Fast pyrolysis of millimetric wood particles between 800°C and 1000°C

par Li Chen

Thèse de doctorat en Génie des procédés

Sous la direction de Daniel Schweich.

Soutenue le 08-12-2009

à Lyon 1, dans le cadre de École Doctorale de Chimie (Lyon), en partenariat avec Commissariat à l'Energie Atomique de Grenoble (laboratoire) .

Le président du jury était Christian Jallut.

Le jury était composé de Guillaume Boissonnet, Capucine Dupont.

Les rapporteurs étaient Sylvain Salvador, Mehrdji Hemati, Willibordus Petrus Maria Van Swaaij.

  • Titre traduit

    Pyrolyse rapide de particules millimétriques de bois entre 800°C et 1000°C


  • Résumé

    Ces travaux de thèse s’intègrent au sein du projet Biocarb lancé par le Commissariat à l’Énergie Atomique dont l’objectif est de développer des procédés de production de carburants liquides ou gazeux à partir de gaz de synthèse riche en H2 et CO obtenu par gazéification de la biomasse lignocellulosique. L’objectif de cette étude est d’étudier le comportement de particules de biomasse millimétriques lors de la pyrolyse dans des conditions types de gazéifieurs industriels tels que les réacteurs à lit fluidisé ou à flux entraîné, qui fonctionnent pour des flux de chaleur élevés (105 – 106 W⋅m-2) et pour de hautes températures (>800°C). Tout d’abord, des expériences de pyrolyse sont menées à 800 et 950°C dans un four à chute de laboratoire sur des particules de bois entre 350 et 800 μm. Les résultats montrent que dans les conditions de l’étude, l’augmentation de la taille de la particule augmente seulement la durée de la pyrolyse mais ne modifie pas les rendements ou la composition du solide et du gaz au cours de la pyrolyse. Par ailleurs, des mesures basées sur la technique de PTV (Particle Tracking Velocimetry) sont réalisées à température ambiante pour caractériser la taille et la densité des particules de bois brut et de résidu, et valider une corrélation donnant le coefficient de traînée qui sert à calculer le temps de séjour des particules dans le réacteur. On constate à la fin de la pyrolyse une diminution de la densité comprise entre 70 et 80% ainsi qu’une diminution de la taille des particules entre 25 et 40%. Les résultats montrent également que la vitesse de glissement de la particule et l’évolution de ses propriétés doivent être prises en compte lors du calcul de sa vitesse. Enfin, à partir des résultats expérimentaux, un modèle unidimensionnel à coeur rétrécissant est développé pour décrire le comportement d’une particule de bois lors de sa pyrolyse. Le modèle est capable de prévoir l’évolution du rendement en solide, en gaz total et en goudrons au cours de la pyrolyse ainsi que la vitesse de glissement de la particule et son temps de séjour dans le réacteur.L’analyse de sensibilité du modèle montre que même pour des particules millimétriques, une connaissance précise de la chaleur de réaction associée à la pyrolyse, de la densité du bois et de la conductivité thermique du résidu solide est essentielle


  • Résumé

    The present work is part of a project of the French energy research centre Commissariat à l’Energie Atomique. The goal of the project is to develop processes of production of gaseous or liquid fuel from synthesis gas obtained by gasification of lignocellulosic biomass. The objective of the present work is to study the pyrolysis behaviour of millimetric biomass particles under the operating conditions encountered in fluidized bed or entrained flow gasifiers, namely high external heat flux (105 – 106 W⋅m-2) and high temperature (> 800°C). First, pyrolysis experiments are conducted at 800 and 950°C in a lab-scale drop tube reactor on wood particles between 350 and 800 μm. The results show that under the explored conditions, the increase of the particle size only increases the time required for pyrolysis but does not affect the product distribution during pyrolysis. Since in the pyrolysis experiments, the particle residence time cannot be directly measured, PTV (Particle Tracking Velocimetry) measurements are performed at room temperature to characterize the evolution of the particle size and density along pyrolysis and to validate a drag coefficient correlation for the particle residence time calculation. The optical measurements show that at the end of pyrolysis there is a decrease of particle density of 70 – 80% and of particle size of 25 – 40%. It is also proven that the particle slip velocity cannot be neglected and that the change of these particle properties must be taken into account for the calculation of the particle slip velocity and residence time. Finally, based on these experimental results, a 1D shrinking-core model is developed that is able to predict the solid/gas/tar yields and the residence time of a single particle along pyrolysis in the drop tube reactor. It is validated on both the pyrolysis and optical experiments. The model sensitivity analysis shows that even for millimetric particles, the accurate knowledge of the heat of pyrolysis, of the wood density and of the char thermal conductivity is essential

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (173 p.)
  • Annexes : Bibliogr. p. 147-156

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : T50/210/2009/42bis
  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.