter-layer prediction of macroblock modes, (c) up-sampling of residual signal for
inter-layer residual prediction.

An important feature of SVC is that only a single motion compensation loop is required for
each spatial enhancement layer. For the employed reference layers, only the intra-coded
macroblocks and residual blocks that are used for inter-layer prediction need to be recon-
structed (including the deblocking filter operation) and the motion vectors need to be de-
coded. The computationally complex operations of motion-compensated prediction and the
deblocking of inter-picture predicted macroblocks only need to be performed for the target
layer to be displayed.

Concerning the efficiency, the bit rate increase relative to non-scalable H.264/AVC coding
at the same fidelity can be as low as 10 % for dyadic spatial scalability. It should be noted
that the results typically become worse as spatial resolution of both layers decreases and

results improve as spatial resolution increases [2].
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Quality Scalability

Quality scalability in SVC is regarded as a special case of spatial scalability where the base
layer and the enhancement layer have identical size. The same inter-layer prediction tools
are employed, but without using the corresponding up-sampling operations. This is re-
ferred to as Coarse Grain Quality Scalability (CGS). When utilizing inter-layer prediction for
coarse-grain quality scalability, a refinement of texture information is typically achieved by
re-quantizing the residual texture signal in the enhancement layer with a smaller quantiza-

tion step size relative to that used for the preceding CGS layer.

However, this multilayer concept for quality scalable coding only allows a few selected
bit rates to be supported in a scalable bit stream. In general, the number of supported rate
points is identical to the number of layers. Switching between different CGS layers can only
be done at defined points in the bit stream. Furthermore, the multilayer concept for quality
scalable coding becomes less efficient when the relative rate difference between successive
CGS layers gets smaller. Especially for increasing the flexibility of bit stream adaptation
and error robustness, but also for improving the coding efficiency for bit streams that have
to provide a variety of bit rates, a variation of the CGS approach, which is referred to as
Medium Grain Quality Scalability (MGS), is included in the SVC design. The differences to
the CGS concept are a modified high-level signaling, which allows a switching between dif-
ferent MGS layers in any access unit, and the so-called key picture concept, which allows the
adjustment of a suitable tradeoff between enhancement layer coding efficiency for hierarchi-
cal prediction structures and drift for packet-based quality scalable coding. Drift describes
the effect that the motion-compensated prediction loops at encoder and decoder are not syn-
chronized, e.g., because quality refinement packets are discarded from a bit stream.

The key picture concept of SVC is illustrated in Fig. 2.13d, together with different for-
mer concepts that are employed by MPEG-2 or MPEG-4/Visual, shown in Fig. 2.13a-c. All
pictures of the coarsest temporal layer are transmitted as key pictures, and only for these pic-
tures the base quality reconstruction is inserted in the DPB. Thus, no drift is introduced in
the motion compensation loop of the coarsest temporal layer. In contrast to that, all temporal
refinement pictures typically use the reference with the highest available quality for motion-
compensated prediction, which enables a high coding efficiency for these pictures. Since the
key pictures serve as resynchronization points between encoder and decoder reconstruction,
drift propagation is efficiently limited to neighboring pictures of higher temporal layers. The
tradeoff between enhancement layer coding efficiency and drift can be adjusted by the choice

of the GOP size or the number of hierarchy stages.

The efficiency of SNR scalability in SVC is comparable to spatial scalability. When apply-
ing an optimized encoder control, the bit rate increase relative to non-scalable H.264/AVC
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Figure 2.13: Various concepts for trading off enhancement layer coding efficiency and drift for
packet-based quality scalable coding. (a) Base layer only control. (b) Enhancement layer only
control. (c) Two-loop control. (d) Key picture concept of SVC for hierarchical prediction struc-
tures, where key pictures are marked by the hatched boxes [2].

coding at the same fidelity can be as low as 10 % for all supported rate points when spanning
a bit rate range with a factor of 2-3 between the lowest and highest supported rate point [2].

2.4 Summary and Conclusions

After a brief introduction of video coding in general, an overview of the state-of-the-art in
scalable video coding was provided. Focus was put on the two major scalable standards Mo-
tion JPEG2000 and the latest recommendation within the MPEG family, H.264/SVC. Since
Motion JPEG2000 primarily targets professional high-quality production environments like
Digital Cinema, only intra-coding mechanisms are employed and no valuable motion infor-

mation is present in the coded stream.

H.264 with its scalable extension SVC represents a more versatile video coding frame-
work. Its efficiency and bit stream scalability can be exploited on various levels and in dif-
ferent application scenarios. The following list gives some examples of applications that can
benefit from SVC:

* Video surveillance can benefit from SVC in various aspects. With IP cameras that
deliver SVC coded video®, high-resolution video may only be transmitted if necessary
in order to save bandwidth. Remote monitoring on portable devices as well as in-
house visualization on televisions or computer screens can be realized by using the
same bit stream.

8The first H.264/SVC surveillance applications are already available, e.g. at http://www.
aventuratechnologies.com/
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¢ Streaming media applications that dynamically adapts to different viewing devices
and network conditions becomes possible. Media-Aware Network Elements (MANEs),
which receive feedback messages about the terminal capabilities and/or channel con-
ditions, can remove the non-required parts from a scalable bit stream before forward-
ing it. Thus, the loss of important transmission units due to congestion can be avoided
and the overall error robustness of the video transmission service can be substantially
improved.

* Broadcasting of a single, multi-layer stream can serve a wide range of different end-
user devices at the same time. The end-user terminal can discard unnecessary parts of
the bit stream according to the given decoding capabilities.

¢ Video archiving can benefit from scalable videos in terms of storage space manage-
ment. The most recent videos can be kept in full resolution and quality for a certain pe-
riod of time, while for old or less important sequences, higher layers may be dropped

to free up storage space while still keeping a lower quality version for reference.

H.264 streams that are encoded with profiles other than the all-Intra class already include
motion information, which is otherwise very time-consuming to post-estimate but which de-
livers valuable information concerning video indexing, analysis and computer vision related
tasks. For instance for time-critical applications like surveillance, a first rough compressed
domain analysis may be performed on lower spatial or temporal layers of the stream. De-
pending on the targeted application and under certain pre-defined circumstances, e.g., high
motion activity is detected, the system may switch to computationally more demanding
higher layers that provide more detail.

The following chapter describes how H.264 compressed domain information can be ex-
tracted and processed in order to assist various indexing and analysis applications, some of

which are presented in detail in Part II of this work.
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Chapter 3
Analysis

Traditionally, the majority of indexing and computer vision related tasks are performed on
raw, decoded images. Throughout this work, we refer to this as image domain analysis.
Input pictures are usually at first projected into a suitable color space like RGB, YUV or
HSV. Further analysis takes place either on pixel level on one or all of the color planes, or,
depending on the application, in another image representation domain like the Difference of
Gaussians (DOG).

While frame-wise, pixel-level brightness and color information is extremely rich, it is
also very demanding with respect to computational complexity and memory consumption.
The resulting high computational complexity becomes even more problematic regarding the
rapid deployment of high definition cameras and content, where resolutions of 1920x1080
pixels are reached in television broadcasting and Blu-ray discs.

Different approaches exist in order to handle this flood of information, where the most
common one is to down-scale the input images prior to processing. Since this approach
diminishes the amount of information that needs to be processed, input videos or images
initially still have to be entirely decoded and read in full resolution. Moreover, proper down-

scaling itself also is a computationally expensive and memory demanding operation.

Except from professional production environments, content is most often distributed and
stored in encoded form to save bandwidth and storage space. In this work, we take advan-
tage of this fact and pursue another approach to decrease the computational overhead, called
compressed domain analysis. Contrary to image domain analysis, this approach does not ne-
cessitate full stream decoding back to pixel level. Instead, the coded image representation
itself is used in order to deduce more high level information about the actual video content.
In case of MPEG coded video, motion vectors and if available, transform coding coefficients,
are the main source of information. The main pros and cons of compressed domain analysis

compared to image domain analysis are listed below.

31



CHAPTER 3. ANALYSIS

Pros:

@ No full stream decoding is necessary, resulting in less computation time and memory

consumption.

@ Additional information like motion is directly available, since the costly task of motion

estimation has already been performed by the encoder.

® Most videos are stored and distributed in compressed form and the original versions are

not available.
Cons:

© The provided information is rough and sparse, since no color and pixel level information

is available.

© Compressed domain algorithms are codec and implementation dependent, so less gen-

eral than image domain approaches.

Certain applications like face detection and recognition are less suited for pure H.264
compressed domain analysis due to the mentioned limitations. Other applications such as
the estimation of camera motion benefit from the additional information present in com-
pressed streams, most notably motion vectors. Like also stated by Cédras in [18], motion
perception plays a very important role in the human visual system and helps us to recog-
nize objects and their trajectories, infer their relative depth or estimate their rigidity. In this
work we exploit the compressed domain motion information to a large extent in order to

perform global motion estimation, unsupervised object detection and tracking.

This chapter introduces and explains the concepts of compressed domain analysis at the
example of H.264 streams. For a better understanding of the presented algorithms, infor-
mation about the used test sequences and how they are encoded is provided in Sec. 3.1.
Global motion estimation builds an important basis for further processing and is presented
in Sec. 3.2, followed by a description of methods to perform scene segmentation in back-
ground and moving foreground objects in Sec. 3.3. Details on the proposed compressed
domain tracking algorithm are given in Sec. 3.4. A method to estimate the relative distance
between moving objects and the camera is presented in Sec. 3.5. We finally close this chapter

by concluding remarks in Sec. 3.6.

It has to be noted that all presented algorithms can be applied to single-layer AVC as well
as multi-layer SVC streams. In case of SVC streams containing multiple spatial layers, some
of the methods take advantage of the scalability in order to increase either the efficiency or
the quality of the results.
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All techniques in this chapter are of purely analytical nature, i.e., they do not alter the
bit stream, reflected by the term analysis in contrast to processing. In Chap. 7, we present
methods and ideas that process the input bit stream by modifying the original motion vector
fields.

Since each of the mentioned problems stands as a research topic for itself, related work

is presented separately in the respective sections.

3.1 Test Videos

Analysis results for a variety of videos with different origins are presented throughout this
work. All of them represent natural video scenes that have been shot either indoor or out-
door with different kinds of cameras, ranging from professional high definition to surveil-
lance cameras. While some of the sequences are shot with fixed cameras, others contain
camera operations like panning, tilting or zooming. Figure 3.1 shows example screenshots
of some of the used test videos; others are provided in upcoming chapters. The sequence
street which is depicted in Fig. 3.1a will be used as a running example throughout this chap-
ter, so multiple screenshots are shown. The sequence was shot outdoor and shows a man
who walks around an obstacle to pick up his bike and walk away. The camera is panning
and tilting to follow the person’s motion in the beginning of the scene and remains fix in the
end.

All videos have been encoded with J[SVM, the reference implementation of H.264/SVC,
in version 9.8. Among with the final draft of the standard and a series of test sequences, it
is publicly available for download at [19]. Reference software for encoding and decoding
is provided. The encoder accepts raw YUYV files as input and the decoder also outputs raw
YUYV files. Additional tools to perform down-scaling of the raw YUV input videos and to
extract particular spatial or temporal layers are provided as well. It has to be noted that
JSVM works well for research purposes, but encoding and decoding are slow since the im-

plementation represents a non-commercial proof-of-concept without optimizations.

Due to the lack of alternative available implementations of SVC at the beginning of this
thesis, JSVM was used to carry out all encoding and decoding. By the time of writing, the
OpenSVC decoder [20], a more efficient open source implementation of a pure SVC decoder
has reached mature state and achieves a decoding speed-up of factor 16-52 compared to
JSVML.

The majority of test sequences have been encoded with similar parameters. The most
important common encoder settings are listed in Table 3.1. For reference, an introduction to

1OpenSVC decoder: http://sourceforge.net/apps/mediawiki/opensvcdecoder/
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(b) parkrun

(f) hall monitor (g) car (h) surveillance (i) traffic

Figure 3.1: Screenshots of some of the used test sequences

scalable video coding in general and more specifically, to the standard H.264/AVC and its
extension SVC is provided in Chap. 2.

The original resolution of the test videos ranges from CIF (352x288 pixels) to the Full-HD
format 1080p (1920x1080 pixels). The number of encoded spatial layers per video depends
on the original frame size. In most cases, the resolution of the spatial base layer was set to
CIF or similar and dyadic spatial scalability was employed for the sake of coding efficiency.
To give examples, we encoded CIF content as single-layer AVC streams, SD content of size
704x576 with two spatial layers (0: 352x288, 1: 704x576) and 1080p HD content with three
spatial layers (0: 480x270, 1: 960x540, 2:1920x1080), so including one layer with full, half
and quarter resolution, respectively. The choice of the minimal base layer size was based on
the screen resolution of popular H.264 capable mobile devices like Apple’s first generation
iPhone, having a display with resolution 480x320 pixels?.

Quality scalability is inherent to the streams and temporal scalability is enabled by the
hierarchical B-picture prediction structure of SVC, illustrated in Fig. 3.2 for a GOP size of 8
frames. Depending on the application, the GOP size was set at 8 or 16 pictures, with each I-
frame being also an IDR-frame to enable random stream access. Lower temporal resolutions
are obtained by dropping B-frames in inverse coding order. Since the methods we present in

2http ://www.apple.com/iphone/specs.html
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3.1. TEST VIDEOS

] Parameter Value ‘
Video format H.264/SVC
Profile Scalable High Profile
Software encoder JSVM 9.8
GOP size 16 or 8 (fix per video)
IDR frequency 1 (each I-frame)
Reference frames per List 1 (max. 2 per B-frame )
Base layer mode 1 (AVC compatible)
Number of spatial layers | Up to 3 ( 0:480x270, 1:960x540, 2:1920x1080 for 1080p)
Frame rate 12-25 fps for surveillance, 25 fps otherwise
Temporal scalability Dyadic scalability with hierarchical B-pictures
Motion search Block search

Table 3.1: Summary of important JSVM encoder settings

the following rely on motion, i.e., the presence of predicted frames of type B or P, the lowest
temporal layer that still contains motion information and can be processed has the structure
IDR-B-IDR-B, where IDR stands for Instantaneous Decoder Refresh, a special type of I-frame
(see Chap. 2 for more details).
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Figure 3.2: Hierarchical B-picture prediction structure of test videos. The numbers on top: dis-
play order (coding order). Dashed arrows denote LIST_0 prediction, solid lines stand for LIST_1
prediction.

Besides some surveillance sequences with low frame rates of down to 12 fps, the re-
maining test videos are encoded at 25 fps with full, progressively scanned images without
interlacing. Originally interlaced source videos have been deinterlaced prior to encoding.

In order to give an idea about the achieved bit rates, Fig. 3.3 shows the coded versus
the raw video bit rate as a function of the input resolution, represented by the frame width.
The values have been obtained by scaling and encoding the same sample input video (se-
quence street) at different resolutions. For each resolution, encoding as high quality, single
layer H.264/AVC stream was performed at similar parameters and quality settings. Besides

tremendous bit rate savings compared to raw YUV (4:2:0) video, it can also be noted that
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the coded bit rate scales with the input resolution in the same manner as the uncoded, raw

video size.
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Figure 3.3: Video resolution vs. file size of raw YUV input compared to coded H.264 streams

The majority of algorithms presented in this work is scene based, i.e., we assume separate
video scenes without any cuts or transitions. This can be achieved by first applying a com-
pressed domain shot boundary detector. Examples for methods that have been specifically
designed for H.264 streams include the approach proposed by Liu et al. [21], which uses
Hidden Markov Models (HMMs) for scene cut detections, and an approach by De Bruyne et
al. [22, 23]. The latter measures the temporal correlation between successive frames to detect
gaps in the temporal prediction chain. When this gap is due to I- or IDR-frame coding, the
spatial dissimilarity is calculated to identify abrupt transitions. To locate gradual changes,
the percentage of intra-coded macroblocks is analyzed over time, where an increase is typ-
ically caused either by gradual transitions or by local or global motion. By analyzing the
motion intensity of the estimated foreground and background, these different types of con-
tent changes can be distinguished.

In the following section, different methods to estimate the global scene motion in the
MPEG compressed domain are presented.

3.2 Global Motion Estimation

The global scene motion describes how the the background area moves with respect to the
camera over time. Assuming that the background itself is static, global motion is usually

caused by camera operations like panning, tilting, zooming, rotation or traveling.
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3.2. GLOBAL MOTION ESTIMATION

Robust, frame-wise estimates of the global scene motion can be exploited in several ways
for analysis and indexing tasks. Regarding indexing, the frame-wise global motion can be
used as a temporal descriptor for video retrieval (see Chap. 6). Concerning analysis and vi-
sion tasks, global motion estimation (GME) is needed for motion compensation in case cam-
era motion is present. The estimation results themselves can be used for further tasks like
the detection of moving objects (see Sec. 3.3). Since block-based video codecs that employ
motion-compensation already contain motion information in the form of motion vectors,

GME can be carried out very efficiently in the compressed domain.

3.2.1 Related Work

Depending on the application, different methods to perform GME in the compressed domain
have been proposed. Most approaches are based on the motion vectors that are present in
MPEG-2 coded streams. The re-use of motion information is the main reason why com-
pressed domain approaches are more efficient than those working on pixel level, because
the computational expensive task of motion estimation has already been performed by the
encoder.

Kobla [24] proposed a global motion classification method within a video indexing frame-
work. He uses camera operation estimates to segment video scenes into different shots,
scenes and sub-scenes. Directional MV histograms are employed to determine the domi-
nant, translational camera movement and zoom detection is based on focus estimation. The
approach delivers a macroblock-based classification of the dominant moving direction and

the presence of zoom, but no quantitative values are estimated.

Yoo et al. [25] analyze camera operations in the MPEG-2 domain based on the generalized
Hough transform. They start by approximating the optical flow (OF) given the MV field
as input, followed by spatio-temporal vector median filtering with window-size 3x3x3. A
parameter space is constructed from the vector displacements Ax and Ay, where the largest

population or density is taken as the amount of pan and tilt.

Hesseler et al. [26] apply two-dimensional motion vector histograms constructed from
P-frame MV fields. AC-coefficients from the MPEG-2 domain are used to detect outliers.
Peaks in the histograms are regarded as the dominant translational motion and are detected
via pyramid filters. Since this approach delivers robust results in case of pure translational
motion, it does not account for complex camera motion like zooming, rotation or composed

motion.

If robust global motion estimates that cover complex camera operations are required, the
majority of approaches, e.g., Wang et al. [27], Bouthemy et al. [28, 29] and Durik et al. [30]
apply iterative motion estimation and outlier rejection algorithms based on some form of
weighted least squares estimation of a 2-D parametric motion model. Due to the proven
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robustness, we adopted an algorithm similar to the one proposed in [30] and [31] and ported
it to the H.264 compressed domain. An important advantage of this approach is the iterative
outlier rejection scheme, which as a by-product delivers a rough segmentation of the scene

in background and foreground regions. The algorithm is described in detail below.

3.2.2 Algorithm

The global motion estimation method consists of a multi-resolution scheme that incorporates
an iterative re-weighted least squares estimation of the well known 2D 6-parameter affine
motion model. The application of a multi-resolution scheme increases robustness results and
tits well in our work given the scalability of SVC streams. After parameter estimation, the

individual camera operations are interpreted from the resulting model parameters.

Compared to MPEG-2, some modifications of the algorithm are necessary in order to
support H.264 coded video. The main differences regarding the MV fields in MPEG-2 and
H.264 streams are the variable block-size in H.264, the increased flexibility regarding refer-
ence pictures, the use of B-frames only in the hierarchical B-picture prediction structure and
the increased MV precision.

MYV Field Extraction

For the extraction of macroblock modes, partition sizes and motion vectors from H.264
streams we modified the publicly available reference decoder JSVM [19] in version 9.8. The
MB prediction modes and partition sizes are signaled and can be obtained by parsing the bit
stream. In order to retrieve the MV values in quarter-pel precision, the entropy coding of
H.264 has to be reversed as the only decoding step. The main source for MVs in temporally
scalable SVC streams are bi-directionally predicted B-frames. The extraction of MVs hap-
pens on a sub-MB basis and depends on the prediction mode of the respective MB and its
sub-partitions:

* Mode LIST_0: The MB is predicted backwards only, comparable to P-frame MBs. In
this case, we extract the MV from LIST_0 and inverse the signs of the Ax and Ay com-

ponents.

* Mode LIST_1: The MB is forward predicted only. In this case, we extract the MV from
LIST_1 and keep the original signs of Ax and Ay.

* Bi-Prediction: The MB is bi-directionally predicted. We extract the MVs from both
lists, inverse the sign of the LIST_0 MV and calculate the average over both lists,
weighted by the distance to the respective reference frame, which is similar for both
MVs in the case hierarchical prediction is employed (see Fig. 3.2).
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¢ Direct mode: In this mode, no MV is explicitly coded for the MB, but it is predicted
from the MVs of neighboring MBs.

To obtain uniform results, all MVs are scaled by the distance to their respective reference
pictures. As a MV field approximation for I-frames, which do not contain motion informa-
tion, we take the mirrored LIST_0 vectors from the subsequent B-frame in display order as
an estimation basis.

Motion model

A model is needed that is able to explain the observed scene motion. The instantaneous im-
age velocity field of a 3D scene models the inter-frame displacements and can be expressed
as [32, 33]:

[ u(x,y) ] _ [ —(%+Qy)+x% +yQz — x*Qy + xyQx 3.1)
X

v(x,y) —(F + Q%) +yF +x0z -y Qx + 19Oy |

where (u(x,y), v(x,y))T denotes the image velocity atimage location (x,y), T = (Tx, Ty, Tz)T
denotes the translational motion of the camera, R = (Qx, Qy, Q Z)T denotes the camera ro-
tation and Z the depth of the scene point corresponding to (x,y).

According to [34], the approximation of instantaneous image motion of a general 3D
scene can be approximated in a simplified way by a 2D parametric motion model under the
following assumptions regarding the scene geometry and/or camera motion: (i) the scene
is planar, (ii) the 3D scene is sufficiently distant from the camera, or the deviations from a

planar scene surface are small relative to the overall distance of the scene from the camera.

The 2D six-parameter affine model proved to be sufficiently rich to characterize motion
observed in two successive video frames [35, 30]. With respect to block-based motion vectors
in the form (Ax;, Ay;)T, it can be formulated as

Ax; = a1 + ﬂz(xi — XQ) + ﬂ3(yi - yo)

(3.2)
Ay; = as +as(x; — x0) + ae(yi — yo),

where (xo,10)" denotes the reference point in the image (e.g., the image center) and (x;,y;)7
denotes the MB center. The six parameters a; . . . ag describe an affine transformation between
two planar views of the scene background. With this model, it is also possible to capture

complex camera operations like panning and tilting while zooming.
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Weighted Least Squares (WLS) Estimation

Given the extracted MV field as input, the estimation of the six model parameters given in
Eq. 3.2 can be formulated as a linear regression problem. Assuming no outliers, the solution
in the standard least squares sense can be formulated in common matrix notation as

$=(HTH)'HTZ, (3.3)

where Z holds the measured motion compensation vectors, H is the observation matrix con-
taining the macroblock centers and ¢ = (4y,...,46)" is the vector containing the estimated

motion parameters.

