ClassAdd, une procédure de sélection de variables basée sur une troncature k-additive de l'informatique mutuelle et sur une classification ascendante hiérarchique en pré-traitement

par Hélène Daviet Desmier

Thèse de doctorat en Informatique

Sous la direction de Pascale Kuntz et de Ivan Kojadinovic.

Soutenue en 2009

à Nantes .


  • Résumé

    Le problème de la sélection de variables en discrimination se rencontre généralement lorsque le nombre de variables, pouvant être utilisées pour expliquer la classe d'un individu, est très élevé. Les besoins ont beaucoup évolué ces dernières années avec la manipulation d'un grand nombre de variables dans des domaines tels que les données génétiques, la chimie moléculaire ou encore le traitement de documents textes. Une procédure de sélection de variables consiste à sélectionner un sous-ensemble de variables permettant d'expliquer la classe de façon optimale ou quasi-optimale. La nécessité de ce traitement est essentiellement due au fait que, généralement, un nombre de variables discriminantes trop élevé dans un modèle de discrimination détériore grandement sa capacité de généralisation et la compréhension de la relation modélisée. Dans le cadre de ce travail, nous nous intéressons au cas où les variables potentiellement discriminantes sont toutes discrètes ou nominales et nous proposons une procédure de sélection de variables indépendante d'un modèle de données. Nos travaux s'orientent dans deux directions : une mesure de pertinence peu coûteuse grâce à l'utilisation d'une troncature k-additive de l'information mutuelle et une réduction de l'espace de recherche en structurant l'ensemble des variables avec une classification ascendante hiérarchique. Notre algorithme a pu être expérimenté sur trois types de données : des jeux artificiels construits avec une structure connue, des jeux de données réelles classiques et enfin une application d'entreprise : une population de cadres à la recherche d'emploi décrite par des variables comportementales

  • Titre traduit

    ClassAdd, a subset variable selection algorithm based on a k-additive truncation of the mutual information and an agglomerative hierarchical clustering of the set of variables


  • Résumé

    Subset variable selection algorithms are necessary when the number of features is too huge to provide a good understanding of the underlying process that generated the data. In the past few years, variable and feature selection have become the focus of much research because of domains, such as molecular chemistry or gene expression array analysis, with hundreds to tens of thousands of variables. In the framework of subset variable selection for supervised classification involving only discret variables, we propose a selection algorithm using a computationally efficient relevance measure based on a k-additive truncation of the mutual information and involving an agglomerative hierarchical clustering of the set of potentially discriminatory variables in order to reduce the number of subsets whose relevance is estimated.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (146 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 141-146

Où se trouve cette thèse ?

  • Bibliothèque : Université de Nantes. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 2009 NANT 2019
  • Bibliothèque : Université de Nantes. Service commun de la documentation. Section Technologies.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.