Théorie de la fonctionnelle de la densité dépendant du temps avec correction d'auto-intéraction

par Jérémie Messud

Thèse de doctorat en Physique théorique

Sous la direction de Éric Suraud.

Soutenue en 2009

à Toulouse 3 .

  • Titre traduit

    Time dependent density functional theory with self-interaction correction


  • Pas de résumé disponible.


  • Résumé

    La Théorie de la Fonctionnelle de la Densité dépendant du temps constitue un outil de choix pour l'étude des mécanismes élémentaires d'irradiation moléculaire. Mais les approximations qui lui sont inhérentes n'éliminent pas un effet non physique appelé auto-intéraction, ce qui fausse complètement les propriétés d'irradiation. La voie la plus prometteuse permettant de supprimer l'auto-intéraction sans introduire aucun paramètre libre supplémentaire est d'utiliser des fonctionnelles "orbitales dépendantes" (méthodes SIC). Seulement, le formalisme usuel qui en découle n'est pas hermitique, faussant dramatiquement les prédictions physiques dans le cas dynamique, et les tentatives visant à rétablir l'hermiticité connaissent toutes des pathologies indésirables. Ainsi, la question, dans le cas dépendent du temps, d'un formalisme SIC exact (TDSIC), satisfaisant les lois de conservation et numériquement manipulable reste une question ouverte. Nous proposons une nouvelle formulation purement variationnelle, contraignant l'orthonormalité et utilisant le degré de liberté de transformation unitaire. Cela permet d'écrire les équations TDSIC exactes sous une forme hermitique (dans le sous espace occupé), satisfaisant toutes les lois de conservation et menant à un schéma numérique de propagation clair. Le prix à payer est que le hamiltonien résultant est explicitement non local, ce qui est plus gourmand numériquement parlant. Cela nous a conduit à proposer, dans un deuxième temps, une approximation locale particulièrement intéressante, que nous avons baptisée "Generalized SIC-Slater". Enfin, nous proposons un ensemble de résultats numériques sur des systèmes moléculaires variés afin de soumettre les formalismes développés au verdict de la nature et les comparer aux formalismes SIC usuels.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (139 p.)
  • Annexes : Bibliogr. p. 133-136

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2009TOU30131
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.