With N being the number of MVs per frame and (Ax;, Ay;)T denoting the components of
MYV number i, Z is given as

Z = (Axy,...,Mxn, Ay, ..., Ayn)T. (3.4)

The observation matrix H is given as

1X1 y10 0 0

o
o

1XN yN

(3.5)
0 0 0 1 X1 W

0 0 0 1XN yN_

The MV fields present in compressed streams are optimized in terms of coding efficiency
and not with optical flow in mind. As a consequence, the MVs do not always correspond to
true motion. In particular, MVs with random length and orientation appear in low-textured
areas like blue sky or white walls. Furthermore, most video scenes contain moving ob-
jects, resulting in numerous MVs that do not represent the global background or camera
motion. Since the standard least squares method is not robust against such outliers, a multi-
resolution scheme with weighted least squares estimation on each level is applied in order
to minimize a robust functional of motion residuals [30]. The objective is to minimize the
residuals r between the measured motion vectors d and their estimates d:

7’1’ = di - di (36)

In case of scalable streams, the multi-resolution levels are given by the different spatial

layers, beginning with the spatial base layer. If single-layer streams are to be analyzed, the
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algorithm iterates on the same spatial layer until the outlier configuration converges. After
each iteration, outlier MBs are attenuated or rejected according to a weighting function of
r. The weights w; for each MV are obtained by the following Gaussian cost function, which

limits the influence of outliers continuously:
w; = p—e“?i), (3.7)

where p is set to the standard deviation ¢ (or to 1, if ¢ < 1) and r; denotes the estimation

residual after the last iteration.

The weights w; are stacked into the diagonal weighting matrix W, given as

w1 0 0
0 L
w=| @2 . (3.8)
. °. °. O
0o ... 0 WoN

After each iteration, the motion parameters are re-estimated in the weighted least squares

sense, formulated in matrix notation as

¢=(H'WH) 'H'WZ. (3.9)

Outliers are iteratively attenuated or excluded from the estimation support by the weight-
ing function given in Eq. 3.7, which is depicted in Fig. 3.4 for ¢ = 2. For further processing,
we are interested in binary outlier masks. Hence, a threshold on the residual r is needed to
determine which blocks are treated as foreground blocks. This threshold can be manually

chosen or is otherwise set to the standard deviation ¢.
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Figure 3.4: Outlier weighting function for ¢ = 2

As a final result, robust estimates of the six model parameters are obtained together with

outlier masks.
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Parameter Characterization

In order to obtain a more intuitive understanding of the model parameters a; . . . a6, we trans-

late them into another basis of elementary camera motion descriptors
0 = (pan, tilt,zoom, rot) (3.10)

by [29]
pan = ay, tilt = ay,

(3.11)
zoom = 7y - (ay+ag), rot =y (as—asz),

with v = /height? + width? /4 being a resolution dependent scaling factor to project zoom
and rot in the same dimension as pan and tilt. The values zoom and rot represent ratios and

not pixel values like the two translational motion parameters.

It has to be noted that with this approach, a pure camera pan, i.e., a rotation of the cam-
era around its vertical axis, cannot be distinguished from sideways traveling. If the scene
is distant, both types of camera operations result in approximately the same MV pattern,
leading to non-zero values of a; (pan). The same applies for tilting versus vertical traveling

and zooming versus forward or backward traveling.

3.2.3 Results

Exemplary results on five different spatial layers of the sequence street are given in Fig. 3.5a-
e. Besides a scaling factor, the results at different spatial resolutions are very similar, showing
the robustness and scalability of the method. Experiments showed however that at resolu-
tions smaller than CIF, the results become very noisy, most notably on the variables zoom and
rotation, but remain stable at higher resolutions. This is due to the small amount of remain-
ing MVs at low resolutions. For reference, Fig. 3.5e shows the GME results obtained by the
method proposed by Odobez et al. in [36] at a resolution of 480x272. This approach works
on pixel level in the image domain and exploits the spatio-temporal derivatives of the im-
age intensity function. An implementation of this incremental multi-resolution estimation
method is available at [4].

Besides minor variations, the compressed domain results are identical to those obtained
on pixel level. Image domain analysis leads to more stable results at low resolutions due to
the dense estimation support.
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(a) 1920x1088 (b) 960x544 (c) 480x272
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Figure 3.5: (a)-(e): Compressed domain GME results for 5 different spatial layers. (f): Reference
global motion results obtained with [4] on pixel level. Sequence street.

Computational Complexity

Concerning the computational complexity of the method, we achieve an average perfor-
mance of 36 fps on an Intel Core2Duo with 2.16 GHz and 2 GB of RAM when analyzing the
spatial base layer (480x272) extracted from a Full-HD stream. This enables real-time analy-
sis. The achieved performance in terms of frames per second (fps) as a function of the video
resolution is shown in Fig. 3.6. The black line denotes the real-time limit, which is 25 fps
for our test sequences. In comparison to the image domain method presented in [36], which
estimates similar information on pixel level, the achieved compressed domain analysis time

is approximately seven to ten times faster.
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Figure 3.6: Computation time of the proposed compressed domain GME algorithm

3.2.4 Limitations

Although the algorithm performs very well on a large variety of videos, it fails under cer-
tain conditions. We identified three problematic situations that compromise the estimation
results:

1. Moving objects that occupy a large portion of the visible screen and thus hiding the
background

2. Non-static, moving background (e.g., water)

3. Large, low-textured areas (e.g., flat white walls)

Figure 3.7 shows screenshots of different scenes together with the SVC macroblock par-
titions and their associated motion vectors. Detected outlier MBs are framed in red. A video
under normal conditions is depicted in Fig. 3.7a. Here, the algorithm achieves to correctly
identify outlier MBs and the camera motion estimation delivers reliable results. Figure 3.7b
shows an example for the second case with non-static background and very noisy estimation
results. A combination of the first and third problem can be observed in Fig. 3.7c. The cam-
era is panning to the right while filming some quickly by-passing vehicles, which together
nearly fill the whole screen. The motion-blurred white truck is weakly textured and parts of

the MVs have random orientation. All of the mentioned problems affect the quality of the
GME.

The first two situations pose severe problems to global motion estimation even in the
pixel domain and can not be resolved without additional information. Concerning com-
pressed domain object tracking in such cases, at least the initialization has to be the done
either manually or on a decoded frame with color information available. The third problem,
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Figure 3.7: Examples of SVC macroblock partitions and motion vectors. Outliers of GME are
marked in red. MVs were scaled up for better visibility

low-textured areas, also disturbs the GME in the compressed domain. This is due to the
block-matching algorithm of MPEG-type encoders. The MVs associated to the MBs are op-
timized in terms of coding efficiency and not with respect to the real optical flow, and with

missing texture, the resulting MVs are either zero or show arbitrary orientations.

In Chap. 7 we present an approach to overcome the third problem by correcting the
MVs in a joint indexing/coding framework in case precise GME results are required, e.g.,
for compressed domain mosaicing applications [37]. If the possibility of using a modified
encoder is not provided, a combination with segmentation algorithms in the spatial image

domain can be used to detect and process flat areas separately, e.g., like demonstrated in [38].

3.3 Object Detection

The detection of moving objects in video scenes is one of the fundamental problems regard-
ing numerous indexing and vision tasks. Some of the applications which heavily rely on
robust moving object detection are

¢ the construction of mosaics,

background construction,

object tracking and unsupervised initialization of tracking algorithms,

behavior analysis and

¢ video surveillance.

The most popular approach in the pixel domain is background subtraction, where a
model of the scene background is created for a fixed camera view and the foreground is
obtained by subtracting the estimated background from the current image. Various back-
ground modeling techniques have been proposed in the literature, including basic meth-
ods like simple frame differencing or averaging, or more advanced methods such as back-
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ground modeling through mixture of Gaussians [39], kernel density estimators [40], mean-
shift based estimation [41] or Eigenbackgrounds [42]. While an introduction to pixel level
foreground estimation techniques is not within the scope of this work, more details on back-
ground subtraction by using Gaussians Mixture Models (GMMs) are provided in Chap. 4 in
the context of a traffic surveillance application.

An overview of existing compressed domain object detection methods is provided below,
followed by an explanation of the approach we proposed in [43] regarding H.264 streams.

3.3.1 Related Work

A number of methods concerning object segmentation in the MPEG-2 domain can be found
in the literature, including [44, 45, 46, 26, 47]. They usually rely on motion information
and/or DCT coefficients, which both can be easily extracted from MPEG-2 coded videos.

Sukmarg et al. [44] presented an approach that works solely with DC images and AC
coefficients. The segmentation algorithm consists of four main stages, i) the initial segmen-
tation using sequential leader and adaptive k-mean clustering, ii) region merging based on
spatiotemporal similarities, iii) foreground/background classification, and iv) object detail
extraction. Object details are obtained by partial decoding of chosen MBs. Mezaris et al. [45]
use an iterative rejection scheme based on the bilinear motion model for foreground /back-
ground segmentation. Yu [46] uses a combination of MV clustering and background sub-
traction of DC images to segment moving objects.

Treetasanatavorn et al. [48] presented a statistical Bayesian estimation framework for
segmentation and tracking of moving regions from MPEG-4/Visual compressed videos. For
each motion field, the algorithm initializes a partition that is subject to comparisons and asso-
ciations with its tracking counterpart. Each tracked region is classified as a background or a
foreground object based on an approximation of the logical mass, momentum, and impulse.
Although the results on fixed-view standard test sequences like Table Tennis are promising,
the method is very complex and no indications about the performance or compatibility for

sequences with non-static cameras are given.

Another MPEG-4/Part 2 based approach that is limited to static cameras was proposed
by Babu et al. in [49, 50]. They accumulate motion vectors (MVs) over time, followed by a
K-Means clustering to determine the number of objects in the scene and the EM algorithm
for object segmentation. Since only MVs are processed, the algorithm is in principle portable
to the H.264 domain. However, the limitation to fixed view sequences imposes constraints

on possible application scenarios.

The main reason why most algorithms based on MPEG-2 and MPEG-4/ Visual cannot be
ported to the H.264 domain is the use of DC and AC coefficients, e.g. like in [44, 46, 47].
H.264 employs intra-prediction in the spatial domain, so transform coding coefficients no
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longer represent the total energy of the respective MB, but only an energy difference. Since
in H.264 the prediction is already performed in the spatial domain, all former blocks would
have to be decoded to obtain useful information, thus nullifying the computational benefit
of compressed domain processing.

Only few approaches have been published that are specific to H.264. Zeng et al. [51]
employ a block-based Markov Random Field (MRF) model to segment moving objects from
the sparse MV field that is extracted from H.264 compressed streams. Object tracking is
integrated in the uniform MRF model and exploits the object temporal consistency simulta-
neously. As a first processing step, the noisy input MVs are classified into the four distinct
classes background, foreground, edge and noise. The classification is performed via thresh-
olding of the MV magnitudes. Background MVs are for example defined as small MVs
whose magnitudes are below a predefined background threshold, making the algorithm
only applicable on fixed-view scenes. Liu et al. [52] segment the motion field into homo-
geneous regions and perform region merging with binary partition trees (BPT). Different

moving objects are represented by selective nodes that are extracted by traversing the BPT.

An interesting approach that neither uses MVs nor transform coding coefficients was
published by Poppe et al. in [53], which was extended to the multi-view case by Verstockt
et al. in [54]. Object detection is performed by analyzing the number of coded bits per
macroblock (MBs). This information can be obtained very efficiently through parsing of the
compressed stream, so no decoding steps are necessary. Based on these coded MB sizes,
a background model is created during a training period. New images are compared to this
model to yield MBs that correspond to moving objects. Subsequently, these MBs are spatially
and temporally filtered to remove noise. Finally, the size of the sixteen 4x4 sub-blocks within
one MB are evaluated to make a more fine-grained segmentation. Although the approach
is very efficient and the results promising, it suffers from the same problems as other pixel-
domain background modeling techniques in that it requires the background to be static, so
no camera motion is supported.

3.3.2 Algorithm

Our goal is the development of an efficient compressed domain object detection method that
works in various application scenarios, including indoor and outdoor scenes with static or
moving cameras. Potential camera motion has to be detected and compensated, so global
motion estimation as described in the previous section represents the first object detection
step. The building blocks of the object detection algorithm are illustrated in Fig. 3.8.

The result of the GME is the vector 6, which contains the four camera motion param-
eters pan, tilt,zoom, rot. During the GME, outlier masks in sub-MB resolution are created
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Figure 3.8: Object detection scheme

from vectors that do not follow the global motion. Outliers mainly originate from moving
objects, so they represent a first, rough segmentation of the scene in background and fore-
ground. However, outliers are also due to noise and due to MVs with random orientation
and magnitude in low-textured areas, where the block-matching algorithm of MPEG-based
video codecs delivers very noisy results that do not reflect the real scene motion.

In order to alleviate the impact of these unavoidable miss-detections and the resulting
temporal inconsistency, spatio-temporal filtering along the MV trajectories is performed. We
apply 2D+t morphological filtering, followed by a temporal median filter over a sliding tem-
poral window the size of one GOP, which is usually set to 8-16 frames for real-time critical
applications or video streaming. For temporal filtering operations, a mask buffer is created
that holds the last N MV fields, where the default value for N is the GOP size. To limit the
memory requirements, the buffer is created in the smallest sub-MB resolution, so one entry
is stored for each sub-block covering 4x4 pixels in the original image.

The filtered outlier masks give a better segmentation of the scene in static background
and moving foreground objects. Figure 3.9 and Fig. 3.10 show examples for the raw out-
lier masks of the GME module and the filtered masks that are used for object detection. A
problem that arises from the application of two-dimensional global motion model can be
observed in Fig. 3.10d. During camera operation, near foreground regions show stronger
motion than distant regions, which is why near regions may be mislabeled as foreground in
extreme cases. Spatio-temporal filtering removes most of the resulting false detections.

In the compressed domain, very small objects which are covered by only a small number
of MBs are likely to be missed. A problematic example is for instance the pedestrian in the
parkrun sequence shown in Fig. 3.10. In order to enhance the representation of small objects
and to alleviate the impact of missed object MBs, we successively construct a motion com-
pensated, so-called Motion History Image (MHI) [55] from the filtered masks. Motion history
images store the foreground motion of multiple frames in one single channel image and are
traditionally used for gesture recognition. The history image is constructed by overlaying
the filtered mask image with the global MHI. At positions where the mask image is non-
zero, the corresponding silhouette pixels in the MHI are set to the current time stamp. An
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Figure 3.9: Example of raw and filtered outlier masks. 1a-e) Screenshots. 2a-e) Raw outlier masks.
3a-e) Filtered masks and detected objects. Local object motion is represented by a vector leaving
the centroid, which is represented by a circle. Sequence street with trees and bicycle ©Warner Bros.
Advanced Media Services Inc.

exemplary MHI is shown in Fig. 3.11. After each update step, we merge the regions with
the two most recent time stamps to obtain a more solid representation of small and also of
poorly detected objects. Poorly detected objects often occur in case of low-textured or very

slowly moving objects, resulting in holes in the foreground masks.

For the time being, each connected region in the final foreground mask is considered as
one single moving object as long as it is locally separated from others. Since no color or
texture information is available, overlapping objects with merged silhouettes cannot be sep-
arated on the basis of a single frame. If the objects in question only overlap temporarily, they
can be identified by analyzing the temporal evolution of the frame-wise detection results.
More details on this issue are provided in Sec. 3.4 - Object Tracking and Trajectories.

As a final step of the detection stage, we calculate and store certain properties of all
detected objects, namely the

* frame number of occurrence
e the binary object mask together with its position

¢ the local object motion.

The local object motion is estimated similarly to global motion (see Sec. 3.2), except that
only MVs which are covered by the object mask are included in the estimation support. Fur-
thermore, we only perform one iteration, resulting in the standard least-squares estimation
of the parametric motion model. The estimated local object motion serves as the position
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Figure 3.10: Screenshots, raw and filtered outlier masks. 3a-e) detected objects. Local object
motion is represented by blue vectors. Sequence parkrun ©Sveriges Television AB (SVT)

Figure 3.11: Example of MHI of sequence street with memory length 6 for better visibility

prediction during object tracking (see Sec. 3.4). Small objects are covered by only few MBs,
so the local motion estimates are usually very noisy. In the case of spatially scalable SVC
streams, and if higher spatial layers are available, we successively extract the MVs of higher
spatial layers that are covered by the projected object mask in order to enhance the estima-
tion support and thus to improve the estimation results. Figure 3.12 shows the achieved
refinement of the estimated local motion of the pedestrian in sequence parkrun. The man
is constantly walking to the right while maintaining his speed approximately constant. Af-
ter an estimation refinement at doubled resolution, noise is significantly reduced and the
horizontal motion dX remains more stable. For comparison, the manually obtained ground
truth is shown in Fig. 3.12¢c. The local motion is greatly improved, resulting in more accu-
rately predicted positions during object tracking.
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(a) layer 480x272 (b) layer 960x544 (c) ground truth (480x272)

Figure 3.12: Local object motion of man in sequence parkrun. (a) shows the original estimation at
spatial layer 480x272, (b) the estimation refinement after adding the local MVs of layer 960x544.
(c) manually obtained ground truth

Duration | Corr. detected False

Sequence [frames] objects Missed | positives
street 270 268/270 (99%) 2 22
parkrun 100 95/100 (95%) 5 3
surveillance 118 224/236 (95%) 12 3
kung fu 180 291/303 (96%) 14 0

hall monitor 300 404 /455 (89%) 51 1
restaurant 310 288/310 (93%) 22 7
train 228 205/228 (90%) 23 2

Table 3.2: Object Detection Results

3.3.3 Results

Table 3.2 summarizes the results of the object detection stage for multiple test sequences.
Figure 3.13 shows additional screenshots and the filtered foreground masks. The method
performs well for various kinds of sequences. However, as it is solely based on the sparse
and noisy motion fields, some problems are unavoidable, most notably that far away objects
or objects that hardly move are often partially or completely missed, like for instance the
man on the left in the well-known hall monitor sequence as he stops to drop his bag, and only

his arm keeps moving for a couple of frames.

Furthermore, false detections may occur on unwanted moving objects like trees in the
wind or occasionally in static, low-textured regions, like for example in the street sequence

shown in Fig. 3.9.

Except for object detection issues caused by low-textured areas, the mentioned problems
are common to most automatic moving object detection systems even in the image domain.
The big advantage of image domain approaches is the availability of pixel-wise color in-
formation, which enables additional post-processing operations like shadow detection (e.g.,
[56]) or the incorporation of results from image segmentation algorithms (e.g., [57, 58]). The
advantage of the presented compressed domain approach however is the support for camera
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motion, no need for training to perform background construction and its simplicity, while

delivering robust results under various conditions.

kung fu surveillance restaurant hallMonitor trainTracking

Figure 3.13: Example segmentation results

Some of the imperfections of the detection stage can be recovered by analyzing the in-
dependent, frame-wise object detection results over time. Methods for object tracking and
2D+t trajectory estimation are presented in the next section.

3.4 Object Tracking and Trajectories

The tracking of moving objects opens the doors to numerous high-level analysis tasks, rang-
ing from person or vehicle counting to behavior analysis and anomaly detection. The major
target application of tracking algorithms is video surveillance. Tracking results may also be
used to assist the task of video copy detection (see Chap. 6) or to deduce information about
the scene setup, such as the orientation angle of the camera (see Chap. 5 for more details on
that topic).

3.4.1 Related Work

The detection and tracking of moving objects was extensively studied during the last decades.
The majority of presented approaches are working in the image domain and employ a va-
riety of different strategies, including extended Kalman filters (EKF) [59], Multi-Hypothesis
Tracking (MHT) [60], particle filters [61], Mean-Shift tracking [62], Hidden Markov Models
(HMMs) [63] or non-Markovian hypothesis selection [64]. Although such image domain al-
gorithms usually deliver more robust and precise results, the necessary pixel-level grayscale
and color information is not available in the compressed domain.

Similar to global motion estimation and object detection, pure compressed domain track-
ing approaches rely either on MVs, on residual information in the form of transform coding
coefficients, or both. Most of the published methods exploit the information found in MPEG-
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1/2 streams, where MVs and DCT coefficients are easily accessible. Hesseler et al. [26] per-
form the tracking initialization on decoded I-frames and use histograms of MPEG-2 MVs
to track objects. The method does not support rotating objects and changes in size. Lie
et al. [65] proposed a system that tracks single macroblocks (MBs) under consideration of
residual information. The MB trajectories are afterwards merged to obtain a moving object
segmentation. An MPEG-2 face detection and tracking system based on DCT coefficients
was presented by Fonseca et al. in [66].

Numerous other object trackers specific to MPEG-1/2 have been proposed in the liter-
ature. However, the majority cannot be employed in the H.264 domain because some ba-
sic assumptions are no longer valid. Most notably, the often used DCT coefficients (e.g.,
[67, 68, 69, 70, 71, 72, 38]) are not available in H.264 streams, because intra-coded blocks
in H.264 are transformed from spatially intra-predicted values instead of the original pixel

values, so full frame decoding would be necessary to obtain meaningful values.

Regarding our goal of unsupervised object detection and tracking, all former MPEG-
2 approaches that are purely based on motion could in principle be ported to the H.264
compressed domain, but have other shortcomings such as manual tracking initialization
(e.g., [73]), no support for camera motion (e.g., [74]) and no support for multiple, occluding
objects (e.g., [75]).

Only a few approaches specific to MPEG-4 and H.264 have been proposed in the litera-
ture. Sutter et al. [76] presented a lightweight tracking algorithm for MPEG-4/Visual. It is
based on the motion vector field and works by the frame-wise translation of a pre-selected
region of interest (ROI). No indication for the performance in the case of multiple occluding
objects is given and the system has to be initialized by the user. You et al. [77] proposed a
H.264/AVC based method that performs tracking of feature points selected by the user. The
matching of these points uses the dissimilarity energies related to texture, form, and motion.
Therefore, they partially decode the stream around the Region-of-Interest (ROI) back to pixel
level and fully decode I-frames. Mehmood et al. [78] propose a light-weight tracking algo-
rithm in the H.264 domain. Although the method can cope with camera motion, it has to be

initialized manually and only supports single object tracking.

Rath et al. proposed an MPEG-2 approach in [79] which is solely based on motion vec-
tors and aims at unsupervised segmentation and tracking of moving objects in real-time.
The initial object segmentation and detection is based on an iterative rejection scheme that
is incorporated in a global motion estimation process with iterative rejection [80]. For each
detected object, the binary object mask is considered as a model and is updated at each occur-
rence. Tracking is performed by measuring the distance between MVs covered by the mask
in two successive frames. Although the results for various test sequences are promising, the
system cannot handle multiple objects or problems such as occlusions.
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Figure 3.14: Block diagram of the motion based object tracker

GME

In the next section, our approach to unsupervised object detection and tracking in the
H.264 domain is presented. While the initial, frame-wise object segmentation step is similar
to the one in [79], we propose a richer object model and use a modified object matching

algorithm, enabling the detection and tracking of multiple, temporarily occluding objects.

3.4.2 Algorithm

The tracking algorithm is purely motion based in order to avoid full stream decoding. It
builds upon the results of GME and the object detection stage presented in the previous
sections 3.2 and 3.3, respectively. A block diagram of the object tracking processing chain is
shown in Fig. 3.14.

