Structures de Poisson de certaines variétés quotient : propriétés homologiques, d’engendrement fini et de rationalité

par Julie Baudry

Thèse de doctorat en Mathématiques

Sous la direction de Jacques Alev.

Soutenue en 2009

à Reims .


  • Résumé

    On étudie dans cette thèse certaines propriétés d’exemples classiques d’algèbres de Poisson, et de leurs déformations : propriété de finitude de la structure de Lie associée au crochet de Poisson, étude du groupe d’homologie en degré zéro lié à la structure de Poisson ou à la structure non commutative de la déformation, propriété de rationalité. Soit A une algèbre de Poisson, et G un groupe fini d’automorphismes de Poisson de A, on démontre dans les exemples suivants que la propriété de finitude comme algèbre de Lie passe aux invariants : lorsque G est un sous-groupe fini de SL(2,C) et A l’algèbre de Poisson symplectique C[x, y] ; lorsque G est le groupe de Weyl A2 ou B2, et A l’algèbre de Poisson symplectique C[h ⊕ h_] ; lorsque G est un sous-groupe fini de SL(2, Z), et A l’algèbre de Poisson multiplicative C[x±1, y±1] munie du crochet Poisson défini par {x, y} = xy. Cette propriété de finitude passe à la déformation A1(C)G de C[x, y]G par le gradué associé, et dans le cas multiplicatif, la déformation par les invariants du tore quantique Cq[x±1, y±1]G est également de type fini. Dans une autre partie, on effectue la recherche du centre de Poisson, et du groupe d’homologie de Poisson en degré 0 pour des structures de Poisson jacobiennes, qui apparaissent naturellement dans de nombreuse situations. Enfin, on s’intéresse à une version Poisson de la conjecture de Gelfand-Kirillov : l’existence d’un isomorphisme de Poisson entre les corps Frac(A) et Frac(AG). On vérifie cette propriété pour les surfaces de Klein, les invariants de l’algèbre symplectique en dimension 4 sous l’action du groupe de Weyl B2, et l’algèbre des invariants multiplicatifs sous l’action de h−idi

  • Titre traduit

    Poisson structures of some quotient varieties: homological properties, finite generation properties and rationality


  • Pas de résumé disponible.


  • Résumé

    In this thesis, we study some properties of classical examples of Poisson algebras, and of their deformations : finiteness property for the Lie structure associated to the Poisson bracket, study of the zeroth homology group linked to the Poisson structure or to the non-commutative structure of the deformation, raionality property. Let A be a Poisson algebra, and G a finite group of Poisson automorphisms of A, we prove in the following examples that the finiteness property as a Lie algebra still holds in the invariant algebra : when G is a finite subgroup of SL(2,C) and A the symplectic Poisson algebra C[x, y] ; when G is the Weyl group A2 or B2, and A the symplectic Poisson algebra C[h ⊕ h_] ; when G is a finite subgroup of SL(2, Z), and A the multiplicative Poisson algebra C[x±1, y±1] provided with the Poisson bracket defined by {x, y} = xy. The finiteness property still holds in the deformation A1(C)G of C[x, y]G via the associated graded, and in the multiplicative case, the deformation by the invariants of the quantum torus Cq[x±1, y±1]G is also of finite type. In another part, we look for the Poisson center, and the zeroth Poisson homology group for Jacobian Poisson structures, which appear naturally in many situations. Finally, we take an interest in a Poisson version of the Gelfand-Kirillov conjecture : the existence of a Poisson isomorphism between the fields Frac(A) et Frac(AG). We check this property for the Kleinian surfaces, for the invariants of the 4-dimensional symplectic algebra under the action of the Weyl group B2, and for the invariants of the multiplicative Poisson algebra under the action of h−idi

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (120p.)
  • Annexes : Bibliogr. p. 117-120

Où se trouve cette thèse ?

  • Bibliothèque : Université de Reims Champagne-Ardenne. Bibliothèque universitaire. Bibliothèque Moulin de la Housse.
  • Non disponible pour le PEB
  • Cote : 09REIMS018
  • Bibliothèque : Université de Reims Champagne-Ardenne. Bibliothèque universitaire. Bibliothèque Moulin de la Housse.
  • Disponible pour le PEB
  • Cote : 09REIMS018Bis
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.