Algèbres de Lie de dimension infinie et théorie de la descente

par Wilhelm Alexander Steinmetz

Thèse de doctorat en Mathématiques

Sous la direction de Philippe Gille.

  • Titre traduit

    Infinite Dimensional Lie Algebras and Descent Theory


  • Pas de résumé disponible.


  • Résumé

    Soit k un corps algébriquement clos de caractéristique zéro et soit R l’anneau des polynômes de Laurent à deux variables sur k. La motivation principale de ce travail est l’étude d’une classe d’algèbres de Lie de dimension infinie sur k, appelées extended affine Lie algebras (EALAs). Ces algèbres correspondent à des torseurs sous des groupes algébriques linéaires sur R. On établit dans ce travail une classification de R–torseurs sous des groupes de type classique de rang assez grand (sous une hypothèse plus forte pour les groupes de type A intérieur) et on obtient ainsi des résultats sur les EALAs mentionnées ci-dessus. On obtient également une variante de la conjecture de Serre II pour l’anneau R : tout torseur lisse sur R sous un groupe semi-simple simplement connexe de type classique B, C ou D de rang assez grand est trivial. La stratégie pour démontrer les résultats principaux est la suivante : les torseurs sous les groupes classiques correspondent à des algèbres d’Azumaya à involutions et à des formes hermitiennes et quadratiques. On calcule les groupes de Witt et les K-groupes correspondants à l’aide de suites spectrales dues à Panin, Suslin et S. Gille. Ensuite on utilise des résultats de simplification pour obtenir une classification des formes hermitiennes et anti-hermitiennes de rang assez grand sur R et ainsi une classification de certains torseurs sur R.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (102 p.)
  • Annexes : Bibliogr. p. 99-102

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(2009)168
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : STEI
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.