Excited-state dynamics of organic intermediates

par Bastian Noller

Thèse de doctorat en Physique

Sous la direction de Ingo Fischer et de Jean-Michel Mestdagh.

Soutenue en 2009

à l'Université de Paris-Sud. Faculté des Sciences d'Orsay (Essonne) en cotutelle avec Julius-Maximilians-Universität Wurzburg .

  • Titre traduit

    Dynamique des états excités d'intermédiaires organiques


  • Pas de résumé disponible.


  • Résumé

    Cette thèse donne des renseignements sur la dynamique réactionnelle en temps réel de plusieurs carbènes et radicaux organiques à des échelles de temps femtosecondes et nanosecondes. Les expériences ont été conduites sur des radicaux, des carbènes singulets et triplets de tailles variées. Des états excités de ces espèces et l’état fondamental des ions correspondants ont été caractérisés. Très peu de travaux sont disponibles dans la littérature sur ces composés, malgré leur rôle important dans presque toutes les réactions chimiques. Ceci est dû aux difficultés expérimentales pour les produire dans de bonnes conditions d’isolation. Ces intermédiaires ont été formés à partir de précurseurs moléculaires dans de bonnes conditions d’isolation par pyrolyse éclair en jet supersonique. Les précurseurs moléculaires ont été synthétisés et optimisés pour dissocier proprement dans les intermédiaires désirés, radicaux et carbènes. L’imagerie de vitesse est spécialement utile à cet effet. Les intermédiaires ainsi fabriqués ont été étudiés par des techniques spectroscopiques variées et complémentaires, ce qui a permis de réaliser l’objectif principal de cette thèse : comprendre leur dynamique dans des états électroniques excités. Ceux-ci se désactivent rapidement vers l’état fondamental chaud. Ceci est probablement dû à la forte densité des états excités dans ces systèmes, qui interagissent fortement entre eux par conversion interne et par intersection conique. Après cette relaxation, la dynamique, éventuellement réactionnelle, se poursuit sur l’état fondamental. Les études qui ont permis ces observations incluent des mesures de spectre d’absorption, de dynamiques de photodissociation et de photoionisation, de spectres de photoélectrons, d’énergie d’ionisation et de durée de vie des états excités. Des sources lumières pulsées et continues ont été utilisées à cet effet dans une grande gamme spectrale (UV, Vis et VUV). Ceci a permis de déposer une quantité d’énergie connue dans les systèmes étudiés ce qui, après conversion interne, génère un ensemble micro canonique de l’état fondamental. C’est ainse que nous avons pu étudier l’énergétique et les canaux réactifs des radicaux et carbènes organiques. Les résultats expérimentaux ont été comparés à des calculs de chimie quantique pour aider à leur interprétation et au test des performances des approches théoriques. Les radicaux et les carbènes organiques peuvent d’ailleurs être considérés comme des systèmes tests des méthodes de calculs, car ce sont des systèmes à couche ouverte possédant plusieurs états électroniques bas en énergie. Nos résultats expérimentaux sont à même d’aider à comprendre et à identifier la contribution des intermédiaires que nous avons étudiés à la chimie d’environnement très énergétiques comme ceux rencontré dans le cracking des hydrocarbures, la combustion ou la chimie interstellaire. De tels environnements contiennent en effet de nombreux intermédiaires très réactifs qui jouent un rôle clé dans le bilan chimique global du milieu. Mieux ces intermédiaires sont caractérisés sur le plan spectroscopique et dynamique, mieux ils peuvent être identifiés dans ces environnements complexes et mieux leur impact en termes de dynamique réactionnelle peut être apprécié. L’excitation électronique dans ces milieux est souvent le résultat d’absorption lumineuse, de collision à haute énergie et peut également être thermique à très forte température. Savoir comment l’excitation électronique influence les mécanismes réactionnels de milieux aussi complexes est encore un sujet ouvert.


  • Résumé

    This thesis gives insights into the real-time dynamics of several free carbenes and radicals on a femtosecond and nanosecond time scale. The experiments were performed with radicals, singlet carbenes and triplet carbenes of various sizes. Several neutral excited states as well as the ionic ground state were characterized. Despite the relevance of such reactive intermediates in almost all chemical reactions, only relatively little experimental information on such systems is found in the literature. This is linked to the experimental challenge of producing such species under isolated conditions. The intermediates are formed from precursor molecules under interaction-free conditions by supersonic jet flash pyrolysis. The precursor molecules were synthetically designed to show clean thermal dissociation into one specific intermediate. A large variety of spectroscopic techniques was applied to study the intermediates. Each method augments the results of the other methods. This enabled to successfully approach the main goal of this thesis: to understand the excited-state dynamics of organic intermediates. The excited states were found to deactivate rapidly to the hot ground state. The observed fast decay is presumably linked to coupled electronically excited states and relaxation takes place by internal conversion or conical intersections. Further reactions then take place on the ground state surface. Absorption spectra, photodissociation dynamics, photoelectron spectra, ionization potentials, excited-state lifetimes and dissociative photoionization were elucidated by the measurements. Pulsed and continuous light sources were used over a large spectral range (UV, Vis, VUV). A well-defined amount of energy was deposited into the molecule. After internal conversion has taken place, a microcanonical ensemble of reactive intermediates can be studied. This data helps to understand the energetics and reaction channels of intermediates. Velocity map imaging enabled to monitor the pyrolysis efficiency in real time by analyzing photoion images. This observation facilitates clean intermediate generation. Experimental results were compared to quantum chemical calculations to aid the interpretation as well as to test the performance of theoretical approaches. Hydrocarbon radicals and carbenes are regarded as benchmark systems for computational methods due to their several low-lying electronic states and open-shell electronic configuration. The experimental data can help to identify and understand the contributions of the examined intermediates to the chemistry of high energy environments (e. G. , hydrocarbon cracking reactors, interstellar space and combustion chambers). Here increased numbers of hydrocarbon intermediates are often present and usually have a strong impact on the overall reaction mechanism. Such environments contain in general a complex mixture of several different intermediates. The more spectroscopic and dynamic properties of each isolated intermediate are known, the easier it is to identify it among multiple components and to understand how it contributes to the overall reaction mechanism. Electronic excitation can take place by radiation, particle collisions or thermally at very high temperatures. How excited states influence the reaction mechanisms in complex environments is still a matter of current research.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (XIV-177 p.)
  • Annexes : Bibliogr. p. 163-172

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(2009)33
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.