Thèse soutenue

Special subvarieties of mixed shimura varieties

EN
Auteur / Autrice : Ke Chen
Direction : Emmanuel Ullmo
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2009
Etablissement(s) : Paris 11
Partenaire(s) de recherche : Autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)

Résumé

FR  |  
EN

Cette thèse est dédiée à l'étude de la conjecture d'André-Oort pour les variétés de Shimura mixtes. On montre que dans une variété de Shimura mixte M définie par une donnée de Shimura mixte (P,Y), soient C un Q-tore dans P et Z une sous-variété fermée quelconque dans M, alors l'ensemble des sous-variétés C-spéciales maximales contenues dans Z est fini. La démonstration suit la stratégie de L. Clozel, E. Ullmo, et A. Yafaev dans le cas pure, qui dépend de la théorie de Ratner sur des propriétés ergodiques des flots unipotents sur des espaces homogénes. D'ailleurs, une minoration sur le degré de l'orbite sous Galois d'une sous-variété pure est montrée dans le cas mixte, adaptée du cas pure établi par E. Ullmo et A. Yafaev. Enfin, une version relative de la conjecture de Manin-Mumford est démontrée en caractéristique nul: soit A un S-schéma abélien en caractéristique nul, alors l'adhérence de Zariski d'une suite de sous-schémas de torsion dans A égale une réunion finie de sous-schémas de torsion.