Output of the object detection stage are frame-wise detected object together with their
properties, namely the binary mask, the position, the mask moments up to the second order
and the local motion estimates. Additional object properties like the object size and centroid

are calculated from the mask moments to assist the matching process.

Denoting the intensity values of the binary mask image by I(x,y), the calculation of the

raw mask moments is given by

M =YY xYI(x,y). (3.12)
Xy

The object size Myy, measured as the visible surface projected onto the image plane, is
assumed to equal the number of non-zero elements covered by the binary mask. The coor-
dinates of the centroid (%, 7) are determined by
Mo Moy

or (3.13)

X = , ] —
Moo Y Moo

In the following, we explain how similar objects in adjacent frames are identified and
how the object reference point, which is taken as reference for the object’s current position,
is calculated.
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Figure 3.15: Some possible matching situations that may occur

Object Correspondence

Figure 3.15 illustrates some possible situations that may occur in two successive mask im-
ages. New objects can appear at the image borders or within the scene because they start
moving, and already present objects may disappear because they stopped moving or left the
scene. Common problems with respect to multiple objects are occlusions, which result in

merged object masks that may split up again later in time.

Since no color information is available to resolve problems like occlusions, a temporal
analysis of the object properties is carried out, which allows to draw certain general conclu-
sions about what is happening in the scene. The following set of heuristics is used. It is kept

very general, since we have no a priori knowledge of the scene or the appearing objects.

* Mask position: The mask represents the object silhouette. If it touches the image bor-
ders, a look at its local motion can tell if the object is leaving or entering the scene.

* Mask size: Assuming perfectly segmented objects, continuous and gradual changes
in size are usually caused by objects leaving or entering the scene, by changes of the
visible object surface, by occlusions with other static or moving objects, changes in
perspective, zooming, changing distance to the camera, or by a non-rigid object that
partially stops or resumes moving. Rapid and abrupt changes in the object size gener-
ally indicate split-and-merge situations.

* Local motion: The translational motion parameters pan and tilt indicate the moving
direction and predict the position in the next frame (relative to the camera position).
If the estimation support, i.e., the visible object surface, is sufficiently large, zoom may

give an indication if the object approaches or moves away from the camera.

¢ Centroid position: Rapid jumps of the objects centroid position also indicate split-and-
merge situations, while displacements that approximately correspond to the estimated

local motion are a sign for normal, undisturbed motion.
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The tracking initialization takes place when the first objects are detected at time t;. Each
object is assigned with a unique label and is kept in memory along with its properties. The
expected position (£;11,7;11)T in the subsequent frame is predicted by using the estimated,

translational local motion parameters (dx;, dy;)T.

()-()+4)
Jit1 Yi dy;
At time t;,1, the algorithm searches within a threshold radius of 7.y = 2||(dx;, dy,)T||

MBs around the predicted position for new input objects.

In case only a single object is detected, the matching process is straight forward. If a new
object is detected within the search area in the successive frame, we assign the same label
to it. Otherwise we assume the object has stopped moving, mark it as inactive and store it
together with its "last seen” position and frame number. If at a given moment, a new object
appears "out of nowhere", i.e., one that is neither entering nor leaving the scene, we search
for previously stored inactive objects in that region to reactivate them. If none is found, we

assign a new label to the appearing object.

Merging. If an object of significantly larger size is found in the search area, we check if
that new object coincides with the predicted position of another object. If this is true, the
objects masks probably merged and we assign both labels to that joint object. Otherwise
we check for inactive objects that have been lastly detected at the respective position. If no
other near objects have been detected prior to an abrupt change in size, we however copy
the same label to the new object and set a flag of uncertainty. Possible explanations include
quickly moving objects that re-appear behind occluding obstacles, quick changes in the view
perspective of non-symmetric objects, or merging with a previously static object, for instance

a pedestrian that picks up baggage or a bike.

Split situations where multiple objects emerge out of one are discussed at the end of the
next section 3.4.2.

Reference Point

At this stage, we have identified similar objects over time. Since moving objects are mostly
non-rigid and often occluded by obstacles, we look for a reference point within the object that
remains as stable as possible. We therefore chose the center of gravity. To give an example,
the waiter in the sequence shown in Fig. 3.16a moves from one table to the next, stops to
clean them and is often partially occluded. While wiping the table, the centroid of the mask

moves away from the original one, which was located around the waistline.
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(b)

Figure 3.16: (a) Exemplary deformations of the same object at different moments in time. The
red circle is the centroid of the overlaid, white object mask. (b) Final OEI of waiter. Sequence
restaurant ©Warner Bros. Advanced Media Services Inc.

In order to stabilize the reference point over time and to resolve merged masks, we pro-
pose the construction of so-called Object Energy Images (OEI). We extend the idea from mo-
tion energy images (MEIs) [81] to object silhouette construction. The goal is to create a more
stable representation and model of an object than the quickly fluctuating object mask. With
OEI, we are able to obtain a measure of inertness.

At the first occurrence of an object, we initialize the OEI with the original mask. Each time
a previously present object is detected in the current frame, we project the OEI to the position
predicted by pan and tilt. We superimpose it with the new mask image and increment the
value of the OEI at positions where mask values are non-zero. If the new mask does not

entirely fit into the projected OEI, we enlarge it accordingly.

We keep one long-term OEI as a model for each detected object and continuously update
it as long as the object is detected. The OEI represents a silhouette image of the object, where
the most rigid regions appear brighter than parts like legs or arms. As the reference point
we compute the center of gravity R, defined as the average of all OEI positions r; weighted
by their pixel value w;: .

Ti Wi
R = Y (3.15)

Since more importance is assigned to higher values, darker zones in the OEI like moving

arms have a lesser influence on the position of the reference point. Examples of OEIs are
given in Fig. 3.17 and 3.16b.

The most problematic cases regarding the objects’ reference points are merged object
masks. In this situation, as the merging is detected, we project the OFEIs of the involved ob-
jects at their predicted positions. The involved OEIs are now superposed with the merged,
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Figure 3.17: Final OElISs for different objects. Number in brackets shows the number of individual
object masks used for constructing the OEI

binary mask. Per involved object, we now re-estimate the local motion using the MVs cov-
ered by its OEI, where the normalized OEI acts as a weighting function. The weighting
accounts more importance to inert parts of the object that best represent the local object mo-
tion. As long as the merging lasts, we do not modify the OEI and shift it each frame to the
position predicted by the new local motion estimate.

If the real objects overlap in the scene, the OEIs will also overlap, which leads to false
prediction results for at least one of the objects involved, because MVs from the wrong object
are used to estimate local motion. At an OEI overlap of more than 50%, we judge which of
the objects is in the foreground by analyzing the continuity of the moving direction in terms
of degrees of all involved objects. At each time step, we sum up the angle difference between
the last and the currently estimated moving direction for each object. The object with the
smallest sum of differences is considered as foreground and for this object, we continue
to track it as described above. For background objects, we keep the previously estimated
moving direction constant to predict its new position until the OEI overlap falls again under
50%.

In the case more than two objects merge, the labels have to be re-distributed correctly
when the objects split up again. A decision has to be made which of the newly separated
objects corresponds to which original object. In the two-object case, this is handled by the de-
termination and tracking of the foreground object like described above. For more objects, we
assume that the moving direction of all involved objects is hardly affected by the occlusion
and we re-assign the labels according to the closest matches when comparing the difference
in moving direction angles before and after the split. However, this assumption may lead to

a false label switching if objects change their moving direction during the occlusion.

If the system gets initialized with merged objects that split later on, we only know af-
ter the split that the area contained multiple objects. We then reset the merged OEI and
re-initialize a new OEI for each object. Trajectory results for sequences with multiple tem-
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porarily occluding objects are given in Fig. 3.19¢-d (see next section for further explanation
of the trajectory plots).

3.4.3 Results

At this point, we can draw the trajectories in the image plane as seen by the camera. Example
results are provided in Fig. 3.18 and 3.19. The complete, global motion compensated trajec-
tory for the man in the street sequence is shown as a red curve in Fig. 3.18a. For comparison,
Figure 3.18b shows the ground truth, obtained manually by a user who was demanded to

click on the middle of the mans’ waistline in each frame.

The grey rectangles in the plots represent the viewport of the camera over time. One rect-
angle per second is drawn. The purple curves which connect the rectangle corners represent
the estimated camera translation over time. It can be observed that the camera is following
the moving object. It has to be noticed that the third dimension in this representation is time
and not space. The estimated trajectory deviates only slightly from the ground truth and
the centroid motion appears smoother in the estimated trajectories due to the stabilization

through object energy images.

The short green and blue lines in the top left corner of image 3.18a correspond to tree

branches moving in the wind.

] I %

(a) (b)

Figure 3.18: a) Estimated trajectory b) Manually obtained trajectory. The rectangles represent
the viewport of the camera over time (1 rectangle per second is drawn). The brightness of the
trajectory decreases with time. Sequence street.

Since our initial information is block-based motion, very small, unclear, or slow objects
are difficult to detect and follow. For example, the small and motion blurred toy helicopter
in sequence trainHelicopter (Fig. 3.19h, marked by a circle) is only detected notably after its
take-off of the floor, and the slowly approaching pedestrian in sequence 3.19g is not detected
at all. However, all normal sized objects are well detected and tracked, even the rather small

pedestrian in the center of sequence 3.19b.
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Up to now, the presented trajectories are in the dimension 2D+t. In the following section,
we present an extension to the pseudo 3D case by estimating the relative distance of moving
objects to the camera.

3.5 Distance Estimation

In this section, a single-view method is proposed to estimate the relative distance of moving
objects to the camera. It builds on the results of the object tracker presented in the previ-
ous section and is based uniquely on compressed domain motion information, like all other
algorithms in the proposed processing chain. We assume that moving objects have been
successfully detected and tracked throughout the scene.

Since no a priori knowledge of the camera parameters, the scene geometry or the objects
in the scene is given, the estimated positions of moving objects are always relative to the
camera and no absolute distance values can be obtained. Nevertheless, a relative distance
or depth measure can be introduced, which reflects if moving objects are approaching or

moving away from the camera.

3.5.1 Related Work

The estimation of the distance of moving objects to the camera is similar to the problem
of estimating 2D ground-plane or 3D trajectories. A large number of approaches has been
proposed, most of them being tailored to a specific application environment. The existing

work can be coarsely divided into single-view and multi-view approaches.

Multi-view algorithms for estimating the location of moving objects are most likely to
deliver robust and precise results. Occlusions probably do not affect all views to the same
extent and faulty measurements in one view may be corrected with the help of others. Tur-
olla et al. [82] presented a multi-camera system for location estimation. It borrows the Joint
Directorate of Laboratories (JDL) model from the data fusion domain in order to segment
and track multiple occluding objects by using different features such as color, position and
dynamics. Park et al. [83] use a parallel projection model which supports both zooming
and panning of the imaging devices. The proposed algorithm is based on a virtual view-
able plane for creating a relationship between an object position and a reference coordinate,
which reflects the distance between object and camera. The reference point is initially a
rough estimate which is then iteratively refined.

In monocular or single-view sequences, some kind of object distance measure has to
be introduced and estimated. Most proposed algorithms operate in the pixel domain and
are designed for specific applications in mind. Rosales et al. [84] apply extended Kalman
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Figure 3.19: Image plane trajectory estimation results for some test sequences. From left to right:

1-3) Screenshots 4) Estimated trajectory 5) Manually obtained trajectory. The drawn rectangles

represent the viewport of the camera over time (1 rectangle per second is drawn). The color of
the trajectories becomes darker over time.
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filtering to reconstruct relative 3D trajectories. Ono et al. [85] and Gil et al. [86] use defocus
information to determine the distance. Rao et al. [87] propose the object size as a depth
indicator in a system with an aircraft mounted camera. In [88], Qi et al. propose a method of
object localization based on a model of the human height. Using the relationship between the
projected position of the head of an object and the distance between object and camera, a man
height model is constructed. By this model, the two-dimensional position of an object on the
ground-plane is estimated. The approach of Pang et al. [89] also uses a priori information

about the object being observed to infer its distance from the camera.

The mentioned methods rely on pixel domain information and can thus not be ported to
the compressed domain. In contrast to other model-based 3D tracking approaches tailored
to specific types of objects [90, 91], our goal is the development of a more general approach
that can handle rigid and non-rigid objects of any kind. Although a general approach that
is based on a sparse and noisy approximation of the optical flow is very likely to deliver
only rough estimation results, it will be shown that the obtained relative distance measure

approximates the evolution of the object’s depth well.

In the following section, we propose a single-view compressed domain method to infer

the object’s relative distance to the camera. No a priori knowledge of the scene is assumed.

3.5.2 Algorithm

Since we work with single, uncalibrated cameras and compressed domain information, the
distance of the moving object to the camera can only be observed indirectly through its
position and size. Furthermore, no absolute distance values can be obtained due to the
lack of scene geometry knowledge and camera parameters. We aim at estimating a relative
distance measure that reflects if an object is approaching or moving away from the camera.
We consider the following object properties as distance indicators:

e visible object area (mask size or area A(t)),
* object width (w(t)),

* object height (h(t)).

The object area, width and height are determined with the help of the second order cen-
tral moments of the binary mask image. Using Eq. 3.12, the area A is given as Myo. In order
to account for rotating objects like turning cars in surveillance sequences, the width and
height are measured along the orientation ® of the mask image, which can be calculated by

/

2 /
0= 1arc:tan(Ll,), (3.16)
2 Hao — Ho2
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with
phy = pao/poo = Mo/ Mgy — %
Mo = o2/ poo = Moz/ Moo — 7 (3.17)

pio = pn/poo = M/ Moo — %7

The dimensions along the mask orientation and its perpendicular axis are considered as
height and width, respectively.

We assume that the relation between the visible object surface and its relative distance
d.(t) is of quadratic nature. Due to occlusions, noise, perspective distortions and non-
rigid objects, this assumption is violated in nearly all real world scenarios. Nevertheless, the
application of a very strong temporal moving average filter (window > 2 sec.) mitigates the
mentioned effects in most cases and leads to a more confident measure A(t) of the object
area. It relates to the distance as A ~ d2,. We also filter the object height and width in a
similar way, which are related linearly to d . as hf(t) ~ d,; and ws(t) ~ dy.

(a) street

Figure 3.20: Mosaics of two example test sequences

Matrix correlation plots of the considered indices are given in Fig. 3.21 for the two ex-
ample sequences street and car, depicted in Fig. 3.20. The matrix plots show the distance
indicators plotted against each other and confirm the assumed linear relationship between
the visible surface, the object width and its height. Figure 3.21a refers to the man in sequence
street and Fig. 3.21b to the vehicle in sequence car. The rigid nature of the vehicle results in
slightly cleaner plots.

The three normalized indicator vectors are stacked into the matrix
L= [A()The(t)Tws(H)T], (3.18)
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Figure 3.21: Matrix correlation plots. Numbers below are the covariance values.

which is multiplied by the weight vector w = [wwj,wy]T. The weight w; for each variable
is chosen proportional to its maximal correlation coefficient » with any of the other two

variable:
w; ~max(|r(i,j)|);i # j;i,j € {A hw}; 2 w, = 1. (3.19)
n=1.3
This way, more influence is assigned to the variables that correlate better. The weight
vectors for street and car are thus w = [0.34 0.34 0.32]T and w = [0.36 0.28 0.36]7, respec-
tively.

The final distance estimation result is then obtained by
dpe(t) =do*x1-w, (3.20)

where d is an arbitrary reference distance at fp, which was set to 100. Values smaller than dg
reflect that objects are moving away from the camera, whereas for approaching objects the

relative distance d,,; becomes greater than d.

Examples for the temporal evolution of the three distance indicator and the final depth
estimation results for sequences street and car are shown in Fig. 3.22. The lower plots show
the error in the measured variables compared to the ground truth in percent. The ground
truth has been obtained manually by measuring the object height, width and surface in the
video sequence and was further processed in the same fashion as the estimated variables.
The error on all variables is moderate with £7%. The mean error in the relative distance for
sequence car is about 1 % smaller than for sequence street, because the object is rigid and

easier to detect.
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Figure 3.22: Top row: Normalized distance indicators and final, relative distance estimation re-
sult. Bottom: Error between ground truth and extraction results.

3.5.3 Results

Unfortunately, no ground truth for the real object distance is available for our test sequences,
so the accuracy of the estimation results has to be evaluated by human judgement. Since
plots of the estimated relative distance over time alone (see Fig. 3.22) are not very demon-
strative, a more intuitive and illustrative representation is desirable. This can be achieved by
weighting the formerly obtained, global motion compensated 2D trajectories with the esti-
mated relative depth d,,;. This leads to a pseudo 3D representation of the object trajectories
in a coordinate system spanned by the image width x, the image height y and the depth
dy. These pseudo 3D trajectories for the sequences street and car are shown in Fig. 3.23.
When compared to the mosaic images shown in Fig. 3.20, it can be observed that — despite
the rough input information — the relative distance to the camera is well approximated for
both sequences. Assuming a flat surface, 2D ground plane trajectories can be obtained by

projecting the 3D trajectories on the plane spanned by x and d,,;.

The pseudo 3D trajectories for other sequences are provided in Fig. 3.24 (for screenshots
and 2D+t trajectories see Fig. 3.19). Although the overall results reflect the real motion very
well, two problems come apparent regarding Fig. 3.24e and 3.24f. Figure 3.24e shows the
pseudo 3-D trajectories of the two men in the well-known sequence hall monitor. The man
on the left enters the scene through a door in the hallway, so his surface, width and height
steadily increase until full visibility. Since his silhouette does not touch the image border, he
is not considered as an object that is newly entering the scene. The steadily increasing mask
size leads to the false conclusion that he is approaching the camera during the first frames of
appearance. A similar problem can be observed regarding Fig. 3.24f, depicting the trajectory
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(street) (car)

Figure 3.23: Trajectory with relative object distance (depth) to the camera. Colors: blue = tj, red
= tend

of the waiter in the man in restaurant sequence. At one moment he stops to wipe a table and

only his arm keeps moving, which is erroneously interpreted as distancing.

In both of the mentioned cases, a very sharp peak can be observed in the trajectories,
whereas normal motion is usually more fluid. For future work, peak detection on the 3D
trajectories can be performed to detect and correct such situations. If a specific camera view
or application scenario is given and if a sufficient amount of data is available, another way
of handling similar problems is the use of machine learning techniques to perform trajectory

or behavior classification, like for instance in [92, 93, 94].

3.6 Summary and Conclusions

We presented efficient methods to index and analyze scalable or single layer video streams
encoded by H.264/AVC or SVC. The algorithms rely entirely on compressed domain motion
data, because block-based transform coding coefficients, which are often used in the process-
ing of MPEG-2 streams, are not available in the H.264 domain due to more advanced intra-
prediction schemes. All presented methods require no training, can handle camera motion

and multiple objects, are fully unsupervised and allow computationally efficient analysis.

The first block in the proposed processing chain is the extraction of macroblock modes,
partition sizes and motion vectors. A modified version of the publicly available reference

decoder JSVM is used for stream parsing and entropy decoding.

We use the extracted motion vectors to robustly estimate the global scene motion, which
in most cases originates from camera operations like panning or tilting. This step has to be
performed if the target application is not limited to sequences with static cameras. Further-
more, the robust estimation scheme with iterative rejection delivers valuable outlier masks
as a by-product, which represent a rough segmentation of the scene in background and mov-
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Figure 3.24: Pseudo 3D trajectories for some test sequences. Depth is relative distance of the
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ing foreground objects. Due to its proven robustness, we adopted an existing global motion

estimation algorithm and modified it to handle single-layer as well as scalable H.264 streams.

Based on the outlier masks from the global motion estimation and the motion vectors
from foreground regions, we developed novel methods to detect and track moving objects
in the image plane seen by the camera. The most difficult tracking situations arise from
multiple occluding objects, resulting in merged silhouettes in the binary mask image. In a
general approach that is not trained on a specific type of object and where non-rigid objects
may appear, the masks cannot be separated by looking at a single instant in time. We propose
a temporal scene analysis and the construction of object energy images as dynamic models
to resolve merged mask situations. The image plane tracking results are illustrated by 2D+t
representations, which show the object trajectories together with the camera motion over
time for a given video sequence.

From the temporal evolution of the object silhouette dimensions, we presented a way
to infer a rough measure representing the relative distance of the object to the camera. The
estimation of a depth measure allows to construct pseudo 3D representations of the object
trajectories or via projection, the construction of 2D ground plane trajectories. Real-time
video surveillance, scene summarization and copy detection are some of the possible appli-
cations that can benefit from the presented methods. The developed approach lead to the

publication presented in [95].

The methods that have been presented in the first part of this work represent a set of
general tools that can be employed in different application scenarios. Part II of this work
focuses on how different types of applications can benefit from compressed domain pro-
cessing. Video surveillance represents a major market for computer vision systems. Chap-
ter 4 presents a framework that shows how the benefits of image domain processing can
be combined with the efficiency of compressed domain methods in the context of a traffic
surveillance application. In Chap. 5, a novel compressed domain method to roughly esti-
mate the camera orientation through object motion in single view sequences is presented.
Chapter 6 presents a critical evaluation of compressed domain features in a video copy de-

tection framework.

Although the presented algorithms proved to deliver robust results for a variety of videos,
different problems still need to be solved. Like also in this work, the segmentation of the
scene in background and foreground objects is carried out via global motion estimation
in most systems that face sequences with potential camera motion. As already stated in
Sec. 3.2.4, global motion estimation fails under certain circumstances due to the noisy nature
of MPEG motion vector fields. This affects the whole processing chain that builds upon on
robust global motion estimates. In Chap. 7, we present an approach to mitigate these effects
by performing joint indexing and coding on the encoder side in order to improve the quality

of the motion vector field in terms of compressed domain analysis.
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3.6. SUMMARY AND CONCLUSIONS

We end the first part of this thesis with a concluding remark. The trade-off between
the computational efficiency of compressed domain approaches and the precision of pixel
domain processing has to be evaluated during the design of a vision system. If multiple
video streams are to be analyzed in parallel and real-time capabilities are a must, compressed

domain processing offers great possibilities.

In the upcoming chapters, we demonstrate the capabilities of compressed domain pro-
cessing in the context of different application scenarios, e.g., video copy detection and traffic
surveillance. The limitations of pure compressed domain approaches are pointed out and
we show how results can be improved by combining both image and compressed domain

processing in an efficient way.
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Introduction

While a more general introduction to compressed domain analysis was provided in Part I,
the second part of this work — Applications — focuses on possible real-world applications of
the compressed domain tools that have been presented in Chap. 3. The goal is to demon-
strate by example how different types of applications can benefit from the proposed meth-
ods and from compressed domain processing in general. Depending on the target applica-
tion, we present additional techniques that are tailored to specific domains. Furthermore,
the limitations of pure compressed domain analysis are pointed out and combinations with
traditional image domain analysis are proposed where otherwise no satisfying results are

obtained.

Video surveillance is arguably the most important and obvious application of computer
vision algorithms. The enormous amount of visual information that is generated by the
thousands of installed surveillance cameras can not be handled by human observation alone.
If real-time analysis and on-time alert triggering in case of anomalies is envisaged, a success-
ful surveillance system heavily depends on the presence of robust and semi- or completely
unsupervised detection methods. In Chap. 4, we present an approach that combines the ad-
vantages of image domain and compressed domain analysis in the context of traffic surveil-
lance on highways.

