Acquisition et modélisation de données articulatoires dans un contexte multimodal

par Michaël Aron

Thèse de doctorat en Informatique

Sous la direction de Marie-Odile Berger.

Soutenue le 12-11-2009

à Nancy 1 , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec LORIA (laboratoire) .

Le président du jury était Nacer Boudjlida.

Le jury était composé de Marie-Odile Berger, Nacer Boudjlida, Phil Hoole, Yohan Payan, Saïda Bouakaz, Erwan Kerrien.

Les rapporteurs étaient Phil Hoole, Yohan Payan.


  • Résumé

    La connaissance des positions et des mouvements des articulateurs (lèvres, palais, langue...) du conduit vocal lors de la phonation est un enjeu crucial pour l’étude de la parole. Puisqu’il n’existe pas encore de système permettant l’acquisition de ces positions et de ces mouvements, ce travail de thèse s’intéresse à la fusion de plusieurs modalités d’imagerie et de capteurs de localisation pour l’acquisition des positions des articulateurs dans l’espace et dans le temps. Nous décrivons un ensemble de protocoles et de méthodes pour obtenir et fusionner automatiquement un important volume de données échographiques (imageant en 2D la dynamique de la langue), stéréoscopiques (imageant en 3D la dynamique des lèvres), de capteurs électromagnétiques (capturant des points 3D de la langue et du visage), et d’Imagerie par Résonance Magnétique (IRM) pour acquérir en 3D l’ensemble des articulateurs en position statique. Nos contributions concernent plus particulièrement la synchronisation temporelle, le recalage spatial des données et l’extraction automatique des formes à partir des données (suivi de la langue dans les images échographiques). Nous évaluons la précision sur chaque donnée extraite, ainsi que sur l’ensemble des données fusionnées. Nous les validons enfin sur un modèle articulatoire existant. Ces travaux permettent l’obtention de données bien fondées pour la mise en place et l’étude de modèles articulatoires pour des applications en parole.

  • Titre traduit

    Acquiring and modelling multimodal articulatory data


  • Résumé

    There is no single technique that will allow all relevant behaviour of the speech articulators (lips, tongue, palate...) to be spatially ant temporally acquired. Thus, this thesis investigates the fusion of multimodal articulatory data. A framework is described in order to acquire and fuse automatically an important database of articulatory data. This includes: 2D Ultrasound (US) data to recover the dynamic of the tongue, stereovision data to recover the 3D dynamic of the lips, electromagnetic sensors that provide 3D position of points on the face and the tongue, and 3D Magnetic Resonance Imaging (MRI) that depict the vocal tract for various sustained articulations. We investigate the problems of the temporal synchronization and the spatial registration between all these modalities, and also the extraction of the shape articulators from the data (tongue tracking in US images). We evaluate the uncertainty of our system by quantifying the spatial and temporal inaccuracies of the components of the system, both individually and in combination. Finally, the fused data are evaluated on an existing articulatory model to assess their quality for an application in speech production.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.