Un cadre générique pour les modèles globaux fondés sur les motifs locaux

par Eynollah Khanjari Miyaneh

Thèse de doctorat en Informatique

Sous la direction de Arnaud Giacometti.

Soutenue le 14-12-2009

à Tours , dans le cadre de Ecole doctorale Santé, sciences, technologies (Tours) , en partenariat avec Laboratoire d'informatique (Tours) (équipe de recherche) et de Université François Rabelais (Tours). Ecole polytechnique universitaire (laboratoire) .

Le président du jury était Arnaud Soulet.

Le jury était composé de Guillaume Cleuziou, Patrick Marcel, Dominique Laurent, Bruno Cremilleux.


  • Résumé

    La construction de modèles globaux est une tâche centrale pour l'extraction de connaissances dans les bases de données. En particulier, les modèles globaux fondés sur des motifs locaux tels que les règles d'association apportent une description compréhensive et succincte des données. La multiplicité des points de vue, des objectifs et des données engendre une grande diversité de modèles et de leurs méthodes de construction. Cette thèse propose un cadre unificateur pour la formalisation et la manipulation de modèles globaux fondés sur les motifs locaux. Dans ce cadre, de très nombreuses méthodes de construction existantes en classification supervisée et non-supervisée, se modélisent simplement de manière déclarative. Nous apportons un algorithme générique permettant à l'utilisateur de s'affranchir des spécificités techniques, notamment lié à la forme des motifs locaux mis en jeux ou à leur extraction. Par ailleurs, nous proposons également des optimisations de cet algorithme en fonction des paramètres. Enfin, notre cadre en isolant les principales fonctionnalités des méthodes de construction existantes en facilite la comparaison.

  • Titre traduit

    A generic framework for global models based on local patterns


  • Résumé

    The construction of global models is a significant field of Knowledge Discovery in Databases. In particular, global models based on local patterns such as association rules provide a succinct and understandable description of data. The numerous viewpoints, aims and domain-specific data require a wide range of global models and associated construction methods. This thesis proposes a generic framework for formalizing and manipulating global models based on local patterns. In this framework, a lot of the existing construction methods dedicated to classification, clustering and summarization are easily formulated in a declarative way. We provide a generic algorithm enabling to leave aside technical aspects, for instance the kind of used patterns and associated mining approach. Moreover, we also optimize this algorithm according to the specified parameters. Finally, our framework facilitates the comparison of existing construction methods by highlighting their main features.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1vol. (142 p.)
  • Annexes : Bibliogr. p. 133-141.

Où se trouve cette thèse ?

  • Bibliothèque : Ecole Polytechnique de l’Université François Rabelais . Départements Electronique et Energie, Informatique, Mécanique et Systèmes. Centre de documentation.
  • Disponible pour le PEB
  • Cote : DI-TH-774
  • Bibliothèque : Université François Rabelais. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.