In Part I — Sec. 3.5 we described a purely compressed domain method to estimate the
relative distance of moving objects from the camera. Building on top of these results, we
present an approach to roughly classify the camera orientation angle in Chap. 5. As demon-
strated by Hoiem in [96] and [97], scene understanding and object detection/recognition
results can be improved by taking information about the camera orientation into account.

The detection of copies in video data bases and archives is another interesting application
that is suitable for compressed domain analysis. When dealing with large data sets, efficient
feature extraction algorithms and fast queries are a must. Since most video archives are
closed or at least centrally controlled systems, usually all of the videos are encoded by the
same codec and in the same manner. This permits to deploy efficient compressed domain
indexing or retrieval solutions that are tailored to the specific coding standard in use. In
Chap. 6, a video copy detection system for H.264 coded video data bases is presented.
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As stated before, the object segmentation and detection on H.264 coded video is solely
based on the sparse and noisy motion vector fields of predictive pictures. Although this
approach allows for efficient processing and delivers good results in a variety of scenar-
ios, it fails under certain conditions because of arbitrary motion fields that occur due to
low-textured areas or non-static background. In Chap. 7 we present an approach to partly
overcome this problem by correcting the motion vector fields on the encoder-side.
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Chapter 4

Traffic surveillance

Video surveillance in public places and on highways is becoming increasingly more popular
and important. In the London area alone, several thousand surveillance cameras have been
installed over the years. The huge number of deployed cameras necessitates robust, efficient
and automated video analysis algorithms, since the enormous amount of generated data can

not be handled by human observers alone.

Along with this flood of IP-based surveillance cameras, another issue that arises is the
network performance. Video streams with acceptable quality, resolution and frame rate can
easily occupy a considerable amount of bandwidth. The ongoing development and deploy-
ment of high resolution cameras requires the use of efficient source coding. A video codec
that is suitable in such scenarios is Scalable Video Coding (SVC) [2], the scalable extension to
H.264/AVC, which received final approval in 2007. The first commercial security cameras
and systems that support H.264/SVC are already available by vendors like Aventura Tech-
nologies! or General Electric’s intelligent video platform VisioWave?. For more details on
SVC and H.264 in general, the reader is referred to Sec. 2.3.2 et seq.

Since traffic surveillance scenes can get very crowded at peak times, compressed domain
analysis that relies only on motion vectors, like presented in Chap. 3, will deliver poor re-
sults with respect to object detection and tracking. In scenes with heavy traffic, considering
motion only is often not sufficient because of the likelihood of overlapping object masks.
Although image domain analysis suffers from similar problems, the obtained object masks
are more precise and can be further refined by techniques like shadow suppression. Addi-
tionally, methods that consider local feature points can be employed to increase robustness.
However, the computational complexity of robust image domain algorithms often not al-

lows for real-time processing.

lnttp://www.aventuratechnologies.com/
2http ://www.gesecurity.com/
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CHAPTER 4. TRAFFIC SURVEILLANCE

In order to enable fast and efficient analysis, we propose a method that combines the
advantages of both types of analysis. In order to minimize stream decoding time, we only
decode I-frames to perform image domain object detection and feature point extraction. Be-
tween two I-frames, we solely rely on B- and P-frame motion information in the form of
macroblock (MB) based motion vectors (MVs) to detect and track objects. The approach
can be regarded as a combination of tracking-by-detection using local feature points, and
recursive tracking based on the motion field.

In order to assist object detection and tracking, we initialize the system by a short, two-
stage training period. We start by fully decoding I-frames during a training period and
estimate the scene background using a mixture of Gaussians (Sec. 4.4). The B- and P-frame
MVs during this training time are used to construct maps that represent the dominant mov-
ing direction per MB (Sec. 4.5). This information is later used to assist the object detection
(Sec. 4.7) and tracking algorithms, which combine local, scale-invariant feature points with
compressed domain object matching (Sec. 4.8). The results of automatic vehicle counting

and trajectory estimation are provided in Sec. 4.9.

4.1 Related Work

A large number of compressed domain object detection and tracking approaches can be
found in the literature. Some publications specific to the MPEG-2 coded videos include [49,
50, 45, 46]. Babu et al. [49, 50] proposed an accumulation of motion vectors over time, fol-
lowed by K-Means clustering to determine the number of objects in the scene and subse-
quently using the EM algorithm for object segmentation. Mezaris et al. [45] use an iterative
rejection scheme based on the bilinear motion model for foreground /background segmenta-
tion. Yu [46] uses a combination of MV clustering and background subtraction of DC images
to segment moving objects. Sutter et al. [76] presented a lightweight tracking algorithm for
MPEG-4/FGS, but no indication for the performance in the case of multiple occluding ob-
jects is given. Furthermore, the presented system has to be initialized by the user.

A few approaches specific to H.264 have been proposed. Zeng et al. [51] employ a block-
based Markov Random Field (MRF) model to segment moving objects from the sparse MV
field. You et al. [77] perform tracking of feature points the must be selected by the user. The
matching of these points uses the dissimilarity energies related to texture, form, and motion.
Therefore, they partially decode the stream around the Region-of-Interest (ROI) back to pixel

level and fully decode I-frames.

Concerning our goal of unsupervised, compressed domain scene analysis, shortcomings
of existing approaches include manual tracking initialization (e.g., [78, 73, 72]), no support
for camera motion (e.g., [74, 72]) and no support for multiple, occluding objects (e.g., [51,
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4.2. OVERVIEW

77,78,72,75]). In the context of road traffic analysis, manual tracking initialization for each
passing vehicle is not feasible and the support for multiple, potentially occluding objects
is a must. The fact that all existing pure compressed domain approaches only support one
or very few moving objects at the same time provides further evidence that compressed
domain information alone is not sufficiently rich to perform object detection and tracking in
very crowded scenes, which is typically the case in road traffic applications. We therefore
combine image domain with compressed domain data to enhance the results at a moderate

increase in the computational complexity.

You et al. [98] proposed an approach to pedestrian tracking in H.264 streams, combining
partially decoded I-frames with compressed domain information. They apply probabilistic,
spatio-temporal MB filtering and partial stream decoding to detect and track multiple ob-
jects in real time in sequences with stationary background. Occlusions are handled in the
image domain by constructing hue color histograms on the partially decoded I-frames. In
H.264, actual partial decoding of arbitrary regions is not possible due to spatial prediction
and differential coding mechanisms. The authors propose to a replace the MBs around de-
tected objects with a pre-estimated background image of the scene. However, this approach
limits the method to indoor scenes with stable backgrounds, static cameras and without

illumination changes or occluding objects.

4.2 Overview

An overview of the proposed system is given in Fig. 4.1. The first stage is unsupervised
training, which happens simultaneously in the image domain on decoded I-frames to esti-
mate the scene background (see Sec. 4.4) and in the compressed domain to segment the scene
into regions with similar motion (see Sec. 4.5). Information from both processing domains is
later combined during the object detection and tracking stage.

Before we explain our method in more detail, some information about the analyzed real-
word test sequences is provided. They have been shot on a highway in the Bordeaux area
under normal daytime conditions. The author would like to thank Adacis Sarl® for the pro-

vision of the sequences.

4.3 Test sequences

The test sequences used were shot at frame rates ranging from 15 to 25 fps and have been
encoded with the SVC reference implementation JSVM, available at [19]. Two spatial lay-

3http ://www.adacis.net/
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Figure 4.1: System Overview

ers (360x288, 720x576) have been coded under the Scalable Baseline profile with hierarchical
B-picture prediction for temporal scalability. The Group-of-Picture (GOP) size is typically

chosen sufficiently small for surveillance applications in order to add detection robustness

for crowded scenes and was set to 8, resulting in the periodic pattern IBBBBBBB. The com-

pressed domain analysis described below is based on the MVs present in the stream. Only

the entropy coding of SVC has to be reversed in order to access the displacement values in

quarter-pel precision per MB. An example of SVC MVs and MBs for a traffic scene is shown

in Fig. 4.2. Each MB has a base size of 16x16 pixels and is sub-divided into smaller regions

of minimal 4x4 pixels. Small MB partitions usually occur in high-textured areas in motion in

order to increase coding efficiency:.
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Figure 4.2: SVC MBs and MVs in a traffic scene. Outlier blocks of the GME are marked in red.
The color of a MV corresponds to its angle (see Fig. 4.4).
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4.4. TRAINING STAGE I - BACKGROUND ESTIMATION

For the construction of the scene background and pixel domain object detection, all I-
frames, i.e., each 8th frame in this case, are fully decoded. MPEG-2 based approaches often
make use of low-resolution DC images to avoid full decoding, but this is not applicable to

H.264 because of the spatial prediction dependency on neighboring blocks [2].

4.4 Training Stage I - Background estimation

In the first training stage we estimate the background image of the scene. To do so, we apply
the Gaussian Mixture Model (GMM) algorithm based on [39, 99]. It consists of a weighted
sum of k Gaussian densities, which allows the color distribution of a given pixel to be
multi-modal. Modeling the history of pixel values by several normal distributions helps
the method to be more robust against local illumination changes and occlusions. Typically,
k = 3 or k = 5 distributions are used, and the parameters of the mixture (weight w, mean
i, and covariance ¥.) are updated dynamically over time. The probability P denotes the
probability of occurrence of a color u at the current pixel s at time t and is given as

k
P(Is,t = M) = Z(wi,s,t *N(Is,tr Hists Z‘i,s,t))- (4~1)

i=1

N (L, pist Xist) is the ith Gaussian model and w; 4 ; its weight. The covariance matrix

%5, is assumed to be diagonal with o7 , as its diagonal elements.

For each pixel, the first step consists of determining the closest corresponding Gaussian,
i.e., the Gaussian for which the intensity of the pixel is within T, deviations of its mean. The
parameters of the matched component are then updated by

Wisy = (1—a)wiss 1+«
pist = (L—p)pisi—1+pL (4.2)
0r; = (1=p) 07140 (It — Hist),

with « being a user-defined learning rate, with p being defined as
p =N (List pist Zisy)- (4.3)
The weight of unmatched components is updated with
Wist = (1—a)wigy (4.4)
and ;s and az%s,t remain unchanged.
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If no component matches, a new Gaussian with mean I, a large initial variance ¢p and
a small initial weight wy is created to replace the existing Gaussian with the lower weight.
Once each Gaussian is updated, weights are normalized and distributions are ordered based
on the value w;;/0; ;. Only the B most reliable distributions are chosen, where

k
B = argmkin Y (Wi < Thg)- (4.5)
i=1

Pixels which are more than T, standard deviations away from any of the B distributions
are labelled as foreground. Since the constructed background will be used to assist object
detection and tracking, it is crucial to update it regularly to adapt to changing weather con-
ditions. Once the initial background estimation is completed we continue updating it each
incoming I-frame.

(a) Snapshot (b) Estimated background
Figure 4.3: Example for I-frame based background estimation of a traffic scene

An example snapshot from a test sequence together with its estimated background image
is shown in Fig. 4.3. The method achieves very good results for the surveillance videos that

we analyzed within this work. Further examples are shown in the appendix in Fig. 4.11.

4.5 Training Stage II - Motion Map Construction

The second learning stage takes place at the same time as the background image construc-
tion, with the difference that only B- and P-frames between I-frames are used. The goal is
to segment the scene into regions of similar motion with respect to the moving direction. In

the following, we refer to this segmented image as the motion map.

We accumulate B-frame MVs in order to obtain a MB based estimate of the dominant
motion direction. The angles of all non-zero MVs are calculated and stacked in the 3-
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4.5. TRAINING STAGE II - MOTION MAP CONSTRUCTION

dimensional tensor M of size [wxhxT], where w and h are the image width and height
in minimal sub-MB resolution (4x4 pixels/block) and T is the duration of the learning stage
in frames. The learning duration T depends on the video sequence and varies for different
cameras and times of the day. The busier the scene, the shorter T. We dynamically stop

when both of the following conditions are met:

¢ Atleast pprv non-zero MVs have been stored in M.

¢ Atleast p; I-frames have been accumulated for background construction (see Sec. 4.4).

The average value for T in the analyzed test sequences was approximately 10 seconds.
M now contains the motion history of each MB during the learning stage. For each MB at
position (x,y), the principal angle of motion ap is determined by the temporal median
of all MV occurrences at the respective position. In order to visualize the map of median
angles, we use a 12-bin angle color chart, shown in Fig. 4.4. Each angle in the final motion
map is represented by its associated color. The resulting image visualizes the principal angle
of motion of every block. Figure 4.5b shows an example for such a motion direction map.
The different road lanes with similar direction of each scene become visible and are clearly
separated by their color, i.e., by the dominant motion angle. Among other things, we use
these motion maps later on in order to split merged object masks that span over two regions
with opposing directions (see Sec. 4.7).

¥ 60°-90°

H 30°-60°

H0°-30°

M 330°-360°

H300°-330°

¥ 270°-300°

H240°-270°
210°-240°
180°-210°

¥150°-180°
120°-150°
90°-120°

Figure 4.4: Angle color chart

Furthermore, gray-scale motion density maps of the scene are constructed by counting
the number of non-zero MVs at all MB positions. At each MB position, we increment the
gray value with each occurring MV and finally normalize by the duration of the learning
stage T. An example of a resulting density map is shown in Fig. 4.11c. It can be observed
that fast lanes are usually less occupied than others. Looking at the area beyond the horizon
line, one can notice that the motion density becomes approximately zero and the motion
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direction map shows no angle. In the context of scene geometry analysis, this observation
will be used in Chap. 5 of this work to infer the position of the horizon line.

(a) Screenhot (b) Motion direction map (c) Motion density map
Figure 4.5: Example for motion direction and motion density map. The colors in (b) correspond
to dominant motion angles (see angle chart in Fig. 4.4). Test sequence segb

Further examples for backgrounds, motion direction and density maps are provided in
Fig. 4.11 in Appendix A. We obtain good segmentation results for all test sequences and the
estimated angle of motion per region is well approximated. Problematic are border mac-
roblocks, because their motion vectors show random orientation due to newly appearing or
disappearing objects. This problem can avoided by cropping one MB at all image borders.

4.6 Camera Motion Support

Although the majority of traffic surveillance cameras are static and show a fixed view, the
deployment of Pan-Tilt-Zoom (PTZ) cameras is steadily increasing. These types of cameras
are either manually controlled by operators or they follow pre-programmed, periodically
repeating motion patterns to monitor multiple viewing directions alternately, e.g., at road

intersections.

Due to background subtraction on I-frames, the proposed object tracking system neces-
sitates a fixed view. However, the system automatically detects view changes by estimating
the global camera motion for each B- or P-frame in the background. The motion vector field
serves as input to the estimation process. In case of bi-directionally predicted MBs which
have multiple MVs that point to different references frame in the future and in the past, we
inverse the MV referencing a past frame and use the average of both vectors in order to
attenuate noise. In order to obtain uniform results, we scale all MVs by the distance to its
respective reference picture. We estimate the 2D 6-parameter affine motion model by the

compressed domain method presented in Sec. 3.2.

The computation time for global motion estimation (GME) increases exponentially with
the size of the estimation support, which grows proportionally to the video resolution. Ex-
periments showed that robust results can be obtained at video resolutions equal or higher
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4.6. CAMERA MOTION SUPPORT

than approximately CIF, so we only process the spatial base layer at 360x288 to save pro-
cessing time. On a standard desktop PC with 2.16 GHz and 1 GB of RAM, we achieve a
GME performance of about 95 fps. Figure 4.6 shows the estimation results for a surveillance
camera that switches between two pre-defined, periodically repeating orientations, which
are very well detected. The estimated global motion in static camera phases is close to zero,

which indicates that the system robustly rejects MVs on moving vehicles as outliers.
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Figure 4.6: Estimated camera motion on traffic surveillance SVC stream. The peaks indicate rapid

viewpoint changes of a PTZ camera

If the estimated displacement exceeds a pre-defined threshold of 2 pixels per frame for
more than 5 successive frames, the system is re-initialized and the algorithm restarts with a
new learning stage. At the given resolution, experiments showed that the estimated camera
motion is mostly due to noise and wind below this threshold, which has to be scaled propor-
tionally as function of the video resolution. In case of periodically repeating camera motion
patterns, the GME results are used to detect view changes and detection and tracking can be

restarted without repeated training.

An important by-product of the GME are outlier masks of all MBs that do not follow
the global motion. Although the majority of outliers are caused by moving objects, noise is
introduced due to low-textured areas and effects like shadows. Spatio-temporal filtering is
applied to alleviate the impact of these effects. Figure 4.7 shows an example of an outlier
mask at macro-block resolution after GME, where two common problems can be observed:
Moving cast shadows are included in the masks and distant objects that appear small and

hardly moving are missed.
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Figure 4.7: Compressed domain outlier masks after GME. Bright regions represent foreground
masks.

4.7 Object detection

Once the training stage is complete, we start the object detection and tracking algorithm.
Foreground /background segmentation in the compressed domain is performed via the GME
module on B- and P-frames, like briefly explained at the end of the previous section and in
more detail in Sec. 3.2 of Part I.

Due to high vehicles like trucks and long cast shadows that are included in the object
mask, the silhouettes of vehicles driving on opposing lanes may be merged. To overcome
this problem, we split all foreground masks at positions where the motion map is either
zero or where regions are touching whose dominant motion varies by more than 80°, i.e., on
borders between opposing lanes. On the resulting, filtered foreground masks (see Fig. 4.7),
blob extraction is performed using the algorithm proposed by Chang in [100], which traces
contours and labels connected componenents in a single pass.

Object detection in the pixel domain — performed on decoded I-frames — consists of the

following processing steps:

1. Background subtraction with continuously updated background
2. Suppression of noise in static regions

3. Suppression of moving cast shadows

4. Spatial filtering

5. Object/Blob detection.

The result of background subtraction is usually a rough foreground mask that includes
moving cast shadows and noise in non-relevant areas of the image, so further post-processing
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4.7. OBJECT DETECTION

steps are necessary. In order to remove background (BG) noise in irrelevant parts of the im-
age, we delete foreground (FG) pixels where the motion map and the motion density map
are both zero (see Sec. 4.5, and Fig. 4.11 for examples).

In the next step, moving shadows are detected and suppressed. This is especially im-
portant when the sun is low, since the cast shadows of high vehicles like trucks may span
multiple lanes (see Fig. 4.8). Moving shadows are most of the time detected as foreground in
the pixel domain as well as in the compressed domain. The basic idea of shadow detection is
to estimate how a cast shadow influences the value of background pixels. Many works have
been published on this topic, including [101, 102, 103, 104, 105]. We apply a non-parametric
detector based on the approach proposed by Horprasert et al. in [103], where measures
for the brightness and color distortion in case of drop shadows are used to classify shadow

pixels with respect to the background model.

Let
I = [Ir(i), Ic(i), Ig(i)] (4.6)

denote the RGB color value of pixel i and
E; = [Er(i), Ec(i), E(i)] (4.7)

the expected color in the background image. The brightness distortion «; reflects the bright-
ness of the current pixel in comparison to its expected value and is obtained by minimizing
the function

K = argmain(ll- — w;E;). 4.8)

The scalar value a; equals 1 if the brightness of the given pixel is the same as in the
background image, takes values less than 1 if it is darker, and greater than 1 if it is brighter
than the expected value. The color distortion CD; is defined as the orthogonal distance
between the observed color and the expected chromaticity line, defined as the line which
passes through the origin and the point E; in the RGB color space:

CD; = [|I; — a;Eil| (4.9)

A pixel is considered to be shadow if it has similar chromaticity but lower brightness
than the expected value of the background pixel, expressed as

T<w <1, (4.10)

where T is a user-defined threshold which we set to 0.45. For a detailed explanation of the
algorithm, the reader is referred to [103]. An example of the shadow detection result is
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CHAPTER 4. TRAFFIC SURVEILLANCE

shown in Fig. 4.8. It can be noticed that cast shadows are well captured, however a over-

detection occurs, most notably on reflecting windshields.

Figure 4.8: Shadow detection result. Shadow pixels are marked in red

The detected shadows are subtracted from the foreground mask, which is morpholog-
ically filtered afterwards in order to obtain the final foreground mask image, as shown in
Fig. 4.9a.

(a) (b)
Figure 4.9: (a) I-frame foreground mask after processing. Bright regions represent foreground
mask. (b) Detected blobs. Each blob is shown in different color.

To extract and label connected components in the foreground mask image, we use the
same blob extraction algorithm that was applied on the compressed domain foreground
masks [100]. The detected blobs for the example sequence are shown in Fig. 4.9b, where
different colors represent different objects. All detected objects having a minimal size are
kept and used to initialize the tracking algorithm.
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4.8 Object tracking

The proposed object tracking mechanism combines I-frame based detection with motion
based results. Detection on I-frames is considered to be more reliable than in the compressed
domain, because it can cope with shadows and static objects to a certain extent. However, it
tends to over-detect, so objects are sometimes split and more blobs than real objects are de-
tected. On the other hand, compressed domain analysis often suffers from under-detection,
i.e,, multiple objects are merged in one blob and small objects are missed. This occurs be-
cause shadows are usually detected as moving objects and because MVs are only available
at MB level, so at a significantly reduced resolution.

Object tracking is performed on a GOP basis, including one I-frame and seven B-frames
in our case. A validation of the GOP tracking is performed with the help of the I-frame of the
subsequent GOP. The tracker is initialized with objects that have been detected in the first
I-frame after training is complete. Within the bounding boxes of all objects, Scale Invariant
Feature Transform (SIFT) [106] descriptors are calculated. SIFT has been chosen because of
its proven robustness in respect to viewpoint and illumination changes. In a comparative
study published in [107], SIFT outperforms other local descriptors. However, feature calcu-
lation and matching are very computation intensive. The computational overhead is greatly

reduced by calculating features only on detected I-frame foreground regions.

After feature computation, all I-frame objects are labelled and their masks are projected
onto the following B-frame foreground mask. Labels from superposing regions are copied
and the intra-GOP tracking process repeats the following steps for each B-frame B;:

¢ Estimate local motion per detected object
* Project masks to predicted positions (by local motion) in the following frame By 4

* Match overlaying regions and copy labels

If multiple I-frame objects overlay with a B-frame object mask, all labels are copied to it.
If a compressed domain object appears throughout the GOP where no pixel domain object
has been detected before, a new label is assigned. The local object motion which is used to
predict the position in successive frames is estimated similarly to global camera motion (see
Sec. 4.6), except that only the MVs covered by the mask are considered as active estimation
support.

At the end of each GOP cycle, object label validation is performed by matching SIFT
points between the objects of the two subsequent I-frames. Although SIFT is typically robust,
some miss-matches cannot be avoided. We apply certain additional constraints to validate

or reject matching feature points:
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* Matches of features that lie on the borders of object bounding boxes are rejected

¢ Matches between two points that lie in regions of the motion direction map with op-

posing angles are rejected (see Sec. 4.5 and motion maps in Fig. 4.11)

* Matched feature points that are too far away from their position predicted by local

motion are rejected

An example for accepted and rejected SIFT matches between two I-frames are shown in
Fig. 4.10. The majority of false matches is eliminated by imposing the constraints mentioned
above. Object masks that are touching the image borders are marked as entering or leaving
the scene under consideration of local motion estimates. In case multiple vehicles had been
initialized as one single object, as is often the case for far away objects that are close together,
we only know after the splitting that it contained multiple objects and assign new labels as
the split is detected.

