Sémantique et syntaxe vectorielles de la logique linéaire

par Christine Tasson

Thèse de doctorat en Informatique

Sous la direction de Pierre-Louis Curien.

Soutenue en 2009

à Paris 7 .

  • Titre traduit

    Vectorial Semantics and Syntax of Linear Logic


  • Pas de résumé disponible.


  • Résumé

    Avec les espaces de finitude, Ehrhard a exhibé une sémantique de la logique linéaire contenant une opération de différentiation. Dans ce cadre, l'interprétation des formules est décomposable en séries de Taylor. Cette étude a engendré des syntaxes différentielles. Cette thèse de sémantique dénotationnelle étudie la formule de Taylor syntaxique. La première partie aborde la sémantique. Nous présentons l'interprétation des constructions de la logique linéaire dans les espaces vectoriels munis d'une topologie linéarisée, les espaces de Lefschetz. Nous définissons une notion intrinsèque d'espaces de finitude, les espaces de Lefschetz finitaires. Nous caractérisons les espaces de Lefschetz réflexifs complets à l'aide de bornologies linéaires. Enfin, nous montrons que la décomposition de Taylor reste valide dans ces espaces. La seconde partie porte sur les syntaxes différentielles. La formule de Taylor syntaxique traduit un terme en une superposition de termes différentiels qui sont autant de possibilités d'exécutions. Comme l'ont montré Ehrhard et Régnier, les termes issus de cette traduction vérifient une relation de cohérence. Nous introduisons une sémantique totale qui capture cette relation. Puis, nous construisons une extension vectorielle du lambda-calcul, le calcul barycentrique, interprété par cette sémantique totale. Enfin, dans le cadre des réseaux différentiels, nous présentons un algorithme non déterministe qui permet de décider si un ensemble fini de réseaux différentiels provient de la traduction d'un réseau de la logique linéaire par la formule de Taylor syntaxique.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (244 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 76 Réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TS (2009) 188
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.