Vaporeformage et reformage à sec du méthane sur les précurseurs catalytiques LaNiO3/α-Al2O3 et La2NiO4/α-Al2O3 préparé par combustion assistée par microondes

par Braulio Silva Barros

Thèse de doctorat en Chimie des matériaux et catalyse

Sous la direction de Alain Kiennemann et de Dulce Maria de Araùjo Melo.

Soutenue en 2009

à Strasbourg .


  • Résumé

    Les catalyseurs à base de nickel sont habituellement utilisés pour les réactions de vaporeformage ou reformage à sec du méthane afin d’obtenir du gaz de synthèse. Ces catalyseurs conduisent à de très bonnes conversions. Cependant la désactivation par dépôt carboné est encore un problème à résoudre. Plusieurs approches ont été envisagées afin de palier à ce problème parmi lesquelles l’utilisation ces dernières années des oxydes de structure pérovskites. Les systèmes catalytiques tels que LaNiO3/-Al2O3 et La2NiO4/-Al2O3 ont été préparés par la méthode d'autocombustion assistée par micro-ondes qui utilise l’urée ou la glycine comme combustible. Ces systèmes ont été préparés pour comparaison par la méthode d’imprégnation de la pérovskite par une solution aqueuse de nitrate et par la méthode pseudo sol-gel. Le solide obtenu a été caractérisé avant et après tests catalytiques par DRX, BET, TPR, TPO, MEB et MET. Les catalyseurs synthétisés par combustion avec l’urée et par imprégnation ont montré une conversion élevée à basse température (supérieure à la thermodynamique) ce qui indique la contribution de la réaction de craquage du méthane. Les analyses des échantillons après test ont montrés la présence de carbone sous forme de nanotubes. Pour les échantillons préparés avec la glycine, après test, aucune trace de nanotube n'a été détectée. Les résultats des analyses DRX des catalyseurs testés suggèrent que la réduction partielle des oxydes La-Ni est nécessaire pour résister efficacement à la formation de dépôt carboné. Cette réduction partielle dépend de la méthode de préparation qui permet le contrôle de la taille et la dispersion des particules de nickel métallique.

  • Titre traduit

    Steam and dry reforming on LaNiO3/α-Al2O3 and La2NiO4/α-Al2O3 catalysts precursors prepared by microwaves-assisted self-combustion


  • Résumé

    Nickel catalysts have been used in steam or dry reforming of methane to obtain syngas. Usually, high conversion levels are obtained by these catalysts; however, the deactivation by carbon deposition is still a problem to be solved. Several approaches have been used to minimize this problem, outstanding in the last years the use of oxides with perovskite-type structures and/or related structures. The catalytic precursors LaNiO3/-Al2O3 and La2NiO4/-Al2O3 were prepared by microwaves-assisted self-combustion using urea or glycine as fuel. Additionally, the same systems were prepared using nitrates impregnation and Sol-gel method. Obtained powders were characterized before and after catalytic tests by XRD, BET, TPO, TPR, SEM and TEM. The catalytic precursors prepared by self-combustion with glycine presented conversion results in agreement with the thermodynamic data for both reforming reactions. In the other side, the prepared catalysts with urea and by impregnation showed high conversion levels in lower temperatures, indicating the occurrence of the reaction of methane cracking. The accomplished analyses by Temperature-programmed oxidation profiles and transmission electronic microscopy confirmed in these catalysts the formation of carbon nanotubos. Deposits of carbon were not detected in the prepared samples with glycine. X-ray diffraction of the tested catalysts suggests that the partial of the oxides La-Ni is responsible for the good aging and resistance to the carbon deposition. The partial reduction promotes the control of the size and a better dispersion of the metallic nickel particles.


  • Résumé

    Catalisadores a base de níquel suportado em óxidos não-redutíveis, como alumina, têm sido amplamente empregados nas reações de reforma a vapor ou a seco (CO2) do metano para obtenção de H2 ou gás de síntese (H2 + CO). Normalmente, altos níveis de conversão são obtidos por estes catalisadores, entretanto, a desativação por deposição de carbono ainda é um problema a ser solucionado. Diversas abordagens têm sido empregadas no intuito de minimizar este problema, dentre as quais tem se destacado nos últimos anos a utilização de óxidos com estrutura perovskita e/ou estruturas relacionadas. Paralelamente,o uso de metodologias de síntese mais rápidas, fáceis, aplicáveis em escala industrial e que permitam o controle das características microestruturais destes catalisadores, pode em conjunto, prover a solução para este problema. Os precursores catalíticos LaNiO3/-Al2O3 e La2NiO4/-Al2O3 foram preparados pelo método de autocombustão assistida por microondas usando uréia ou glicina como combustível. Adicionalmente, os mesmos sistemas foram preparados pelos métodos de impregnação úmida de nitratos e sol-gel para efeito de comparação. As amostras preparadas foram testadas nas reformas a seco e a vapor do metano, sendo avaliados os respectivos níveis de conversão, rendimento e/ou seletividade, como também a resistência à deposição de carbono, durante o tempo sob fluxo de reagentes na temperatura de reação. As amostras foram calcinadas a 800 oC (LaNiO3/-Al2O3) e 1000 oC (La2NiO4/-Al2O3), para obtenção das fases desejadas. Os pós-obtidos foram caracterizados antes e após os testes catalíticos por difração de raios-X, medidas de área superficial especifica, oxidação e redução à temperatura programada, microscopia eletrônica de varredura e de transmissão. A cristalização da fase LaNiO3 foi confirmada em todas as amostras de composição LaNiO3/ - Al2O3, calcinadas a 800 oC. Para as amostras de composição La2NiO4/ - Al2O3 a fase La2NiO4 foi obtida por autocombustão com glicina sem calcinação posterior. Para todos os outros casos a calcinação a 1000 oC foi necessária. Os perfis de redução à temperatura programada das amostras preparadas por combustão com glicina apresentaram picos de redução a elevada temperatura (900 oC), sugerindo a dissolução do alumínio sobre os óxidos redutíveis contendo níquel. O mesmo foi observado em menor proporção para as amostras preparadas por combustão com uréia e sol-gel. Os precursores preparados por autocombustão com glicina apresentaram resultados de conversão em acordo com a termodinâmica de ambas as reações de reforma. Por outro lado, os catalisadores preparados com uréia e por impregnação mostraram altos níveis de conversão em temperaturas mais baixas (> 90 % a partir de 600 oC), indicando a ocorrência da reação de quebra do metano (CH4 ® C + 2H2). Por sua vez, as analises realizadas por oxidação a temperatura programada e microscopia eletrônica de transmissão, confirmaram a formação de depósitos carbonáceos em significativa quantidade e na forma de nanotubos de carbono de paredes múltiplas. Depósitos de carbono não foram detectados nas amostras preparadas com glicina. Analises de DRX dos catalisadores testados sugerem que a redução parcial e não total dos óxidos La-Ni é responsável pelo bom desempenho e resistência à deposição de carbono. A redução parcial, neste caso relacionada a metodologia de preparação, promove o controle do tamanho e uma melhor dispersão das partículas de níquel metálico, além de permitir uma interação mais forte entre a espécie ativa e a superfície do suporte que contém átomos de níquel.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (XI-190 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 177-190

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Bibliothèque L'Alinéa - Droit Sciences.
  • Disponible pour le PEB
  • Cote : Th.Strbg.Sc.2009;0066

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2009STRA6028
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.