4.9 Results

For relatively simple scenes with only few objects and little or only short occlusions, object
detection in the compressed domain alone leads to satisfying results. In crowded scenes
however, the additional use of pixel information is important in order to eliminate mov-
ing shadows or to separate partially occluding objects, which is typically the case in traffic

surveillance videos.

Table 4.1 shows the results for unsupervised vehicle counting on the test sequences
shown in Fig. 4.11, obtained by compressed domain only analysis without training [43] and
by combining compressed and pixel domain information. The ground truth was obtained
manually and the videos have an average duration of about 30 seconds. Each moving object
that entirely left or entered the image on the bottom, left or right image border within the

analyzed period has been counted.

The under-detection of the compressed domain only approach is mostly due to occlu-
sions of multiple vehicles that are close together, resulting in merged object masks. This can
be corrected to a certain extent by also taking pixel domain information of decoded I-frames
into account (see Sec.4.8). However, multiple distant objects that are close to each other are
very difficult to separate in either the image or the compressed domain. Due to better res-
olution and shadow suppression, image domain analysis allows to detect multiple objects
earlier.

In the bottom rows of Fig. 4.11, the estimated trajectory results in the compressed do-

main domain alone and from the combined approach presented above are shown. The most
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Figure 4.10: SIFT matches between I-frame objects. Accepted matches are shown as yellow lines,

blue and green ones have been rejected.

Ground truth, Compressed | Proposed
number of vehicles | domain only | approach
Seq 1 52 33 (—19) 47 (=3)
Seq 2 29 22 (=7) 27 (=2)
Seq 3 25 22 (=3) 26 (+1)
Seq 5 17 16 (—1) 17 (0)

Table 4.1: Vehicle counting results. Number in brackets denotes difference from ground truth
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obvious difference can be observed when looking at the results for Sequence 1. The scene
is very crowded and many objects are merged in compressed domain foreground masks,
sometimes even affecting objects on opposing lanes. Sequence 5 suffers from similar prob-
lems because of the street being a turning and the cast shadows of trucks spanning multiple

lanes. Through SIFT object validation after each GOP, the results could be greatly improved.

410 Summary and Conclusions

Traffic surveillance systems often employ a large number of cameras, hence the scalability
of the whole system is an important design issue. We presented an efficient traffic analysis
system that combines the precision of pixel domain analysis with the computational benefits
of compressed domain analysis. The proposed approach lead to the publication proposed
in [108]. The main contribution of this work lies in the combination of compressed domain
and image domain analysis with a novel, unsupervised training stage in the compressed

domain.

H.264/SVC is a suitable coding standard for surveillance networks due to its high coding
efficiency and its scalability features on stream level. Within the scope of this work, the
motion information that is present in SVC streams is exploited in different ways to enhance

the overall system performance:

* Motion direction and density maps are constructed to increase the robustness of the

detection and tracking algorithms
* Global motion estimation is performed to detect view changes in case of PTZ cameras
* Moving objects are detected on the basis of block-based motion vectors

* Object positions are predicted by their local motion estimates

The shortcomings of pure compressed domain analysis of crowded scenes have been
pointed out. This lead to the proposition of a validation mechanism of the tracking results
by using robust, local SIFT feature points on decoded I-frames. By limiting the feature point
calculation to detected foreground regions, the increase in computational complexity is mod-
erate. Experiments showed that the feature computation and matching process can be accel-
erated by factor of 5 to 7 at similar performance when replacing SIFT with Speeded Up Robust
Features (SURF) [109].

The robustness of the proposed method was demonstrated by results for automatic ve-
hicle counting and trajectory estimation in real-world test sequences. However, other ap-
plications and extensions of the proposed methods can be easily realized to perform further
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(a) Sequence 1 (b) Sequence 2 (c) Sequence 3 (d) Sequence 5
Figure 4.11: Rows from top to bottom: 1st: Screenshots © DIRCE/DIRA. 2nd: Backgrounds. 3rd:
Motion density maps. 4th: Motion direction maps (for color correspondance see Fig. 4.4). 5th:
Raw, unprocessed trajectories without prior training. 6th: Trajectories of proposed system.
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analysis tasks. An example is the triggering of alarms when a motorist is driving against
the traffic on highways. Without the need for object tracking, this can be very efficiently
implemented by comparing the observed MVs with the dominant direction in the motion
map.

Future work includes to account for approximated scene geometry information (see
Chap. 5) to improve object detection and tracking results, as well as the incorporation of
the object distance estimation scheme presented in Sec. 3.5. Further ideas also include the
refinement of motion direction maps by replacing the block-based median values by circular
von Mises* distributions, and the detection of lane separations through clustering or seg-
mentation of the refined motion maps and trajectories. The presented system is also able to
provide input for higher level analysis like behavior classification and the detection of un-
usual events, like demonstrated by Sas et al. [110], Wang et al. [111], Morris et al. [112], or
Ivanov et al. [113].

4The equivalent in circular statistics of the Gaussian or normal distribution.
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Chapter 5

Scene Understanding

Numerous computer vision tasks like object detection, tracking, scene segmentation and
behavior analysis can benefit from information about the scene and its basic geometry. Per-
spective projection obscures the relationships that are present in the actual scene — an object
that is nearby will appear much bigger than one that is far away, even when both are the
same size in reality. Perspective plays an important role not only because it affects the size of
the object’s projection on the image plane, but also for the estimation of its speed for exam-
ple. Approximate knowledge of the 3D scene geometry can provide very useful information

during analysis tasks.

Another aspect that plays an increasingly important role in computer vision is the consid-
eration of context. Although sophisticated object detectors, classificators and scene segmen-
tation schemes are already available, such tasks still remain challenging research problems.
Information about the context can deliver very useful information to enhance detection re-
sults. If for instance a small foreground object is detected and tracked within a region con-
sidered as sky, it is far more probable that it represents a bird, plane or helicopter than when

it is detected on a region assumed to be road, even if their silhouette or color appear similar.

The work that is presented in this chapter is inspired by the excellent publications pre-
sented by Hoiem et al. [96, 97]. The authors propose a unified approach for modeling the
contextual symbiosis between the three crucial elements that are required for scene under-

standing:

1. Object detectors
2. Approximate camera position and orientation

3. Rough 3D scene geometry

Although Hoiem’s work is based on the analysis of still images, the findings are equally

true for video. Unfortunately, information about the scene is usually not available a priori.
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Our goal is the estimation of the rough scene geometry and setup based on moving objects,

which are extracted from monocular sequences in the H.264 compressed domain.

Concerning the three required elements for scene understanding mentioned above, the
first — low-level object detectors — was already covered in Chap. 3 of this work. Based on
the compressed domain tools and results presented previously, we propose a method to
approximate the orientation angle of the camera in Sec. 5.2. For the special case of traffic
surveillance scenes, we present an approach to roughly estimate the basic scene geometry
by approximating the position of the horizon line in Sec. 5.3.1, followed by a method to
segment the road surface in Sec. 5.3.3. Results are provided within the respective sections

for better clarity.

5.1 Related work

The estimation of geometrical properties like the position of the road, the orientation of the
camera pose or the distance of moving objects can be approached in a variety of different
ways. The largest family of methods is based on multi-view sequences or stereo vision [114,
115]. Except from specialized applications like robot vision or dense surveillance networks,
the majority of real-world scenarios consists of single-view setups. The family of algorithms
based on monocular sequences is grouped under the keyword Structure-from-Motion (StM),
where ego-motion and changes in perspective are used to infer the 3D structure of the scene
or of moving objects [116, 117].

The existing methods are based on the rich information provided on pixel level for the
sake of precision. However, as demonstrated in [97], approximate results can deliver suf-
ficient information for certain tasks like object classification. The use of image domain in-
formation enables numerous analysis tasks like the pixel-wise recovery of depth maps (e.g.,
[118]) or the estimation of the 3D structure of an object given a series of input images taken
from different angles [119]. Most methods rely on multiple cameras (multi-view) or a series
of images taken from different perspectives (5fM). A review of these methods would go be-
yond the scope of this work and the interested reader is referred to the literature for further

information on the well-developed field of SfM and multi-view geometry [114, 117, 115].

Only very few compressed domain attempts have been published on this or similar top-
ics. Mbonye [120] uses MPEG-2 compressed domain data to adjust the camera pose by at-

tentive visual servoing tailored to a road traffic application with car mounted cameras.

In this work, we go one step further and exploit single-view compressed domain analysis
results to infer the orientation angle of the camera without a priori knowledge of the scene
setup. For the special case of traffic surveillance, we propose simple methods to determine
the position of the horizon line and to perform road segmentation. Estimates of the horizon
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line and the camera orientation allow us to project imaginary equidistant lines from the
ground plane onto image plane, hence adding depth information to the sequence.

5.2 Camera Orientation Estimation

We estimate the camera orientation angle by analyzing the evolution of the object’s ground
contact position. The vertical position of an object in the image plane usually changes as a
function of its distance to the camera. The way it changes with varying distance depends
mainly on the angle of the camera itself and on the geometry of the surface the object is
moving on. For the sake of simplicity, we assume that the surface is flat in the following.
If no lens distortion is present, the relationship between the object’s distance z to the cam-
era (modeled as pinhole) and the vertical bottom position on the image sensor ys can be

expressed as

Ys = g + fx tan(tan’l( ) — Xcam), (5.1)

heam
where d is the vertical dimension / height of the image sensor, f is the focal length, /¢4, de-
notes the camera height and «.,,, the orientation angle of the camera, relative to the ground
plane. An a4y, of 0° corresponds to bird’s eye view and 90° means the camera is parallel to
the ground. Figure 5.1 illustrates the basic scene setup of a possible surveillance scenario.
As a reference point for z in the image plane we use the lowest point of an object’s silhou-
ette, which approximately corresponds to the foot-ground contact point at inclined camera
angles, i.e., at ac, > 0°. This of course assumes that the observed objects are not flying.

\ sensor
/ v,
acam
covered zone
hcam
optical axis
: ;
0 7 distance

Figure 5.1: Possible camera setup.

Figure 5.2 shows theoretical examples of different parameter combinations and how they
influence the relationship between the distance and the y-coordinate on the image. For the
plots, we used the object’s ground contact position as the reference point, fixed f at 35mm,
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d at 24mm and varied the camera angle and height. The straight diagonal lines represent
the linear case, which is only met at ac = 0°. The values for f and d correspond to classic
analogue cameras working with 35mm film!. For digital cameras with cropped sensors,
the equivalent focal length is significantly smaller. A camera with a 1/3" CCD sensor for

instance would only require a focal length of 4.8 mm to capture the same parts of the scene?.
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Figure 5.2: Relationship distance to vertical position in image

For horizontally orientated cameras with a.,, = 90°, the corresponding plots for the top
and centroid positions would differ from the ones shown for the bottom position. The Y-
position of the object point located at the height of the optical axis ideally stays constant at
changing distance. Reference points that lie higher than the optical axis ideally decrease in
the Y-position with increasing distance. This changing behavior can be exploited to infer the
basic relative geometry between object and camera.

Figure 5.3 shows matrix correlation plots of the relative distance versus the low-pass fil-
tered Y-positions of top, centroid and bottom. When comparing the plots of both sequences
street and car, it can be observed that the rigid nature of the car results in cleaner and more

1The dimensions of 35mm film are 36x24mm
2Applet for focal length conversion: http://www.cambridgeincolour.com/tutorials/
camera—-lenses.htm
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sharply defined point clouds than for the non-rigid pedestrian in street. For the car sequence,
it can also be observed that the plots for top, centroid and bottom vary in a similar way and
always increase with growing distance, leading to all positive correlation values.

-INIVIN] 7

-0.91 -0.91 -0.94 1 1 0.99
—
\ centrY centrY /
-0.91 0.75 0.89 1 1 0.99
"S J bottomY)| / / / bottomY| /
-0.91 0.75 0.88 1 1 0.99

\ [ d_rel / / / d_rel

(a) street - (b) car

Figure 5.3: Top row: Matrix correlation plots with estimated distance d,,; versus top, center and
bottom Y-positions of moving object. The numbers below denote the covariance. Bottom row:
Mosaic images of both sequences

The scatter plots for street are subject to more severe noise, most notably due to the non-
rigidity of the object and due to the fact that the camera motion had to be compensated,
which is another source for noise. The important subplot in Fig. 5.3a is the lower left one,
showing the top position against the relative distance. The negative correlation value — op-
posed to the positive for centroid and bottom — indicates that the optical axis lies between
the top and centroid and suggests that the camera is parallel to the ground.

We use this behavior to perform a first, rough classification of the camera orientation
in top view (Vop) and ground view (V,,4). The two classes correspond to the basic situations
depicted in Figure 5.4. We define reference covariance vectors for both basic orientations
as Viop=[111] and Vg,dﬁ[—lol]. The values correspond to ideal values of the last row of
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o= Q0

A

(a) Ground view (b) Top view
Figure 5.4: Basic camera pose classes

the matrix plot from Fig. 5.3. For the ground view model, the optical axis is assumed to be
parallel to the ground and to point at an object somewhere between its feet and head.

For classification, we calculate the respective covariance vector for the moving object in
the video scene and match it to the model with the smallest euclidian distance. Table 5.1
shows the euclidian distances for some of the sequences shown in Fig. 3.19. The bold values
highlight the smallest distance and thus the classification results, which are correct in all
cases. For sequences with multiple objects, we calculate the distances for all objects and
average the results.

After this first classification, we fit the parameters of the model given in Equation 5.1 to
the data given in the scatterplots d,.; vs. Y-position. If the object silhouette never touches the
lower image border, we use the data from the bottom position, otherwise we use the less
reliable top position. For fitting, a robust non-linear least squares algorithm is applied. This

iterative estimation process consists of four steps:

1. Start with an initial estimate for each coefficient (f, d, hcam, ®cam). Since the intrinsic
camera parameters f and d are unknown, we assume a standard field of view and fix
f at 35mm and d at 24mm. The initial values for he, and &, are chosen according
to the pose classification results: For ngmd, we chose ley = 1.8m and aep, = 90°,
corresponding to a shoulder camera setup. For Vi, we set hiegy, = 4m and &eqm = 65°,

representing a possible surveillance camera setup.

2. Produce the fitted curve for the current set of coefficients. This involves the calculation
of the Jacobian, which is defined as a matrix of partial derivatives taken with respect

to the coefficients (h¢,,;, and a¢,y, in our case).

3. Adjust the coefficients and determine whether the fit improves. For coefficient adjust-

ment, the Trust-Region algorithm [121, 122] is applied.

4. Tterate steps 2 and 3 until convergence.

As a constraint, we limit the possible range of the variable a¢;, to 0° < &gy < 90°. Prob-

lematic during fitting is the unit-less nature of the relative distance measure, opposed to the

96



5.2. CAMERA ORIENTATION ESTIMATION

absolute distance values that are used in the model. We try to compensate for this by not
limiting the range of the unknown camera height. This leads to unrealistic estimation results
for heam, but within this work we are only interested in the camera angle a4, which is the
determining factor for the curvature of the one-dimensional mapping function. The camera

height ., does not change the curvature, but only the distance range.

5.2.1 Results

Figure 5.6 shows the fitted models over the scatterplots d,,; versus Y-position for street and
car. The step-like behavior of the scattered data is due to the fact that we do not work at pixel
level but on the coarse H.264 macro-block grid. At small object displacements in adjacent
frames, the reference point is therefore more likely to stay in the same macro-block area.
The fitted model for car matches better to the measured data because the object is rigid and
always fully visible, whereas for the pedestrian in street, the more unstable top position was
used due to the fact that his legs are cut off at the lower image boundary. Furthermore, the
camera motion had to be compensated, which introduces additional errors, resulting in an
overall poor fit for this sequence.

(a) street

(d) trainTracking (e) hallMonitor (f) surveillance
Figure 5.5: Screenshots of sample sequences

The estimated camera angles a,,, for all sequences shown in Fig. 5.5 are given in Tab. 5.1.
Since no ground truth is available, the estimated angles can for now only be evaluated by

97



CHAPTER 5. SCENE UNDERSTANDING

\ street car  vrestaurant train  hall  surv
Viep | 1.95 0.02 2.22 0.09 1.19 0.69
Vera | 090 221 0.24 216 110 2.07
Keam | 90°  51° 83° 65°  78°  69°

Table 5.1: Camera pose classification and results for acg,
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Figure 5.6: Scatter plots vs. fitted model. left: street. right: car

human judgement. Although the results are not very precise, they reflect the approximate

camera pose better than the coarse classification in top and ground view.

5.3 Scene Geometry Approximation

The estimation of the camera orientation, presented in the previous chapter, is not restricted
to certain types of videos and can be applied to any sequence where object detection and
tracking delivers valid results. In this section, additional tools are introduced that are appli-
cable when working in constraint environments like video surveillance. Focus is put on the
analysis of traffic surveillance videos on highways, so this section can be regarded as an ex-
tension to the work presented in Chap. 4. Our goal is to demonstrate that rough, compressed
domain motion information from monocular video sequences and uncalibrated cameras are
sufficiently rich to deduce certain geometric properties that enhance the overall scene un-

derstanding.

In the following, two methods are presented. The first method approximates the position
of the horizon line and estimates the camera angle. The second method segments the road in
the scene, which represents the Region-of-Interest (ROI) in traffic videos. Both methods are

based on the motion direction and density maps introduced in Sec. 4.5. The processing chain

98



5.3. SCENE GEOMETRY APPROXIMATION
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Figure 5.7: Overview of scene geometry recovery

is illustrated in Fig. 5.7. To recall, these motion maps are obtained during a preliminary, un-
supervised training phase. The motion direction map reflects the median direction or angle
of motion per macro-block, and the density map represents the average motion intensity per

macro-block. Examples of motion maps are shown in Fig. 4.11.

5.3.1 Estimation of Detection Limit and Horizon Line

When working with outdoor sequences like traffic surveillance, information about the posi-
tion of the horizon line can deliver important knowledge about the scene geometry, which
on the other hand can be incorporated in detection and object classification schemes to in-
crease the overall system robustness [97]. Assuming the camera is mounted parallel to the
ground so that the horizon can be approximated as a horizontal line, its vertical position can
be efficiently approximated by analyzing the motion maps. To achieve this, one descriptor
I(y) is formed per motion map that represents the line-wise intensity as a function of the
vertical position in the image.

After binarizing the motion direction and density maps, this can be efficiently realized by
summing up all X-values at fixed Y-positions in the image. With (x,y) € {0,1} denoting the
element at position x and y in the motion map, the intensity descriptor which is calculated
for the angle (I4(y)) and the density map (Ip(y)) is obtained by

width

Iap(y) = ), (xi,y). (5.2)

i=0

To alleviate the impact of noise and to increase robustness, we perform moving average
filtering and take the mean value of both characteristics as estimation basis. Examples of fil-
tered intensity curves for the motion maps of seg5 are shown in Fig. 5.8a. We now determine

two distances that have an impact on scene analysis:

1. The detection limit, defined as the distance beyond which no reliable object detection
can be performed.
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2. The effective horizon line, defined as the horizontal line that separates sky and ground
assuming a flat world. In the case of highway surveillance, we approximate this line
as the maximal vertical position of the visible road.

We define the vertical position LimY of the detection limit as the position where the line-

wise intensity drops most significantly, i.e., where the gradient V has its global minimum:

Ly = i (7 (A0 o)) -
as illustrated in Fig. 5.8. The horizon line is estimated to be where the intensity function
drops under 5% of its maximal value. Ideally this threshold would be zero, but 5% was

determined empirically to account for noise and miss-detections.
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Figure 5.8: Example of detection limit and horizon line estimation

For the traffic surveillance sequences that were used in Chap. 4, the estimated horizon
lines are depicted in Fig. 5.9. All horizon lines are very well approximated, even for the
rather complex sequence 5. It has to be noted that we do not necessarily aim at estimating
the true horizon that marks the border between visible sky and ground, but at approximating
the effective horizon, which represents the maximal distance up to where moving objects can
be sensed by the system. The detection limit on the other side represents a empirical limit

up to which objects can be successfully detected and tracked in the compressed domain.

The method delivers good horizon approximations on all test sequences. However, this
simple way of inferring the position of the horizon line only works in constraint environ-
ments. The training period for the construction of the motion maps has to be sufficiently
long so that a certain number of moving objects occurred throughout the scene. Further-
more, the camera has to point in the direction that follows that course of the road, so the

presented method does not work for cameras that are oriented orthogonally to the road.
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Figure 5.9: Estimated detection limits (red) and horizon lines (blue) on traffic surveillance se-
quences.

Alternatively, the position of the horizon in the image plane could be determined a pos-
teriori using the results of the object detection and tracking stage. A straight forward way
would be to take the maximal vertical position of detected objects as an approximation, or
to use the results of the relative distance estimation and to keep the maximal Y-positions of
the most far away objects. However, the advantage of the approach presented above is that
the horizon line can be determined very efficiently right after the training stage, i.e., once the
construction of the motion map is complete, without relying on potentially noisy or faulty

results from former processing steps.

5.3.2 Camera Orientation Estimation - Revisited

In Sec. 5.2 we presented a general approach to estimate the camera orientation based on
tracking results of moving objects. Since the estimation itself is based on the results of a
processing pipeline with multiple stages, many error sources are introduced, which leads to
very rough approximations of the camera orientation. In this section, we propose another
way to estimate the camera orientation in constraint environments, where the only condition
is that the horizon line is visible and its position is known. A simple approach to determin-
ing the vertical position of the horizon in traffic surveillance videos was presented in the

previous section.

As in Sec. 5.2, the method to determine the camera angle presented below is also based
on the relationship between the distance to the camera z of a point on the ground and the
vertical position of its projection on the image sensor ys. This relationship was already pro-
vided in Eq. 5.1, but we reproduce it here for better readability:

z

d
ys = 3 +fx tan(tan_l( ) — Qcam)-

hcam

Recall that d denotes the height of the image sensor, f the focal length of the camera lens and
heam the height of the camera with orientation angle acg,.
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| seql  seq2  seq3  seq5
Xcam based on objects | 86.26° 71.11° 67.43° 82.30°
®cam based on horizon | 79.48° 75.84° 75.58° 77.64°

Table 5.2: Camera orientation results of traffic surveillance sequences

Under the flat ground assumption, the position of the horizon line on the image sensor

is given at z — oco. Since

lim tan™! (z/ heam) = g 2 90°, (5.4)
Z—00
the vertical position of the horizon line horY is given as
d T
horY = 5 + fx tan(z — Qeam), (5.5)

what approves that the position of the horizon line in the image plane depends only on the
orientation angle of the camera, the dimension of the image sensor and the focal length, but
not on the camera height [123]. For cameras that are parallel to the ground (acsm = 90°),
potential lens distortions and the focal length also loose their influence, because the horizon
always appears at d/2, i.e., in the center of the image. Equation 5.5 can be rewritten as

g (horY—d/2
Keam = > tan <f , (5.6)

SO &¢qm can be determined if the intrinsic camera parameters (d, f) and the vertical position
of the horizon line horY are known. Since the intrinsic parameters are unknown for our test
sequences, we assume a standard lens setup equivalent to d = 24mm and f = 35mm and
use the horY we estimated in the previous section. For the four shown test sequences, this
yields the results given in Tab. 5.2.

