Etude de la quadrangulation infinie uniforme

par Laurent Ménard

Thèse de doctorat en Mathématiques

Sous la direction de Jean-François Le Gall.

Soutenue en 2009

à Paris 6 .


  • Résumé

    Les quadrangulations sont des plongements dans la sphère de graphes planaires pour lesquels toutes les faces sont de degré 4. L'objet central de cette thèse est la quadrangulation infinie de loi uniforme. Cette carte a été définie de deux manières indépendantes. La première méthode, naturelle du point de vue des cartes, est de prendre la limite locale de grandes quadrangulations aléatoires de loi uniforme parmi les quadrangulations de même taille. La seconde méthode repose sur une bijection avec les arbres bien étiquetés. On y construit dans un premier temps un arbre infini de loi uniforme, puis on transporte la loi de cet arbre sur l'ensemble des quadrangulations infinies avec la bijection. L'objet du chapitre 2 de ce mémoire est de démontrer que ces deux constructions aboutissent au même objet. Ce fait n'est a priori pas évident car la bijection entre les arbres et les quadrangulations n'est pas continue pour la topologie de la convergence locale. Le résultat s'obtient alors en étudiant des propriétés combinatoires de cette bijection et les sommets ayant de petites étiquettes dans les générations élevées d'un arbre sous la loi uniforme. Le chapitre 3 utilise ensuite cette équivalence des deux points de vue pour calculer les limites d'échelle de certaines fonctionnelles de la quadrangulation infinie uniforme. En effet, des quantités comme le volume des boules autour d'un point distingué de la quadrangulation infinie uniforme peuvent se calculer grâce à une étude de l'arbre infini uniforme. Ce chapitre est articulé autour de la preuve de la convergence des fonctions de contour de l'arbre infini uniforme vers un processus stochastique lié au serpent brownien.

  • Titre traduit

    ˜A œstudy of the uniform infinite quadrangulation


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (104 p.)
  • Annexes : Bibliogr. p. 101-104. 58 réf. bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2009 511
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : MENA
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.