Autour de la dynamique semi-classique de certains systèmes complètement intégrables

par Olivier Lablée

Thèse de doctorat en Mathématiques

Sous la direction de San Vũ Ngoc.

Soutenue en 2009

à l'Université Joseph Fourier (Grenoble) .


  • Résumé

    La dynamique semi-classique d'un opérateur pseudo-différentiel sur une variété est l'analogue quantique du flot classique de son symbole principal sur la variété. Cette dynamique semi-classique est décrite par l'équation de Schrödinger de l'opérateur ; alors que le flot classique hamiltonien est, lui, donné par les équations d'Hamilton associées a la fonction. Le spectre de l'opérateur pseudo-différentiel permet donc de pouvoir décrire les solutions générales en fonction du temps de l'équation de Schrödinger associée. Le comportement en temps long de la dynamique semi-classique donnée par ces solutions reste cependant sur bien des points mystérieux. La dynamique semi-classique dépend donc directement du spectre de l'opérateur et aussi par conséquent de la géométrie sous jacente dans induite par la fonction symbole classique. Dans cette thèse, on décrit d'abord la dynamique semi-classique en temps long dans le cas de la dimension 1 avec une fonction symbole n'ayant pas de singularité ou bien avec une singularité non-dégénérée de type elliptique : le feuilletage dans de est alors elliptique. Les règles de Bohr-Sommerfeld régulières fournissent alors le spectre d'un tel opérateur. On traite aussi le cas de la dimension 2 qui nous amène à quelques discussions de théorie de nombres. Pour finir, on s'intéresse au cas d'un opérateur pseudo-différentiel avec une singularité non-dégénérée de type hyperbolique : le feuilletage dans de est alors un ”huit hyperbolique ” (modèle difféomorphe au Schrödinger avec un potentiel double puits).


  • Résumé

    The semi-classical dynamics of a pseudo-differential operator on a manifold is the quantum analogous of the classical flow of his main symbol on the manifold. This semi-classical dynamics is described by the Schrödinger equation of the operator whereas the classical Hamiltonian flow is given by the Hamilton's equations associated with the function. Thus the spectrum of the pseudo-differential operator enable to describe the general solutions of the associated Schrödinger equation. The long time behavior of these solutions remains in many ways mysterious. The semi-classical dynamics depends directly on the spectrum of the operator and consequently also on the underlying geometry into induced by the classical symbol. In this thesis, we first describe the long time semi-classical dynamics of an Hamiltonian in the one-dimensional case with a symbol function with no singularity or with non-degenerate elliptic singularity type : the associated fibers are closed elliptic orbits. The regular Bohr-Sommerfeld rules supply the spectrum of the operator. We are also interested in the elliptic case of the dimension 2 which leads to some discussion of numbers theory. Finally we consider the case of a one-dimensionnal pseudo-differential operator with a non-degenerate hyperbolic singularity : the singular fiber of in is a “ hyperbolic eight ” (this model is diffeomorphic to the Schrödinger operator with a double wells).

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (242 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. réf.

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
  • Cote : TS09/GRE1/0305/D
  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible sous forme de reproduction pour le PEB
  • Cote : TS09/GRE1/0305
  • Bibliothèque : Institut Fourier. Bibliothèque.
  • Disponible pour le PEB
  • Cote : 33833
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.