Unfortunately, no ground truth for our test sequences is available, but since the presented
method bypasses any potentially erroneous object detection and tracking steps, the results
are more accurate and stable than based on moving objects. A visual verification of the
results can be carried out by drawing equidistant lines in the image plane, as illustrated in
Fig. 5.11. Each segment should ideally contain the same number of lane separation markers,

which is approximately the case.

5.3.3 Road Segmentation

Knowledge about the position of the road in the image plane can increase system perfor-
mance and robustness. Performance gains can be achieved by limiting the processed ROI to
the visible road surface, which also increases robustness because miss-detections outside the
ROI loose their influence.
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The motion direction and density maps already represent rough approximations of the
frequented ground surface. We obtain a single, binary mask of the road in a straight-forward
way by thresholding the average over both maps. Holes in the resulting binary mask are
then filled through morphological operations and very small connected components are
filtered out. A last post-processing step consists of rejecting all blobs that are situated en-
tirely above the horizon line. A visualization of the road segmentation results is provided
in Fig. 5.11. All important parts of the road have been captured; only the security lane in

sequence 2 is cut off because no vehicle used it during the training period.
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Figure 5.10: Determination of equidistant lines based on camera angle for sequence 1

The green lines in Fig. 5.11 correspond to equidistant lines on the ground plane. They
have been obtained through Eq. 5.1 at the estimated camera angle. An example for the calcu-
lation of these lines is given in Fig. 5.10 for sequence 1, where the distance mapping function
for the given camera angle is sampled at evenly spaced positions. The parameter camera
height can be set arbitrarily and does not influence the calculation, since it only rescales the
x-axis but does not change the curvature of the function. Equidistant lines enhance two-
dimensional image plane representation by a depth measure that can be used to assist object
tracking and detection. If lane markers are visible, the lines can also be used to evaluate the
quality of the camera angle estimation if no ground truth is available. Each segment between

two equidistant lines should contain the same number of lane markings.
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(c) sequence 5 (d) sequence 5
Figure 5.11: Compressed domain road segmentation results with equidistant lines in green

54 Summary and Conclusions

We proposed a simple, two-class camera pose classification scheme that uses only motion
vectors extracted from H.264 streams. It it based on the presence of moving objects, where
the temporal evolution of tracking results and the estimation of the relative depth serve as
input. The vertical displacements of the object’s top position, its centroid and ground contact
point are analyzed and compared, which allows to draw conclusions about the basic camera

pose. The algorithm robustly classifies the camera pose in ground or top view.

The idea was further extended to estimating the camera orientation angle by fitting a
model function to the observations of the vertical position versus the estimated relative
depth. Although being not very precise, the resulting angles represent rough approxima-
tions of the real orientations. The approach lead to the publication presented in [124].
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5.4. SUMMARY AND CONCLUSIONS

For the specific use-case of highway surveillance, we presented an extension to the work
presented in Chap. 4 and proposed simple yet effective methods to determine the vertical
position of the horizon line and to segment the road portion in the image plane. Based on
the position of the horizon line, a more robust approach to estimating the camera orientation
was provided. The proposed method to determine the camera angle is not restricted to
compressed domain processing. If image domain information is available, the horizontal

position of the horizon line can for instance be determined by estimating the vanishing point.

Regarding future work, the unconstraint angle estimation algorithm may be refined in
different ways. The relationship between the distance of an object and its Y-position in the
image plane (see Equation 5.1) has to be corrected in the case of strong lens distortions re-
sulting from wide angle lenses, which are frequently employed in surveillance cameras. Fur-
thermore, the obtained geometrical information can be used to add robustness to the object

detection and tracking module.
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Chapter 6

Video copy detection

Content-based copy detection (CBCD) in video databases is an important and interesting
research field. It differs from content-based video retrieval (CBVR) in that the goal is not to
find similar videos but exact copies of the query video and transformations of it. The two ma-
jor target applications of CBCD are video retrieval in databases and the protection of digital
rights, where it represents an alternative to digital watermarking. In contrast to watermark-
ing approaches, video copy detection regards the media itself as the watermark, where the
task is to form unique video signatures that are robust to multiple types of transformations.

Large video collections in the form of local or web based archives necessitate efficient
and scalable retrieval solutions. Scalability in the system context refers to the overall abil-
ity to cope with a varying number of managed content and/or users. In the algorithmic
sense with respect to video retrieval, scalability refers to the ability to cope with videos
of different spatial and temporal resolution in an efficient way. This aspect is becoming
increasingly important regarding the continuously increasing variety of video distribution
networks and devices, ranging from broadband High-Definition (HD) television to hand-
held devices. Techniques like scalable video coding (SVC) face this issue on the media side
itself and will play an important role in the future media landscape.

A crucial aspect concerning the usability of the whole system is the computational com-
plexity of the feature extraction process and the needed storage space for the obtained de-

scriptors, most notably when dealing with large data collections.

Our aim is to efficiently extract lightweight video features that are temporally and spa-
tially scalable and robust to multiple types of transformations. The compressed domain
signatures presented in the following are either encoding- or motion-based, since in both
cases, no or only little stream decoding is necessary. In general, signatures are supposed to
be fast to obtain, easy to compare, small to store and robust to transformations. Although
we concentrate on SVC compressed video, the proposed algorithms are also applicable for
pure H.264/AVC streams.
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The present chapter is organized as follows. An overview of previous work in this area
is given in Sec. 6.1, followed by the introduction of the analyzed video features in Sec. 6.2.
Before presenting the results of single feature copy detection in Sec. 6.4 we provide infor-
mation about the used HD test data base in Sec. 6.3. Section 6.4 also includes studies on the
scalability and codec interoperability of chosen features. How the detection results can be
improved by combining multiple features is shown in Sec. 6.5. Finally, concluding remarks
and some general system design recommendations are provided in Sec. 6.8.

Our main contributions to video copy detection are: i) The evaluation of compressed--
domain features in comparison to popular image domain features in terms of copy detection
performance on a SVC encoded data base, ii) a study on the scalability of different features,
and iii) the proposal of search schemes that combine multiple compressed domain and pixel

domain features in order to enhance the retrieval results.

In the following, the terms feature, descriptor and signature are used interchangeably.

6.1 Related Work

Concerning video copy detection and sequence matching, a number of previous efforts on
CBCD have been published. They can be divided into two groups, pixel domain and com-
pressed domain approaches. In both groups the extracted signatures are either of local or
global nature. Local features only represent a small part of an image or video, while global

features aim to represent the image/video as a whole.

In the pixel domain, color histograms [125, 126], feature points like SIFT [127] or Har-
ris feature points [128, 129, 130] and object trajectories [131] are often considered features
in CBCD. Indyk proposed to use shot boundaries to identify pirated videos in [132], which
is a very lightweight descriptor but fails on short sequences. Mohan [133] adapted the or-
dinal measure for video retrieval applications. It is formed by comparing and sorting the
mean brightness of defined regions in an image. It represents an image-based feature-vector
that was later enhanced to the temporal case by Chen [134]. A comparative study on pixel
domain CBCD has been published by Law-To et al. in [135]. The authors conclude that
methods with local features have more computational costs but present robust results and
that the ordinal temporal measure by Chen et al. [136] works very efficiently for minor trans-

formations.

Regarding CBCD in the compressed domain, encoding data, motion information and
transform coding coefficients build the basis for most frameworks, where motion delivers
the most distinctive and important information. Hampapur et al. [137, 138] determine the
dominant motion direction per frame through motion vector histograms. The correlation
coefficient is used as similarity measure. Ardizzone et al. [139] base the search on the size
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and the average motion of dominant regions, which are obtained by a sequential labeling
method and clustering of the Motion Vectors (MVs). Kobla et al. [140] perform searches on
a Global Motion Estimation (GME), which is determined by the largest bin in a directional
MV histogram.

Naphade [141] proposes a MPEG-1/2 based video signature consisting of DCT coeffi-
cient histograms of the YUV components. The article focuses on computational efficiency
and no indication is given regarding the performance on scaled or transformed versions.
Taurun et al.[142] proposed an approximation of the color coherence vector (CCV) [143] by
MPEG-1/2 DCT coefficients. Other approaches that rely on DC or AC block coefficients of
MPEG-1/2 video are summarized in [144]. As stated before, transform coding coefficients
are not available in H.264 without extensive decoding operations, hence only features that
are available through stream parsing or that require only minimal decoding are considered

in the following.

Babu et al. in [145] proposed a retrieval system for MPEG coded videos based on global
motion and local object features. Global motion activity is characterized by the standard
deviation of the magnitudes of MVs for each frame, and object segmentation is achieved
through a combination of K-means clustering and the EM algorithm. Object trajectories are
represented by two second order polynomials. Their system is designed to retrieve video se-
quences with similar local object trajectories and not for exact copy detection. Furthermore,
the system does not capture complex camera motion and is not robust against transforma-

tions like rotation or flipping.

6.2 Features

This section presents the features we studied and shows how they are obtained. The or-
der in which they are listed goes from low-level to high-level. Except from keyframe-based
features, they are calculated frame by frame and are stacked into vectors along time. The
longer these vectors are, the more unique and discriminative they become. The used simi-
larity measure for sequence matching with each individual feature is also provided in this
section. When comparing temporal feature vectors for two sequences of unequal length,
we convolve the shorter vector with the longer one, calculate the similarity at each position
and keep the highest similarity. Retrieval results of the different features are provided in
Sec. 6.4. We also describe and provide results for features that turned out to deliver poor
results for the sake of completeness and to demonstrate the limits of compressed domain

video retrieval.

The presented compressed domain features are divided into three classes: encoding
based, motion based and object based. Finally, we briefly review two popular keyframe
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based approaches that are also evaluated for the task of video copy detection on the used

video corpus.

6.2.1 Encoding based features

Bit Rate

The first video signature we analyze is the temporal evolution of the bit rate, i.e., the
number of coded bits per frame (bpf) used by the encoder. This global low-level feature can
be extracted very efficiently by simply parsing the compressed stream, so no decoding is
necessary. For streams with spatial scalability, we extract the information for all layers. An
example for a random test video is provided in Fig. 6.1. The Group-Of-Picture (GOP) size,
i.e., the interval between two successive I-frames, becomes clearly visible when looking at
the distance between two peaks, which correspond to I-frames that require more coded bits

than inter-predicted B- or P-frames.

1000 T
Layer 0 (480x272) ———

Layer 1 (960x544) -------
Layer 2 (1920x1088) --------

800 - ; .

KBits per frame

0
300 320 340 360 380 400

Frame

Figure 6.1: BPF per spatial layer of a test video with GOP_Size = 8.

The periodic peaks caused by the GOP structure have to be compensated, because the
absolute positions of I- and B-frames of corresponding images is probably different for two

versions of the same video. We therefore average the BPF over each GOP.

The similarity S;u. between the length n feature vectors A and B of two sequences is

represented by the correlation coefficient, given by

_ ii1(Ai — A) * (B; — B)
VEL (Ai = A2« /T (B, — B)Y
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with A and B denoting the mean values of vectors A and B, respectively.

@ Easy and very fast to extract by parsing the stream. Lightweight: 1 integer per frame or
per GOP, depending if values are averaged over GOPs.

© Codec- and implementation-dependent (see Sec. 6.7).

MB Partition Size Histograms

Beginning with H.264/AVC, macro-blocks (MBs) span 16x16 pixels and may be parti-
tioned into smaller, independent sub-MB partitions as a function of the coding efficiency.
In H.264/AVC and SVC, seven different MB partition sizes are possible: 16x16, 16x8, 8x16,
8x8, 8x4, 4x8 and 4x4 (see Chap. 2). Usually, MB partitions get smaller in well-textured and
high-contrast areas that are in motion, like moving trees or object borders.

We construct and store frame-wise MB size histograms with seven bins, corresponding
to the possible partition sizes listed above. The similarity Sy;;; between two videos is deter-

mined via the frame-wise sum of histogram intersections:

n bins

Spist = Y, ), min (ha, hp), (6.2)

i=1k=1
where /14 and hp are the normalized histograms of the two input sequences A and B, n is the

number of frames and bins is the number of bins.

@ Easy and fast to extract by parsing the compressed stream for macro-block and sub macro-

block modes. Seven integers per frame have to be stored.

© Codec- and implementation-dependent (H.264/AVC and SVC only).

6.2.2 Motion Based Features

Since no color or pixel data is available in the compressed domain, motion is the most im-
portant information found in the stream. For block-based codecs from the MPEG family,
motion is represented in the form of MVs that are associated with macroblocks (MB) in pre-
dicted frames of type B or P. I-frames are intra-coded, hence no MVs are available in the
stream. As an approximation for I-frames, we use the mirrored LIST_0 MVs of the succeed-
ing B-frame in coding order. As a reminder, LIST_0 contains MVs that point to past reference
pictures, so in this case, they point to the preceding I-frame (see Chap. 2). We scale each MV
by the distance to its reference frame in order to get vectors whose magnitudes are indepen-
dent of the GOP structure.

Motion Activity
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A very simple yet powerful global feature is the frame-wise, overall intensity of motion,
sometimes referred to as pace of action. The feature we use is very similar to the MPEG-7
descriptor Intensity of Motion I [146, 147], given by the frame-wise, average MV magnitude:

1 N
I = N 3 \/dx? 4 dy?, (6.3)

1

where N is the number of MVs per frame.

Different from MPEG-7, we weight the magnitudes of the MVs of a frame by a 2-D Gaus-
sian to assign more importance to the center region. Motion vectors on the image borders
are less reliable due to parts that are entering and leaving the image, usually resulting in
random and noisy prediction vectors. Furthermore, the Region-of-Interest (ROI) is usually
located in the image center. Since the MV magnitude depends on the temporal distance to
the reference frame, we correct the GOP structure by dividing the MV magnitudes by the

the distance to the respective reference frame.
The Gaussian weighting function is depicted in Fig. 6.2 and is given by

(=292 | (y=yp)?
20’% + 202 )

w(x,y)=e v, (6.4)

where xp and yo denote the image center, 0, = w;/2 and ¢, = h;/2, with w; and hj being

the image width and height, respectively.
The frame-wise weighted motion activity M A thus is given as
wr h I

1
MA = 21 lewy) [[MV (x,y)]]. (6.5)
y=1y=

The similarity between two sequences is determined by the correlation coefficient be-

tween two motion activity vectors (see Eq. 6.1).

@ Easy and relatively fast to extract. Only the entropy coding has to be reversed in or-
der to access the motion vector values. Can also be calculated for all other block-based video

codecs and is robust to transformations like flipping and rotation.

© The query video has to be sufficiently long and contain motion for MA to be discrimi-
native. Retrieves all sequences with similar motion, so the longer the descriptor, the more

unique the motion fingerprint becomes.

Global Motion
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Figure 6.2: 2-D Gaussian weighting function for motion vector magnitudes.

Camera operation usually causes a global and dominant motion, which is an important

feature in video indexing. In order to estimate the global scene motion, we use the algorithm

presented in Sec. 3.2 to estimate the parameters ay, . .., as of the six-parameter affine motion

This multi-resolution approach directly exploits the spatial scalability of the stream. To
save computing time, we only re-estimate the global motion until a certain threshold res-
olution is reached, which was empirically determined as 480x272 pixels. At higher spatial
resolutions, the estimation results do not change significantly anymore (see Sec. 3.2 for more

.., 0 are not robust to transformations like rotation or flipping
per se. We derive the the two values my4,s and 1,4, from the model parameters to overcome
this problem. 114,445 corresponds to the magnitude of the total translational motion and 11,4,
corresponds to the amount of zoom and rotation:

(6.6)

These two values are robust to transformations like flipping and rotation and are stored

for each frame of the video. Similarity is also calculated with the correlation coefficient
between the vectors .45 and m,4, of two sequences.

The global motion estimation itself becomes less reliable when large, low-textured areas
are present or when dominant motion is caused by a large object. Nevertheless, even if the
estimation result does not reflect the real motion, it still forms a robust video descriptor. The
estimation time depends heavily on the size of the estimation support, thus, the video di-
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mensions.

@ Efficient estimation is possible and the features are robust to various transformations and
distortions.

© Query video has to be sufficiently long and contain global scene motion for GME to be
discriminative.

Outlier Motion

Outlier motion is the complementary feature to global motion. During global motion
estimation, all blocks that do not follow the dominant motion in the scene are marked as
outliers. These outlier vectors are processed in exactly the same way as for global motion
estimation (see above).

@ Captures object motion, which is most important for scenes with static cameras. Robust
to various transformations and distortions.

© Depends directly on the results of global motion estimation. In case the GME fails or no

moving objects are present, outlier motion is not discriminative.

An example for all three motion based descriptors is shown in Fig. 6.3 for test sequence num-
ber 46 (see Sec. 6.3 for details on data base). It can be seen that the scene begins with high
global and high local motion and calms down to the end. The translational global motion in
this case results from camera panning and the outlier motion is caused by a pedestrian and
moving tree branches. The outlier motion curve is not very stable because the estimation

support, i.e., the number of MVs is small and due to noise introduced by the moving tree.

The unavoidable disadvantage of all motion-based descriptors is the fact that still scenes
without significant global or object motion result in all-zero feature vectors. Regarding video
retrieval in this case, we can only discard all sequences containing motion when performing

a query.

6.2.3 Objects

Most notably for sequences that contain no global motion, moving objects can provide useful
information for retrieval purposes. We detect and track objects in the compressed domain
using the algorithms described in Sec. 3.3-3.4. As a result, we obtain the individual objects

and their trajectories.

Number of Objects
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Figure 6.3: Example for motion based descriptors, extracted from test sequence number 46.

We discard any object that appears for less than 5 frames and store the remaining number
of moving objects per frame as the first object based descriptor of the video sequence.

Trajectories

We represent object trajectories in a differential manner for retrieval tasks. Beginning
with the second occurrence of an object, we store its speed, i.e., the distance the centroid
travelled since the last frame, and the angle difference of the moving direction. Per video

clip in the data base, we store as many differential trajectories as detected objects.

For comparing two sequences based on objects, we at first sum up the frame-wise differ-
ence in the number of detected objects and keep all sequences where the difference lies below
a threshold. For all remaining sequences with a similar number of objects, we calculate the
similarity between a query trajectory Tg and data base trajectory Tpp by summing up the
differences between the piece-wise differential trajectory vectors, given as the difference in
speed Av and the difference in angle Aw, or in cartesian notation, (dx, dy)T. We calculate the

similarity for the temporal duration N of the query trajectory by

N Vo COS i Upp COS & N dx dx
s =2 | (22 smag) = Commemane)| =2 | (e) ~ ()

. . (6.7)
Vg smag UpB S XpDB
@ High-level and thus robust to multiple transformations.

© For videos where the GME delivers erroneous results or for videos with many occluding

objects, the number of objects and the resulting trajectories may be false.

© Short trajectories are often very similar, hence not very discriminative.
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6.2.4 Keyframe Based Features

In order to evaluate the retrieval performance of the compressed domain features, we com-
pare them with two common keyframe based methods: global 3-D color histograms and
Lowe’s popular local scale-invariant feature transform (SIFT) [106]. We chose these two fea-
tures on the one hand due to their popularity and proven retrieval performance, on the
other hand due to their robustness against affine transformations.

Color Histograms

We calculate global 3-D color histograms in the RGB color space for one representative
keyframe of a video scene. In order to avoid full stream decoding, we extract the closest
I-frame to the middle of the video clip. Per keyframe, a histogram with 125 bins (5 bins for
each RGB channel) is constructed.

Histogram intersection is used as the similarity measure between two histograms.

@ Fast to calculate and robust to various geometric transformations.

© Also retrieves different videos that are similar in color or shot in the same scenery. Prone

to errors in case of large incrustations (logos, etc.).

SIFT

SIFT [106] describes local key-points that correspond to maxima or minima in Difference-
of-Gaussians (DoG). The DoG is obtained by differencing multiple Gaussian-blurred ver-
sions of the original image at grayscale. For each detected key-point, its basic orientation
is calculated. The descriptor vector itself is calculated on a 4x4 pixel region around the de-
tected point and consists of a 128 bin 3-D histogram of gradient locations and orientations.
In the comparative study presented in [107], SIFT proved to be the most robust local interest

point descriptor.

As similarity measure Sg;rr between a query image I and another image I,;, we use the

ratio
c- NofMatches(Ian)

NofSIFTpoints;

Ssirr = (6.8)

where ¢ = Ng/N, is a scaling factor, accounting for queries at different spatial resolutions.
Ng and N, denote the number of pixels in the query image and the comparing data base
keyframe, respectively. For feature matching itself, we use Lowe’s Best-Bin-First (BBF) algo-
rithm [148], a modification of the kd-tree algorithm to efficiently find the approximate nearest
neighbors. Regarding future work, further improvements in matching time may be achieved
by performing approximate nearest neighbor searches based on Locality-Sensitive Hashing
(LSH) [149], as demonstrated by Auclair et al. in [150].
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@ Invariant to a number of transformations like scaling, rotation and slight changes in view-
point. It is a local descriptor, hence it is robust to post-production effects like cropping or

logo insertions.

© The feature calculation and matching process is computationally very expensive, most
notably on high resolution frames. Furthermore, it is not robust to flipped versions of the

original image.

6.3 Test Data Base

Before showing the retrieval results of the presented features, we provide information on
the data set that was used for the experiments. It consists of a set of SVC-compressed, scal-
able high-definition videos. The corpus was created from 47 original video clips in Full-
HD resolution (1920x1080) at 25 fps. Screenshots from all 47 base sequences are shown in
Fig. A.1-A.2. For each of these 47 clips, 12 different versions are stored in the database:

The original version (1920x1080),

* cropped from center to half resolution (960x540),
e resized to half resolution (960x540),

* resized to quarter resolution (480x270),

* flipped horizontally (1920x1080),

¢ flipped vertically (1920x1080),

¢ and six rotated versions (10°, 20°, 30°, 40°, 45°, 190°), continuously deformed to fit in
the original 1920x1080 frame, where the emerging free space on the corners is filled

with solid white.

Figure 6.4 shows sample screenshots of these transformations, taken from the base se-

quence number 16 (Kung-Fu-2).

The clips in the corpus are short at an average duration of 3 seconds. They contain four
temporal and up to three spatial layers, depending on the resolution. The content of the dif-
ferent sequences greatly varies and includes indoor and outdoor shots with moving persons,
objects and all types of camera motion. Figures A.3-A.4 show the translational global motion
of each base clip in order to give the reader a better understanding of the used sequences.
The shown global motion has been obtained with Motion2D [4].
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original_1920

flipver

resize_480 resize_960 rot_190

rot_20 rot_30 rot_40 rot_45

Figure 6.4: Example of transformations per video clip present in the data base. Sequence number
16, Kung-Fu-2 ©Thomson

| Parameter | Value
GOP size 8 (fix)
GOP structure IBBBBBBB
No. of ref. pictures per B-frame 2
Base layer mode 1 (AVC compatible)
Spatial layers at 1920x1080 | 960x540 | 480x270
Temporal layers at 25fps | 12.5fps | 6.25 fps | 3.125 fps
Use of MCTF no
Motion search block search

Table 6.1: JSVM Encoder Settings

The data base was created in the course of the French national research project ICOS-HD,
dealing with indexing of High-Definition (HD) content. More information on the corpus can
be found on the official project website! [151]. For encoding, we used the SVC reference
implementation JSVM in version 9.8, available at [19]. Some important encoding parameters
that have been used for encoding are listed in Table 6.1.

