Knowledge-based image segmentation using deformable registration: application to brain MRI images

par Xiangbo Lin

Thèse de doctorat en Traitement d'images

Sous la direction de Su Ruan, Tianshuang Qiu et de Frédéric Morain-Nicolier.

Soutenue en 2009

à Reims en cotutelle avec Dalian University of Technology .

  • Titre traduit

    Segmentation d'images basée sur un recalage non rigide et des connaissances à priori: application aux images IRM cérébrales


  • Résumé

    L'objectif de la thèse est de contribuer au recalage élastique d'images médicales intersujet-intramodalité, ainsi qu’à la segmentation d'images 3D IRM du cerveau dans le cas normal. L’algorithme des démons qui utilise les intensités des images pour le recalage est d’abord étudié. Une version améliorée est proposée en introduisant une nouvelle équation de calcul des forces pour résoudre des problèmes de recalages dans certaines re��gions difficiles. L'efficacité de la méthode est montrée sur plusieurs évaluations à partir de données simulées et réelles. Pour le recalage intersujet, une méthode originale de normalisation unifiant les informations spatiales et des intensités est proposée. Des contraintes topologiques sont introduites dans le modèle de déformation, visant à obtenir un recalage homéomorphique. La proposition est de corriger les points de déplacements ayant des déterminants jacobiens négatifs. Basée sur le recalage, une segmentation des structures internes est étudiée. Le principe est de construire une ontologie modélisant le connaissance a-priori de la forme des structures internes. Les formes sont représentées par une carte de distance unifiée calculée à partir de l'atlas de référence et celui déformé. Cette connaissance est injectée dans la mesure de similarité de la fonction de coût de l'algorithme. Un paramètre permet de balancer les contributions des mesures d'intensités et de formes. L'influence des différents paramètres de la méthode et des comparaisons avec d'autres méthodes de recalage ont été effectuées. De très bon résultats sont obtenus sur la segmentation des différentes structures internes du cerveau telles que les noyaux centraux et hippocampe


  • Résumé

    The research goal of this thesis is a contribution to the intra-modality inter-subject non-rigid medical image registration and the segmentation of 3D brain MRI images in normal case. The well-known Demons non-rigid algorithm is studied, where the image intensities are used as matching features. A new force computation equation is proposed to solve the mismatch problem in some regions. The efficiency is shown through numerous evaluations on simulated and real data. For intensity based inter-subject registration, normalizing the image intensities is important for satisfying the intensity correspondence requirements. A non-rigid registration method combining both intensity and spatial normalizations is proposed. Topology constraints are introduced in the deformable model to preserve an expected property in homeomorphic targets registration. The solution comes from the correction of displacement points with negative Jacobian determinants. Based on the registration, a segmentation method of the internal brain structures is studied. The basic principle is represented by ontology of prior shape knowledge of target internal structure. The shapes are represented by a unified distance map computed from the atlas and the deformed atlas, and then integrated into the similarity metric of the cost function. A balance parameter is used to adjust the contributions of the intensity and shape measures. The influence of different parameters of the method and comparisons with other registration methods were performed. Very good results are obtained on the segmentation of different internal structures of the brain such as central nuclei and hippocampus

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (137p.)
  • Annexes : Bibliogr. p.122-135

Où se trouve cette thèse\u00a0?