Opérateurs de Schrödinger sur des graphes métriques

par Ondřej Turek

Thèse de doctorat en Mathématiques appliquées. Physique mathématique

Sous la direction de Pierre Duclos et de Pavel Exner.

Soutenue en 2009

à Toulon .


  • Résumé

    Cette thèse concerne l'étude des graphes quantiques, c'est à dire, des systèmes quantiques dans lesquels une particule non relativiste est confinée sur un graphe. Nous proposons une nouvelle voie pour représenter des conditions aux limites, et à l'aide de ce résultat nous résolvons le problème, resté longtemps ouvert, d'approximation par des graphes réguliers de tous les couplages singuliers aux sommets dans un graphe quantique. Nous présentons une construction dans laquelle les arêtes sont disjointes et les paires d'extrémités ainsi obtenues sont raccordés par des arêtes additionnelles de longueur 2d. Chacune de ces arêtes porte un potentiel delta et un potentiel vectoriel. Nous montrons que lorsque d tend vers zéro et les potentiels dépendent convenablement de d, la limite peut produire tout couplage singulier de sommets requis. Ce type de conditions aux limites est utilisé pour examiner les propriétés de diffusion par des sommets singuliers de degré 3. Nous montrons que les couplages entre chaque paire de lignes issues du sommet sont réglables individuellement ce qui pourrait permettre la conception de filtre quantique de type "aiguillage spectral". Nous étudions aussi les opérateurs de Schrödinger sur un graphe infini en forme de chaîne composée de cercles identiques couplés aux points de contact par les interactions. Delta Si le graphe est périodique, l'hamiltonien a un spectre de bande. Nous considérons une déformation "courbée" de la chaîne qui consiste en un changement de la position du point de contact entre deux cercles. On montre que cette déformation a pour conséquence la naissance de valeurs propres et analyse leur dépendance par rapport à l"angle de courbature".

  • Titre traduit

    Schrödinger operators on metric graphs


  • Résumé

    This thesis is devoted to investigation of quantum graphs, in other words, quantum systems in which a nonrelativistic particle is confined to a graph. We propose a new way to represent the boundary conditions, and with the help of this result we solve the longstanding open problemof approximating by regular graphs all singular vertex couplings in quantum graph vertices. We present a construction in which the edges are disjunct and the pairs of the so obtained endpoints are joined by additional connecting edges of lengths 2d. Each connecting edge carries a delta potential and a vector potential. It is shown that when the lengths 2d of the connecting edges shrink to zero and the added potentials properly depend on d, the limit can yield any requested singular vertex coupling. This type of boundary conditions is used to examine scattering properties of singular vertices of degrees 2 and 3. We show thar the couplings between each pair of the outgoing edges are individually tunable, which could enable the design of quantum spectral junctions filters. We also study Schrödinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by delta-couplings. If the graph is periodic, the Hamiltonian has a band spectrum. We consid a "bending" deformation of the chain consisting in changing the position of the point of contact between two rings. We show that this deformation gives rive to eigenvalues and analyze their dependence on the "bending angle".

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (pagination multiple 65-[80] p.)
  • Annexes : Bibliographie p. 61-64

Où se trouve cette thèse ?

  • Bibliothèque : Université de Toulon (La Garde). Bibliothèque universitaire. Section Campus La Garde.
  • Disponible pour le PEB
  • Cote : TH-SCI/2009TOUL5
  • Bibliothèque : Université de Toulon (La Garde). Bibliothèque universitaire. Section Campus La Garde.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.