Some of the clips in the corpus have been extracted from the same base video at different
instances in time. Furthermore, some of the clips have been shot in the same environment
with the same objects. For this work, the target application is the retrieval of exact video

copies and transformations of the original clip.

IMenu: SPs — Sous-Projet 4 — Corpus HD (website in French)
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6.4. SINGLE FEATURE DETECTION RESULTS

6.4 Single Feature Detection Results

In this section we present the copy detection results with single feature queries, i.e., queries

that are performed by using each of the presented descriptors alone. The results are mea-

sured in terms of precision and recall. Let TP denote the true positives of a query, FP the
false positives and FN the false negatives. Precision and recall are then given by

TP TP
Precision = —— Recall = ———— .

recision TP+ P eca TP+ EN (6.9)

Since the given task is to find copies of the query video and all transformed and distorted

versions, recall equals 1 if all 12 versions of the clip are among the results, and precision

equals 1 when all of the retrieved videos are correct matches. The task is not to find visually

similar videos but copies of the exact query video, so the perfect system would retrieve

exactly and only the 12 transformed versions, in which case both recall and precision equal
1.

6.4.1 Compressed Domain Feature Results

Figure 6.5 shows the precision-recall curves for each of the compressed domain descriptors
presented in Sec. 6.2. Each precision/recall value pair has been obtained by averaging the
retrieval results over all of the 47 original clips as queries. The curves represent the evolution
of precision and recall at different threshold values of the similarity measure.
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Figure 6.5: Single feature detection results: Compressed domain features
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The performance of the local motion based features alone is poor on the given data set.
The most high-level object feature — describing the number of objects and their trajectories
— fails because the number of moving objects is very similar for most videos in the data
base. Furthermore, the trajectory-based similarity has little discriminative power on the
given data-set due to the short duration of the clips, resulting in short and near straight
trajectories. Copy detection based on the object descriptor outlier motion shows increased
performance because of its low level nature and because it can not be corrupted by erroneous
tracking results. However, the main problem of the outlier motion descriptor is that it relies
on the presence of moving objects and on the robustness of the outlier rejection scheme

during global motion estimation.

The global encoding-based features both outperform the local object descriptors. With
macro-block size histograms we achieve fair results, but it tends to retrieve a relatively high
number of false positives and often misses geometric transformations like rotations or crops.
This is due to the fact that the MB grid stays fixed regardless of the underlying content. Due
to its limited performance and since this feature is H.264 specific and highly depends on the
specific implementation, we do not study it further. Performance-wise more interesting is
the bit rate. It can be extracted very easily and fast by parsing the video stream and achieves
good retrieval results. Since the frame-wise bit rate over time is very similar for different
clips, the correlation threshold (see Eq.6.1) that determines similarity has to be set close to
1. The main drawback, which is common to all encoding based features, is the dependance
on the specific encoder implementation and the encoding parameters. If the entire test set
is encoded in the same manner, the bit rate feature provides the best compromise between
computational complexity and robustness. In Sec. 6.7 we provide a study of the interoper-
ability of this feature between the two major coding standards MPEG-2 and H.264.

The retrieval performance of global motion (GME) is very good until it drops drastically
with increasing precision. This is due to the fact that the precision-recall curves represent
average values over all queries and not all clips contain global motion. If a query is per-
formed with an all zero global motion vector, we can only discard any clips in the data base
that do contain global motion but we can not make a further ranking between the remaining

zero-motion clips.

With respect to single feature queries, the low-level motion activity clearly outperforms
all other features for the task of video copy detection. Since no distinction is made between
foreground and background motion, unlike global motion, it does not suffer from the con-
straints resulting from still cameras. The only case where this descriptor would fail com-
pletely is if neither any global nor any object motion is present, which is very rarely the case

even for the short sequences in our test corpus.
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6.4.2 Keyframe Feature Results

We calculated keyframe based features on one central key-frame of each sequence. In or-
der to save decoding time, we extract the temporally most central I-frame of each sequence.
Due to the given high resolution videos we only process one frame per sequence in order
to limit the computational complexity, which is one of the drawbacks of SIFT. On a 1080p
(1920x1080) screenshot of a well-textured scene, up to 15.000 interest points have been found,
making it impractical for real-world use. A popular remedy is to down-scale the input im-
ages to reduce the number of features. For keyframe based extraction and matching, we
processed all images at half of their original resolution for the sake of reduced computa-
tional complexity.
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Figure 6.6: Single feature detection results: Keyframe approach

Figure 6.6 shows the performance of key-frame based retrieval on the same data set for
SIFT [106] and 3-D color histograms in the RGB space. It can be observed that both ap-
proaches deliver reasonable results, but the local SIFT clearly outperforms the global color
histograms. Nevertheless, even SIFT does not reach the performance of the motion activity
feature on the given task.

This is due to the nature of the data base and the general properties of feature point
/ color based methods. Some of the clips are different, but have been shot in the same
environment as others or with the same objects, so we obtain a significant amount of matches
with sequences that are not a copy of the original query sequence. Furthermore, the data
base also contains flipped versions, and SIFT fails in this case. The global color histograms
suffer from similar problems and additionally failed on rotated versions, since the resulting
gaps on the borders of the image after the rotation are filled with white, black or the border
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pixel values, which becomes worse with increasing rotation angle. These rotated versions

are also comparable to simple video-in-video type transformations and logo insertions.

6.4.3 Analysis of Retrieval Results

In this section we analyze and discuss the single feature retrieval results in more detail. The
retrieval results for each base clip and for each specific transformation are provided, giving
more insight in the strength and weaknesses of each descriptor.

Fig. 6.7 shows the retrieval results per transformation of chosen descriptors in terms of
recall. The values represent average recall over all query videos and equal 1 if all specific
transformed versions have been found for all query videos. Note that the plot only covers

recall and aims at showing which descriptor is suited to retrieve which type of transforma-

tion.
1 ,
0.9 J ' '
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0.7
0.6 W SIFT
0.5 ' , M ColHist
0.4 Enclog
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0.3 B GME
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org flipH res480 rot10 rot20 rot40

Figure 6.7: Average recall results for different transformations.

Except for the flipped versions, SIFT achieves the most consistent results over different
type of transformations, with the highest recall values for cropped versions and near perfect
results on rotation and scaling. However, it completely fails on both flipped versions, where
all other features perform considerably well. One solution is to perform a second query
with SIFT descriptors that have been obtained on the flipped input image, which however
doubles the computational cost.

Color histograms also perform well on most transformations but suffer from severe
problems on rotated versions. This is due to the high white ratio that is introduced in the im-

age corners (see Fig. 6.4). In this particular case the problem could be overcome by ignoring
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white values in the histograms, but since usually no a priori knowledge of the transfor-
mations is given, we did not correct the histograms. The problem is similar to large logo
insertions or video-in-frame type transformations which also vastly affect the color distribu-

tion.

Bit rate performs well for all transformations where the visual appearance of the se-
quence is hardly affected (flipping, resizing), but average recall decreases continuously with
changing visual content (rotations, cropping).

The same applies for the motion based descriptors motion activity and global motion,
which deliver approximately similar average recalls, except for rotations where motion ac-
tivity clearly outperforms GME. GME is slightly more robust on cropping, which can be
explained by its more high-level nature.

To show how the retrieval quality depends on the actual video content, Figure 6.14 shows
the true positive rates (recall) for each of the 47 query videos (for screenshots see Fig. A.1-
A.2). It can be noticed that SIFT hardly depends on the visual content or nature of the se-
quence and achieves relatively constant recall values of about 0.8 over the whole range of
queries. The recall for color histograms varies slightly more but still remains fairly stable.
All analyzed compressed domain features show higher variability and lower consistency,
which stems from the fact that they are temporal descriptors and mostly rely on frame-wise
motion. Under unfavorable circumstances, i.e., no significant scene motion or object motion,
the formed descriptors are not discriminative enough. This is the case for sequence number
27 and 34 for example.

Regarding recall only, keyframe based methods seem to be superior to compressed do-
main techniques with respect to copy detection. However, looking at the precision of the
query results, the advantage of the presented compressed domain descriptors becomes vis-
ible, illustrated in Fig. 6.15, which shows the absolute number of false positives per query
video. Both SIFT and color histograms retrieve a lot of clips that are visually similar but not
copies of the query video. The problems of GME only based retrieval also becomes clearly
visible. For all videos that contain no global motion, the retrieval results contain all other se-
quences without global motion in random order. Motion activity performs best and retrieves

only few false positives, resulting in the overall highest average precision-recall curves.

6.5 Combined Feature System Design

Up to now, we only evaluated simple single feature queries. A more sophisticated way to
perform queries is to combine multiple features with different properties to enhance the
results. Ideally, the used features should be as complementary as possible to cover different
types of transformations and the retrieval system should adapt to the specific properties of
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CHAPTER 6. VIDEO COPY DETECTION

the query video. A priori knowledge of the existing transformations in the data base can be
used to influence the choice of descriptors. For example, if it can be assumed that no flipped
video copies are present and retrieval time is not an important issue, standard SIFT [106] or
SUREF [109] will probably deliver very good recalls.

In the following we propose two different retrieval schemes that are tailored to the pre-
sented data set and the given transformations. The first scheme operates in the compressed
domain only and aims at fast processing and retrieval. The second scheme is a combination
of keyframe based features and temporal compressed domain features and targets high-
precision applications. The general system design is depicted in Fig. 6.8. It is assumed that
all features are pre-calculated and available for all videos in the data base.

/

High-motion
/ scheme ’\\_:

L

Input Video
/ Analyzer \ Low-motion g
3 scheme SVConly )
; SIFT SIFT | Motion A
| flipped 7l Activity
N
L ,, Data base Pixel plus SVC )

Figure 6.8: Building blocks of the system and overview of all proposed search schemes

The first step of each query is the feature extraction on the query video itself. The query
module then dynamically choses a certain search scheme based on the properties of the input
video and the user preferences. User preferences are the choice between the two main search
schemes and a selection of transformations which the system should be able to cope with.
The two search schemes we will introduce below consider each type of transformation that
is present in the given test data base (see Sec. 6.3).

6.5.1 Compressed domain only scheme

For the detection of copies with compressed domain features only, we propose a dynamic
and progressive search using a combination of different compressed domain features. This
is motivated by the fact that motion based descriptors, most notably global motion, are not
suited to retrieve clips that do not contain global motion. This becomes evident in Fig. 6.15.
All sequences where the global motion descriptor retrieves a large number of false positives
do not contain any global motion. However, for other sequences the number of false posi-
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6.5. COMBINED FEATURE SYSTEM DESIGN

tives is close to zero. It is desirable to dynamically chose features that are better suited to the

given query sequence.

As a function of the input video properties, one of two sub-schemes is chosen: the so-
called high-motion or the low-motion scheme. If the mean value of the feature global motion
(GME) is higher than a fixed threshold pguE, the high-motion scheme applies. Otherwise,
the low-motion scheme is used. The threshold is easy to determine since GME usually fails if
global motion is constantly close to zero or zero, so the threshold has to be small. During our
experiments, pcpg Was set to an average motion of 8 pixels per frame (ppf) at full resolution
(1920x1080) and is scaled according to the resolution of the query video. The exact value is
not very critical and experiments showed that all values 4ppf < pcme < 40ppf resulted in
the same, correct classification results, i.e., all clips where GME retrieval fails (17-18, 23-24,
31-33, 38, 40-42, 44 and 47; see Fig. 6.15) are classified as low-motion.

High motion scheme:

1. Reject all clips classified as low motion

2. Refine the retrieved subset with GME and a low correlation threshold (= 0.5)

3. Further refinement with motion activity and a moderate correlation threshold (= 0.7)
Low motion scheme:

1. Reject all clips classified as high motion

2. Refine the retrieved subset with bit rate and a low correlation threshold (= 0.99?)

3. Further refinement with motion activity and a moderate correlation threshold (=~ 0.7)

The precision-recall curve of this dynamic combination of compressed domain only fea-
tures is shown in Fig. 6.9. On the given data set, a slight performance gain of about 6% in
average can be achieved by using multiple features. Nevertheless, the complementarity of
compressed domain (CD) features is limited and for certain sequences, all of them deliver
poor results, e.g., for sequences number 27 and 34 of the data base (see Fig. 6.14) due to flat,
low-textured backgrounds.

6.5.2 Pixel plus compressed domain scheme

For applications where high-precision is more important than computational complexity,
we propose a combination of keyframe and compressed domain features for optimal perfor-

mance. When a query is carried out, this scheme begins by extracting a first result subset

20.99 may appear very high at first glance, but the bit rate feature is very similar for all sequences. The lowest
correlation between two clips in our data set is about 0.97.
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| SIFT > flipped SIFT > Mot.Act.
Prec 0.69 0.64 0.95
Recall | 0.83 1.00 0.94
Table 6.2: Evolution of mean precision and recall at different stages of the combined scheme

that ideally contains all copies of the query sequence, i.e., recall equals one. A refinement
run is then performed on this subset to filter out as many false positives as possible, while

keeping the good matches.

Looking at Fig. 6.7 and 6.14, SIFT achieves the most stable and robust results regarding
recall when flipped versions are not taken into account. In order to also obtain all potentially
flipped versions, a second SIFT run is carried out with features that have been calculated on
the flipped query image. Both SIFT result sets are joined together to form the first, high-
recall subset. The high-recall at this stage comes at the price of lower precision, because SIFT
usually retrieves some false sequences due to either miss matching or the presence of similar
objects or background in other sequences. The similarity threshold for retrieval, i.e., the ratio
of SIFT features in the query image and the number of matches with another keyframe (see
Sec. 6.2.4) is set relatively low at 0.05 for both the regular and the flipped SIFT run. This way,
very high recall is assured at a still reasonable amount of false positives.

The second stage consists of a refinement run on the high-recall subset, with the goal to
keep all true positives while rejecting as many false positives as possible. Motion activity
is chosen for this refinement run with a relatively low correlation threshold (0.6) due to its
low false positive rates (see Fig. 6.15), but good precision. The refinement run is very fast
because it works in the compressed domain and only a small subset of all stored videos has

to be compared with the original query.

The evolution of mean precision and recall during this multi-stage retrieval is shown in
Tab. 6.2. The given values have been obtained by setting the threshold on the similarity
measure for SIFT and flipped SIFT to 0.05 and to 0.6 for motion activity. The first run with
standard SIFT achieves a mean recall of 0.83, which increases to 1 when including the results
from SIFT on the flipped version. The precision slightly decreases from 0.69 to 0.64 due to
the introduction of some more false positives. After the refinement run with motion activity,

we achieve near perfect results of 0.95 and 0.94 for precision and recall, respectively.

Fig. 6.9 shows the precision-recall curve of the proposed combined scheme when varying
the threshold parameter of the refinement run. The curves for all involved single features

are also shown for reference. We achieve near perfect results on the given data set.

To decrease the computation time at similar performance, SIFT can be replaced by Speeded
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Figure 6.9: Precision-recall curves of all single features used in the combined scheme and curve
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Up Robust Features (SURF) [109]. During test runs with a standard implementation of SURF
we achieved processing times of up to 7 times faster at similar results.

6.6 Feature Scalability

All presented compressed domain feature vectors are temporally scalable by a simple re-
sampling process to the appropriate frame-rate. Temporal scalability in SVC is enabled by
the hierarchical prediction structure of SVC. Lower temporal layers are obtained by simply
discarding the last B-frames in coding order, cutting the frame-rate in half at each temporal
level. Since the system relies on MVs, the lowest temporal layer which can be indexed is
reached with a GOP structure where one predicted B- or P-frame is left between two intra-
coded I-frames (IBIBL...).

Spatial scalability of the descriptors can be easily achieved by normalizing or scaling by
the scale factor in size between the query video and the video to be compared. The features
that are invariant to spatial scalability are the number of objects and the angle difference
of the trajectories. An advantage of the correlation coefficient regarding scalability is the
invariance with respect to scale changes of the feature vectors. Correlation is invariant to
scalar multiplication, so spatial scalability is inherently given for all features where similarity

is measured in terms of correlation.

The temporal and spatial scalability results for the best compressed domain descriptor
- motion activity - are shown in Fig. 6.10. In order to demonstrate the spatial scalability,
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Figure 6.10: Spatial and temporal scalability of motion activity

queries have been performed with the original clip at full spatial and temporal resolution
(1920x1080 @A 25 fps), at full temporal and half spatial resolution (960x540 @ 25) and finally,
full temporal and quarter spatial resolution (480x272 @ 25). For temporal scalability, we
queried with descriptors that were calculated on the quarter resolution input video at half
temporal resolution (480x270 @A 12.5 fps) and at quarter temporal resolution (480x272 @
7.25 fps), which also represents the last temporal layer that still contains predicted B-pictures
with motion information.

For queries with lower spatial resolution and full temporal resolution, the retrieval re-
sults are almost identical, so spatial scalability in the tested range of resolutions (1920x1080
down to 480x270) does not affect the retrieval performance. Regarding temporal scalability,
a slight performance decrease can be noticed, but considering the short duration of the se-
quences, the performance is still very good. The majority of sequences lasts only 3 seconds,
so at 7 fps, the clip is entirely described with 10 integer values since after reduction, only
every 2nd frame is a B-frame containing motion vectors.

Fig. 6.10 also shows the scalability of the second combined scheme (SIFT plus motion ac-
tivity). The precision-recall curves have been obtained in a similar fashion as for the motion
activity feature alone and clearly demonstrate the retrieval robustness towards spatially as
well as temporally downscaled query videos.
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6.7 Codec Interoperability

We performed all experiments on the H.264 encoded version of the data set, but since MPEG-
2 is still in wide use, it is interesting to know if the presented compressed domain descriptors
allow for cross-format queries. H.264 and MPEG-2 share the same basic coding principles.
Images are cut into macro-blocks, block-based motion compensation takes place, transform
coding is applied and entropy coding assures small file sizes. Since macro-block size his-
tograms are not applicable to MPEG-2 and outlier motion did not perform very well, we
focus on the two features bit rate and motion activity.

In order to evaluate the performance of cross-format queries, we created a second ver-
sion of the whole corpus in MPEG-2. Like for the H.264 version, the GOP size was set to 8. A
modified version of libmpeg? [152] was used to extract the number of coded bits per frame

and the motion vectors.

Bit rate

Before evaluating cross-format queries, we calculated the precision-recall curve for the
bit rate descriptor on the pure MPEG-2 data base. Subsequently, we performed queries
with H.264 bit rate vectors on the MPEG-2 data base. The resulting curves are depicted in
Fig. 6.11.
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Figure 6.11: Comparison between bitrate feature in the MPEG-2 and H.264 domain

It can be noticed that the bit rate feature works better on the pure H.264 version than
on MPEG-2. The reason for this behavior is that for MPEG-2, the amount of coded bits per
frame depends less on the actual video content than in H.264, where more advanced pre-
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diction and coding schemes are applied, resulting in better defined bit rates. Due to this
property, cross-format queries on bit rate do not lead to satisfactory retrieval results. How-
ever, on pure H.264 data sets it performs considerably well and is extremely fast and easy to
extract by parsing the bit stream.

Motion activity

Motion activity, i.e., the weighted sum of all motion vectors per predicted frame, can be
computed for MPEG-2 in the same fashion as for H.264. The biggest difference concerning
the two formats are the number of MVs per frame. Although the macro-block sizes of both
standards are 16x16 pixels, a MB in H.264 may be cut down further in up to 16 sub-MB
partitions. Each of these partitions has its proper MV assigned, so predicted H.264 frames
usually contain more motion vectors as MPEG-2 streams, resulting in greater variability in
the descriptor over time. An example of how the two standards process the same sequence
is given in Fig. 6.12, which shows the MB grid and the associated MVs for the same frame of
the MPEG-2 and the H.264 version of the clip.

(a) MPEG-2 (b) H.264
Figure 6.12: MB grid and MVs of the same frame from MPEG-2 and H.264/SVC. MVs are scaled
for better visibility. Sequence sunflower

In order to obtain precision-recall curves of a motion activity based MPEG-2 only system
and for cross-format queries, we proceed in the same fashion as for the bit rate feature. The
results are provided in Fig. 6.13. We achieve the best performance on the MPEG-2 only data
base. This is supposedly due to the coarser and evenly spaced MB grid of MPEG-2, whereas
the MB configuration in H.264 is likely to change when coding transformed versions of the
same video. The H.264 only system also delivers good results, but the retrieval quality drops
significantly for cross-format queries. However, we achieve better results with cross-format
queries using motion activity than with bit rate, e.g., average recall of about 0.5 at precision
0.7.

The two major reasons for the performance drop of cross-format queries are different
implementations of the block matching algorithm in both standards and the sub-partitioning
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Figure 6.13: Comparison between motion activity feature in the MPEG-2 and H.264 domain

of MBs in H.264, which results in more MVs per frame on average. This leads to a motion
amplification with respect to MPEG-2. For cross-format queries, we implemented a slightly
modified version of the motion activity calculation for H.264. In order to simulate MPEG-2
behavior in H.264, we calculate an average MV for each 16x16 pixel MB. The cross-format
queries on the given test set improve by up to 10 % due to this simple modification. The
respective precision-recall curves are also provided in Fig. 6.13.

6.8 Summary and Conclusions

We proposed different compressed domain features and evaluated their performance in a
video copy detection framework. Since neither pixel nor color information is available in
the compressed domain, motion delivers the most significant and discriminant information.
Encoding based features like bit rate over time or histograms of MB partition sizes deliver
solid results but are largely codec dependent, what can pose problems in mixed format data
bases. Among the analyzed descriptors, motion activity provides the overall most robust
results for a variety of videos and transformations. However, a search that incorporates
multiple features and that adapts to the properties of the query video can be applied to en-
hance the retrieval results. If high retrieval performance is needed in terms of precision and
recall, a combination of keyframe based and compressed domain analysis is proposed, de-

livering near perfect results on the given data base.

We conclude with some general observations and system design recommendations regard-

ing sequence matching in the compressed domain:
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¢ If available, prior knowledge of the present transformations should be respected when

designing a retrieval system.

* Regarding the detection of copies, compressed domain analysis allows for fast and
robust analysis for a variety of videos. However, image domain methods are better

suited for very static scenes and retrieval of similar videos.

¢ When using only a single video descriptor, motion activity is performing best for the
task of video copy detection.

¢ For matching of 1-dimensional temporal features, the correlation coefficient is a simple

yet robust similarity measure that inherently provides scalability in magnitude.

¢ For computational efficiency, down-sampling (or processing of lower spatial layers in
the case of scalable content) may be performed to approximately CIF without affecting

the overall retrieval results.

¢ A combination of local, key-frame based and temporal, motion based descriptors de-

livers the best results.

Our research on compressed domain video copy detection lead to the publication pre-
sented in [153]. For future work, we want to validate the results on larger video collections
of scalable high-definition content, including more transformations like logo insertion and

combinations of different transformations.
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Figure 6.15: Absolute number of false positives per query clip.
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Chapter 7
Joint indexing/coding

The most valuable type of compressed domain information is motion in the form of block-
based displacement vectors. As pointed out before, transform coding coefficients, which are
often used in MPEG-2 video analysis, are not available in the H.264 domain due to spatial

intra-prediction mechanisms.

