Caractérisation et optimisation des phénomènes de transfert dans un double bioréacteur à membranes

par Jan Günther

Thèse de doctorat en Ingénierie microbienne et enzymatique

Sous la direction de Claire Albasi et de Christine Lafforgue.

Soutenue le 08-12-2009

à Toulouse, INPT .


  • Résumé

    L'idée de base est de permettre à deux microorganismes de partager le même environnement tout en les maintenant séparées à l'aide d'une membrane perméable les retenant sélectivement. La principale contrainte résulte du transfert des composées d'intérêts limité par l'écoulement dans et autour des fibres ainsi que dans module et par le colmatage. Le double bioréacteur a membrane étudié dans cette thèse, de par son fonctionnement, alterne les cycles de filtration et rétrofiltration (ou rétrolavage), limitant ainsi en partie le colmatage. Ce travail de thèse s'est donc attaché à approfondir la connaissance des mécanismes de limitation au transfert mis en jeu lors de la filtration de fluide biologique complexes et évolutifs en fonction des conditions opératoires et des caractéristiques géométriques du module de filtration à fibres creuses. Dans cet objectif, sur la base des choix de configuration de module membranaire proposés dans cette étude, et afin de tendre vers une optimisation rationnelle de l'utilisation de ce dispositif, l'étude s'appuya sur l'utilisation d'outils de mécanique des fluides numériques, complétée par une approche expérimentale menée dans des conditions modèles. Les simulations réalisées par cette approche ont ainsi mis en évidence de grandes variations des vitesses de filtration le long de la fibre et ceci en lien direct avec une augmentation de la perte de charge à l'extérieur des fibres due au confinement induisant une baisse des performances de filtration. De manière similaire, un modèle numérique de formation de dépôt nous a permis d'évaluer l'effet du confinement de fibres. Il entraine une augmentation de pression dans la partie fluide externe induisant une forte variation de pertes de charges entrainant une répartition du dépôt le long de la fibre beaucoup plus inhomogène. Le retour du numérique à l'expérimental réalisé s'est attaché à décrire l'influence des conditions de mise oeuvre sur les performances de filtration du pilote. L'analyse méthodique de l'influence du sens de filtration et de la compacité dans le cas de fluides modèles (suspension de différents microorganismes / solutions de protéines modèles) et dans le cas de fluides biologiques évolutifs (milieux de fermentation + micro organismes) fut réalisée. L'ensemble de ces résultats nous permettent de donner des recommandations aux futurs utilisateurs du double bioréacteur à membranes.

  • Titre traduit

    Caracterisation and optimization of transfert phenomena in a double membrane bioreactor


  • Résumé

    This work presents a specific bioreactor previously designed to study microbial interactions. In this process, the microbial species in two tanks are physically separated by a microfiltration membrane. In order to give to the microorganisms a molecular environment in each compartment similar to the one that would be obtained if the microbial cells were cultivated in the same reactor, two criteria have to be considered: (i) the flow rates between compartments have to be sufficient with respect to the microbial kinetics and (ii) all the molecular compounds of the medium that have an effect on the microorganism behaviour must pass through the membrane. The main constrain is due to transfer of component limited by the fluid flow in and around the fiber of the filtration module. This thesis has therefore committed to deepening the understanding of the mechanisms limiting the transfer involved during the filtration of biological fluid complex according to operating conditions and geometric characteristics of the hollow fiber module of filtration. For this purpose, based on the choice of membrane module configuration proposed in this study, and to strive for a rational optimization of the use of this device, the study relied on the use of CFD tools, supplemented by an experimental approach conducted under models conditions. The numerical simulations of fluid flow have shown a modification of the axial filtration velocity profile with packing density. Similarly, a numerical model of cake deposit was developed and show difference of cake growth along the fiber with packing density. Two experimental hollow fiber modules with two packing densities were tested with clean water and biological fluid, and showed good agreement with the numerical data. These results underline the variations of filtration velocity along the fiber that will allow some predictions on fouling deposit to be done.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Institut national polytechnique. Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.