Segmentation of MRI images using non parametric deformable models integrating fuzzy technique

par Zhibin Chen

Thèse de doctorat en Traitement d'images

Sous la direction de Su Ruan et de Tianshuang Qiu.

Soutenue en 2009

à Reims en cotutelle avec Dalian University of Technology .

  • Titre traduit

    Modèles déformables non paramétriques avec l'intégration de la technique floue: application à la segmentation des images IRM


  • Résumé

    L'objectif de la thèse est de développer une méthode automatique pour segmenter les tissus cérébraux (la matière grise, la matière blanche et le liquide céphalo-rachidien) à partir des images IRM, fournissant ainsi des mesures quantitatives et précises du cerveau. Dans cette thèse, nous avons développé trois modèles déformables non-paramétriques en intégrant l'information statistique et l’information floue des images pour segmenter le cerveau en différents types de tissus. Nous présentons d'abord une méthode basée sur l’analyse de l'histogramme. La répartition de l'intensité des images est modélisée par le modèle de mélanges gaussiens (MMG). Les paramètres du MMG sont estimés par l’algorithme «Expectation Maximization». Ensuite, ils sont utilisés pour guider l'évolution des courbes pour atteindre la segmentation des tissus cérébraux. Nous proposons ensuite une amélioration d’un algorithme basé sur les contours actifs orientés région avec la contrainte géométrique. Grâce à la nouvelle expression proposée, il permet de résoudre le problème de stabilité sous-jacente associé à l'algorithme d’origine, et réalise une convergence rapide. Enfin, nous présentons une segmentation de multi-classes en intégrant une segmentation floue dans la méthode level sets. Elle utilise un ensemble d'équations différentielles ordinaires. Chacune d'elles représente une classe à segmenter. Cette approche réduit la complexité de calcul par rapport à l'algorithme multi-phase existant, permettant donc d’accélérer la vitesse de convergence. Toutes les méthodes ont été évaluées avec des images IRM simulées et réelles. Les analyses quantitatives sont données. Les résultats sont très encourageants


  • Résumé

    The research goal of this thesis is to develop an automatic segmentation method to segment brain MRI images into different tissues (gray matter, white matter, and cerebrospinal fluid), providing quantitative and precise brain measurements. In this dissertation, we have developed three non-parametric deformable models integrating statistical information and fuzzy information of images to segment the brain into different tissue types from multi types of MRI images. We firstly present a histogram analysis based algorithm, where the intensity distribution of the MRI images is modeled via the mixture Gaussian model (MGM). The parameters of components in MGM are estimated via the Expectation Maximization (EM) algorithm. Then the estimated parameters are used to guide the evolution of the level set curves to achieve the brain tissue segmentation. We then propose an improved algorithm to region-based geometric active contour. Thanks to the new regional term, the new algorithm solves the underlying stability problem associated with the original algorithm, and achieves convergence with less iteration number compared with the original algorithm. Finally, we present a multiclass algorithm by integrating fuzzy segmentation with the level set methods. The algorithm uses a set of ordinary differential equations; each of them represents a class to be segmented. The multiclass algorithm reduces the computational complexity compared with the existing multiphase algorithm, so speeds up the convergence rate. All algorithms are evaluated with simulated and real MRI images, and quantitative analyses are provided. The results are very encouraging

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (149p.)
  • Annexes : Bibliogr. p.136-147

Où se trouve cette thèse ?

  • Bibliothèque : Université de Reims Champagne-Ardenne. Bibliothèque universitaire. Bibliothèque Moulin de la Housse.
  • Non disponible pour le PEB
  • Cote : 09REIMS029
  • Bibliothèque : Université de Reims Champagne-Ardenne. Bibliothèque universitaire. Bibliothèque Moulin de la Housse.
  • Disponible pour le PEB
  • Cote : 09REIMS029Bis
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.