Concerning H.264 compressed domain processing that relies on other information than
motion, we showed in Chap. 6 how encoding based features like the frame-wise bit rate or
macroblock partition size histograms can be exploited for video copy detection. Poppe et al.
demonstrated in [53] that the number of coded bits per macroblock can be used to perform
object detection and tracking in sequences with static cameras. However, motion is by far the
most versatile information found in compressed streams. It can serve a variety of different
purposes, including mosaic construction [37], camera motion estimation or object detection
and tracking, as demonstrated in Chap. 3.

A limiting factor for the achievable performance of compressed domain analysis is the
quality of the motion vectors (MVs). The MV fields found in the stream are optimized in
terms of coding efficiency and do not necessarily represent the real motion in the scene.
They are generated by a block-matching algorithm during encoding and can be regarded
as a noisy and sparse version of the true optical flow. MV fields that contain severe noise
can compromise the whole processing pipeline. Noise manifests most of all in vectors with

random magnitude and orientation, most notably due to the following reasons:

* non-static, textured moving background regions like water or trees

* large, low-textured areas such as flat white walls or blue sky.

While the first problem also poses severe problems to image domain analysis using com-
mon techniques like background subtraction, the second problem is more pronounced in the
compressed domain. Regarding MPEG-2 streams, a detection of problematic, low-textured
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zones can be performed on DCT coefficients to assist scene segmentation and object detec-
tion [38]. When working with motion only, post-processing like spatio-temporal filtering of
the MV fields can alleviate the impact of noise to a certain extent, but in situations where the

MVs are too noisy and random, compressed domain algorithms fail.

Arguably the most obvious and general approach to compensate for rough and poten-
tially erroneous compressed domain information is to partially or even fully switch to im-
age domain processing. Examples of how information from both processing domains can be
combined was shown in Chap. 6 in the context of a video copy detection framework, and in
Chap. 4 regarding the analysis of traffic surveillance videos. While image domain processing
increases the system robustness in most cases, the computational complexity on the analysis

side also increases.

In this chapter, we present an approach to joint indexing and coding which shifts the
increased computational complexity back to the encoder side by correcting the MVs from
the original block-matching algorithm of H.264. The higher quality in terms of indexing
and analysis of the new MV fields then allows for low-complexity, compressed domain only
processing on the decoder/analysis side. The drawback is reduced coding efficiency of the
resulting video streams as a trade-off for higher quality analysis results.

7.1 Related Work

Compressed domain analysis is mostly based on video streams that have been encoded with
common block-based standards like MPEG-1/2 and H.264, which have been designed with
respect to coding efficiency but not with indexing and vision tasks in mind. An approach to
video coding that facilitates analysis is object-based video coding, where the coded entities

are the visual or semantic objects in a scene rather than macroblocks.

Hakeem et al. [154] presented an object-based video coding framework for surveillance
applications with static cameras. The method detects and tracks objects in the scene and
learns the appearance model of each object using a principal component analysis (PCA).
Each object is then coded using the coefficients of the most significant principal components
of its learned appearance space. The rigid component of the object’s motion is coded in terms
of its affine parameters. Similar to the approach presented by Babu and Makur in [155],
foreground segmentation is assumed to be given.

Other approaches include the one from Nishi and Fujiyoshi [156], which is not based
on the coding of whole objects but on a pixel state analysis, or the method from Iglesias et
al. [157] which represents an entire frame using its projection on the eigenspace computed
from a reference frame. Schwartz et al. [158] proposed a hybrid approach that combines tra-
ditional, block-based MPEG-4 encoding with eigenspaces for the compression of fixed-view
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surveillance videos. The eigenspaces are initially learned from a subset of sampled frames,
pixels within a block are then projected to the corresponding eigenspace and the reprojection
error is measured. If the reprojection error is high, meaning that the block is not modeled
properly by the eigenspace, the block is encoded with traditional MPEG-4 mechanisms. To
facilitate post-encoding vision tasks, the location of blocks containing moving objects is en-

coded, where the locations are obtained from the reprojection error of the eigenspaces.

MPEG-4/Part 2, also known as MPEG-4/ Visual, provides mechanisms for object-based
coding [159], but the standard had little success and H.264 became the de-facto industry
norm due to its superior coding performance. We propose an approach to facilitate video
analysis by modifying the original H.264 encoder’s motion compensation (see Sec. 7.2). The
resulting streams are still standard compliant, but enable fast analysis at moderate decreases

in coding efficiency.

7.2 Motion Vector Correction

As stated before, the H.264 block-matching algorithm does not aim at finding motion vec-
tors which represent the true optical flow between two frames, but instead searches for the
displacement of a macroblock in a limited neighborhood which minimizes the prediction
residue.

Our idea is to provide H.264 streams that are conform to the standard and still nearly
as efficiently coded as the original ones, but with MV fields optimized for precise indexing
tasks. To achieve this, we extend the H.264/SVC encoder implementation JSVM [19] with
an additional reference motion estimator and decide on a MB basis if the original MV is kept
or replaced. Figure 7.1 shows an overview of the experimental setup.

Refert_ence Motion Vector
Motion Correction
(Motion2D)
INPUT i Block . Motion E
VIDEO Matching | compensation :
SsVC Entropy Transform
STREAM Coding Coding

Figure 7.1: Motion vector correction scheme

139



CHAPTER 7. JOINT INDEXING/CODING

The reference motion estimation is performed with Motion2D [4], a publicly available
motion estimation library, which is applied to the input image sequence in coding order.
Motion2D exploits a robust, multi-resolution and incremental estimation method exploiting
only the spatio-temporal derivatives of the intensity function [36]. Output of this step are
the frame-wise global motion parameters 6,, F= (ai,...,ae) of the 6-parameter affine model,
the weights W,,r which determine which pixel contributes to the global motion estimation,
and the motion field MF,r containing the reference displacement vectors per pixel.

The output of Motion2D is fed to the motion correction module, which is inserted be-
tween the motion estimation algorithm of H.264 and its motion compensation counterpart.
Its second input are the original AVC/SVC motion vector fields from the block matching
algorithm, denoted by MF,. Global motion estimation like described in Sec. 3.2 is per-
formed on these original motion fields, resulting in 6,,¢ = (41, ...,4s) and outlier masks in
MB resolution.

The decision if the original H.264 motion field is changed is based on the summed,
element-wise mean squared error (MSE) between 0,.¢ and 6yg:

(7.1)

< AgMme = next frame

i(ai_ﬁi)z{ > Agme = correct MFoq
i=1

where Agpg is a user-defined threshold which controls the number of frames that will be
corrected. If the MSE is below Agyg, the original MVs are passed through, so the original
stream is left untouched.

If it exceeds the threshold, a subset of all original MVs are corrected if their MSE with
respect to the reference motion is higher than a second threshold Ap;y, which determines
how many MBs per motion field will be changed. Denoting the components of motion vector
MYV = (dx,dy)7, the decision rule per MB is given as

> Ay = MVorg = MVref .

(7.2)
< Amy = nextMB.

(dxref - dxorg)z + (dyref - dyorg)2 {
In the case of bi-predicted MBs with multiple reference frames and motion vectors, the deci-
sion to correct is made independently for each MV.

In order to limit the impact on coding efficiency and since the most problematic regions
are low-textured areas, we only correct MVs which are considered as background. The pixel-
wise weight images W,,; from the iterative reference motion estimator are used to decide if
a macroblock is considered foreground or background. Examples for weight images are
shown in Fig. 7.2, where white corresponds to a weight of 1 and black to a weight of 0. To
determine if a MB is considered background, we calculate the mean value of the region in
Wi, that is covered by the MB in question. If the mean value is greater than 0.5, we consider
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the MB to be foreground and do not correct its motion prediction. As it can be seen in Fig. 7.2,
low-textured parts within objects such as unicolor shirts are also considered as background
and will thus be corrected if the reference motion significantly differs from the one obtained
by block-matching.

(a) redDress (b) camMotion (c) zoom
Figure 7.2: Example screenshots and pixel-wise, global motion estimation weight images W, ¢
for three test sequences

The new values for the corrected MVs are taken from the reference motion field MF,,
which is defined at pixel level for background pixels only. It has to be noted that MF. is
not calculated as the pixel-wise optical flow, but is reconstructed from 6,.f = (a1, ..., as), S0
the reference displacement vector MV,,s = (dx,.f, dyr.f) at position (x,y) is given as

dxyef = a1+ azx (x —xc)+az3*(y—y.) and
AYrep = ag+asx(x —xc) +as* (Y —Yc), (7.3)

where (x,y.) denotes the image center coordinate. The corrected MV is thus calculated by
Eq. 7.3 at the center of each macroblock.

If a motion vector is corrected, the rest of the H.264 processing chain is not affected, i.e.,
motion compensation is performed as usual. The prediction residual after compensation
with the corrected MV is usually greater than the original one, so the coding efficiency is
decreased. An example for an original H.264 motion field in a problematic scene and the
corrected version is shown in Fig. 7.3. The scene contains large regions showing white walls,
which have been originally coded in SKIP mode with zero motion. While this behavior
increases coding efficiency, it poses sever problems to compressed domain analysis. The
reference field shown in Fig. 7.3b enables accurate global motion estimation, which builds
the basis for many further vision tasks such as object detection.
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(a) Original MV field (b) Reference motion
Figure 7.3: Original H.264 MV field in comparison with reference displacement vectors. Se-
quence camMotion during zoom out

The mentioned thresholds Agye and Ay have to be chosen so that a minimal decrease
in efficiency leads to indexing gains defined by the target application. Here, we consider
global motion estimation and the detection of the presence of camera operations like pan-
ning, tilting and zooming as the target application because the quality of the results largely
affect the performance of further vision tasks. For the time being, we set both thresholds
manually (see next section).

7.3 Results

In this section, we present the global motion estimation (GME) results for the corrected
streams in comparison to those obtained by the original streams and to those obtained by
Motion2D [4] on the raw sequence. We show the results for three representative test se-
quences, redDress, camMotion and personZoom, which are part of the high-definition LaBRI
video corpus and contain neither cuts nor transitions. Screenshots of the three sequences are
shown in Fig. 7.4.

7.3.1 Example 1 - redDress

The sequence redDress is taken as example for standard situations. It was shot outdoor,
is well textured and contrasted in most regions and contains camera panning, tilting and
zooming. Although the scene shows multiple moving objects, the background remains the
dominating region. In scenarios similar to this, compressed domain processing is likely to
deliver robust and reliable results. Figure 7.5 shows the global motion estimation results
for the sequence redDress, obtained by analyzing the raw video with Motion2D (Fig. 7.5a)
and by analyzing the original, uncorrected SVC base layer motion vectors (Fig. 7.5b). The
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(c) personZoom
Figure 7.4: Example sequences for joint indexing and coding approach

compressed domain results are similar to those in the image domain and no correction of the

MYV fields is necessary.

The fact that the compressed domain GME algorithm is delivering robust results implies
that the H.264 motion vectors approximate the true optical flow well and that outlier blocks
due to noise and moving objects are successfully rejected. Figure 7.6 on the left shows an
example of an outlier mask, where MB that are excluded from the GME support are framed
in red. Although the mask is not perfect, it manages to capture most object blocks in a
difficult zooming situation and with object motion that is less pronounced since they are
moving towards the camera. Spatio-temporal filtering of the outlier masks, as shown on
the right, alleviates the majority of miss-detections and allows for further processing like

unsupervised object detection and tracking.

7.3.2 Example 2 - camMotion

We created sequence camMotion to test the compressed domain detection of different types
of camera operation in low-textured environments. It contains tilting/panning in different
directions, zooming out as well as zooming in. At times the camera is out of focus, resulting
in low-contrast images.

The GME results for this sequence are depicted in Figure 7.7. Here, the detection results
obtained with the original SVC stream are partly degraded, mainly due to the presence of
large, flat zones in the image, resulting in very noisy and arbitrary MV fields for certain
frames. To enhance indexing results, the MVs of these frames have been corrected. The
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Figure 7.5: Motion estimation results for sequence redDress

Combinsd MWYa

Figure 7.6: Raw (left) and filtered (right) outlier mask of frame 134 of the sequence redDress.

threshold Ay, was set to 15 and Agyg was varied between (A) 2 and (B) 1. For Agpe = 2,
this caused the correction of 5 percent of all frames (48 frames), and per modified frame an
average number of 46 MBs, representing on average 30 percent of the estimation support
and affecting about 23 percent of all pixels. For Agpmg = 1, the motion vector fields of 9
percent of all frames had been corrected. The average luminance PSNR of both decoded,
corrected sequences stayed nearly the same (-0.2 dB), at an increase in bit rate of 1.7 percent
for Agpme = 2 and of 3.1 percent for Agpme = 1.
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(a) Motion2D (b) Corrected SVC (c) Original SVC

Figure 7.7: Motion Analysis with (a) Motion2D [4] of raw video at base layer resolution, (b) of
the corrected SVC stream with Apry = 15, Agme = 1 and (c) of the original SVC stream.
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] \ Orig. \ Corr. (A) \ Corr. (B) \ Motion2D

Recall 0.90 0.93 0.96 0.98
Precision | 0.83 0.92 0.94 0.97
Table 7.1: Results for recall and precision at Az, = £0.7. Sequence camMotion.

Figure 7.8 shows the qualitative global motion detection results of all three approaches.
The detection threshold A, for significant motion was empirically determined and set to
£0.7 for all 3 approaches. Below this threshold, the variations of the parameters a; to a4 is
considered as noise. Ay is resolution dependent and has to be scaled with resolution. The
recall, i.e., the percentage of all frames that really contain camera movement and that are
correctly classified by the system was improved by 6 percent. More notably, the proposed
correction mechanism reduced the number of false detections, i.e., improved the precision
by 11 percent. Values for precision and recall are summarized in Table 7.1 considering the
camera motion classification results for each frame. The ground truth has been obtained

manually.
— = e — B  Motion2D
1—% — : E T H : ] : i corrected SVC (B)
— — L p— ] | corrected SVC (A)
[ PP R - i orginal SVC
. I l‘ 1 II I II : I 1 I II jl Ij . I ) I . : I > frame
0 200 400 600 800 1000

Figure 7.8: Detection results for fixed Ag,; = £0.7 and Appy = 15. (A) Agmre = 2 (B) Agme = 1.
The dotted lines depict the limits of the manually determined ground truth. Sequence camMotion

The obtained results after correction nearly reach the performance of Motion2D. In par-
ticular, the indexing results of frames with large, low-textured areas could be improved,
which are considered as the most problematic ones [26], [160].

7.3.3 Example 3 - personZoom

The third example demonstrates the motion vector correction on a test sequence which was
shot in a very low-contrast, low-texture environment with a moving object and camera op-
eration. A short zoom-in is performed on a person who is walking towards the camera,
followed by a long zoom-out while the person is turning slightly to the right. The simplicity
of the background allows for efficient coding with mostly zero-motion or SKIP blocks on
the flat white walls. However, camera motion estimation and object detection in the com-
pressed domain becomes difficult due to the very sparse motion density despite the presence
of strong scene motion.
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Figure 7.9 shows the global motion estimation results with Motion2D in the image do-
main together with the compressed domain results. In contrast to the image domain results,
the short zoom-in is completely missed in the compressed domain, and the long zoom out is
detected only during the last third of its duration. This leads to the correction of 53 percent
of all motion fields, which in turn causes a large bit rate increase of about 16 percent.

6 T T T T T T T 6

Motion activity
Motion activity

1 1 1 1 1 1 1 . . . . . | L
o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Frame Frame

(a) Motion2D (b) Compressed domain GME

Figure 7.9: Global motion estimation results on raw image sequence with Motion2D and in com-
pressed domain. Sequence personZoom

The effect of the motion correction on automatic object detection is illustrated in Fig. 7.10,
which shows original and corrected MVs at a moment of strong zoom-out. In the original
H.264 stream, motion vectors are mostly present on well-textured areas. The white back-
ground regions show zero motion, which leads to the classification of nearly all non-zero
vectors as outliers. After motion correction, the refined outlier masks mostly cover only
real objects in motion. As it can be noticed in Fig. 7.10b, at the given value of Apy = 15,
only macroblocks on both horizontal border regions have been corrected because zooming
is most pronounced in these areas.
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(a) Original H.264 MVs (b) Corrected MVs

Figure 7.10: Example of motion vector correction. Original H.264 MVs are drawn in yellow,
corrected vectors in blue. Outlier blocks are framed in red. Sequence personZoom

146



7.4. SUMMARY AND CONCLUSIONS

7.4 Summary and Conclusions

Concerning traditional image domain processing, the presence of large low-textured areas
in the scene usually facilitates vision tasks. In the compressed domain however, this results
in corrupted motion vector fields, most notably in moments containing camera operations
like panning or zooming. Hence, global motion estimates which are for instance necessary to
perform motion compensation become erroneous and the whole processing chain is affected.
The main reason for noisy motion vector fields is the block matching algorithm which is
employed in standards like H.264.

In order to enable efficient compressed domain processing in such scenarios, we pro-
posed an extension of the H.264 motion estimation module. Parallel to traditional block
matching, we perform robust global motion estimation on the raw input sequence [36, 4]
during encoding and decide for each frame independently if the original motion vector field
is regarded as precise enough to allow for successful compressed domain analysis. If the
results from both processing domains differ significantly, a subset of the original motion
vectors is corrected according to the reference motion. We demonstrated by means of ex-
amples how the quality of global motion estimates as well as object detection results in the
compressed domain can be improved through motion correction. The proposed approach
lead to the publication in [161].

The advantages of the proposed approach are that the resulting streams are still standard
compliant and that existing compressed domain algorithms can be applied without modi-
fication at better results. The major drawbacks are the increased computational complexity
on encoder side and the decreased coding efficiency, since the new motion vectors usually
cause higher prediction residuals. Possible application scenarios for the proposed method
are closed systems such as surveillance networks, where the provided analysis and indexing

gains outweigh the decreased coding efficiency.

A number of extensions and modifications of the proposed method can be considered for
future work. Ideas include to incorporate image domain segmentation and texture analysis
algorithms to identify problematic regions and to replace the reference motion estimator Mo-
tion2D with true optical flow techniques. Besides the modification of the motion fields, an-
other possibility would be to take advantage of the fact that H.264 uses different block sizes.
A pre-defined block coding mode may for instance be reserved for object borders, and the
compressed domain extraction of object silhouettes could be performed in a straight-forward
way by stream parsing. The negative effect on the coding efficiency would be negligible, but
the position of object borders had to be determined beforehand in the image domain.
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Chapter 8

Summary and Conclusions

In this thesis, we presented efficient methods to index and analyze single- or multi-layer
H.264/AVC or SVC streams without a full decoding to the pixel level. The most valuable
information found in the stream is motion in the form of block-based displacement vectors,
which become accessible after reversing the entropy coding.

The extracted motion vectors can be used to robustly estimate global scene motion, which
often originates from camera operations like panning or tilting. This step is necessary if the
target application shall not be limited to fixed view sequences. Furthermore, the robust
estimation scheme with iterative rejection delivers outlier masks as a by-product, provid-
ing a rough segmentation of the scene background and moving foreground objects. Due
to its proven robustness, we ported an existing global motion estimation algorithm to the
H.264/SVC domain, which can also handle standard AVC streams without further modifi-

cation.

Based on the obtained outlier masks and the motion vectors of foreground regions, we
developed novel methods for detecting and tracking moving objects in the image plane seen
by the camera. The most difficult tracking situations arise from multiple occluding objects,
resulting in merged silhouettes in the binary mask image. In a general approach not trained
to a specific type of object and where non-rigid object may appear, merged object masks
cannot be separated by looking at a single instant in time. We proposed a temporal analysis
and the construction of object energy images as dynamic object models to resolve merged
mask situations. The image plane tracking results are illustrated by 2D+t representations,
which show the object trajectories together with the camera motion over time for a given

video sequence.

From the temporal evolution of the object silhouette dimensions, we presented an algo-
rithm to estimate the relative distance of moving objects to the camera. The computed depth
information allows us to construct pseudo 3D representations of the object trajectories or,
via projection, the construction of 2D ground plane trajectories. Based on single-view ob-
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ject tracking results, we proposed a new approach to estimate the camera orientation angle,

which is often important information towards a better understanding of the scene.

We demonstrated how real-world applications benefit from the presented techniques us-
ing examples from the domains of traffic surveillance and video copy detection. We also
presented the limitations of pure compressed domain processing in both scenarios, lead-
ing to processing schemes that combine image domain techniques with compressed domain
motion information. All of the presented methods require no manual training, can handle
camera motion and multiple objects, are fully unsupervised and allow computationally effi-

cient analysis.

With the recent development of video coding standards, we believe that the presented
techniques will still be relevant in many years to come. The large-scale deployment of
H.264/AVC and SVC continues, and the potential future recommendations, like High-Per-
formance Video Coding (HVC) discussed by the MPEG!, or H.265/Next-generation Video
Coding (NGVC) discussed by the ITU-T VCEG?, will most likely be based on the existing
H.264 standard.

8.1 Future Work

Unsupervised video indexing and analysis is a challenging area of research with many un-
solved problems. Large-scale applications like video retrieval or surveillance require robust
and efficient processing schemes, and analysis in the compressed domain offers great possi-
bilities to achieve this goal. Considering the scope of this thesis, we consider the following
problems as the most promising future directions:

¢ The improvement and combination of existing compressed domain algorithms. Up to
now, most approaches are optimized for a specific application environment for which
they deliver good results but fail in others. The combination of multiple techniques
and dynamically switching between them as a function of the current conditions could
enable more general solutions. As an example, object detection in static scenes can
be efficiently performed on the number of coded bits per macroblock, while object
detection based on global motion estimation could take over in case of camera motion.

¢ The further study of hybrid image/compressed domain approaches. Robust pixel-
level techniques can be used on sporadically decoded frames to initialize, assist or
correct compressed domain algorithms.

Motion Picture Experts Group: http://www.mpeg.org/
2ITU-T Video Coding Experts Group: http://www.itu.int/ITU-T/
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¢ We presented methods to estimate elements of the basic scene geometry like the orien-
tation angle of the camera or the position of the horizon line. We have not yet exploited
these results. Tasks like object detection, tracking and classification can greatly benefit
from this information. Examples include the correction of estimated object velocities

and dimensions in a classification framework.
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Additional Images
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THOMSON

22

Figure A.1: Screenshots of base clips 1-24 (of 47) in the test data base for video copy detec-
tion. Copyrights: 1-3,19-41,44-45 ©LaBRI; 4-6 ©TUM / Taurus Media Technik; 7-10 ©SV'T; 11,13
©Technicolor; 12, 14-18 © Thomson; 42-43, 46-47 ©Warner Bros. Adv. Media Services Inc.
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Figure A.2: Screenshots of base clips 25-47 (of 47) base clips in the test data base for video copy
detection. Copyrights: 1-3,19-41,44-45 ©LaBRI; 4-6 ©TUM / Taurus Media Technik; 7-10 ©SVT;
11,13 ©Technicolor; 12, 14-18 ©Thomson; 42-43, 46-47 ©Warner Bros. Adv. Media Services Inc.
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Figure A.3: Global motion estimation of base clips 1-24 (of 47) in the test data base for video copy
detection.
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Figure A.4: Global motion estimation base clips 25-47 (of 47) in the test data base for video copy
detection.
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