Contribution à la modélisation de la combustion non prémélangée turbulente dans les écoulements rapides

par Jean-François Izard

Thèse de doctorat en Energétique, thermique, combustion

Sous la direction de Arnaud Mura et de Michel Champion.


  • Résumé

    Le travail présenté dans ce mémoire est consacré à la combustion turbulente non-prémélangée dans des écoulements rapides, et éventuellement diphasiques. Pour ce type de conditions, il devient nécessaire, du point de vue de la modélisation, de tenir compte du couplage existant entre les effets de compressibilité, les processus de mélange turbulent et la cinétique chimique. Dans ces écoulements, la conversion de tout ou partie de l'énergie cinétique de l'écoulement sous forme d'enthalpie sensible va influencer le développement des réactions chimiques et peut contribuer notablement à la conversion des réactifs en produits de combustion ainsi qu'à la stabilisation des flammes. De plus, les échelles de temps caractéristiques du mélange turbulent et de la cinétique chimique sont susceptibles d'être du même ordre de grandeur et l' ypothèse de chimie infiniment rapide n'est pas toujours applicable. Dans cette étude, une approche basée sur l'évaluation de la PDF jointe de deux quantités scalaires est retenue : la première variable permet de quantifier la richesse locale du mélange, la seconde caractérise l'écart à l'état d'équilibre chimique. Une hypothèse de "chimie brusque" permet d'introduire une dépendance explicite entre ces deux variables pour s'en tenir à la seule détermination de la PDF de la variable de mélange. Cette approche est étendue au cas de la combustion supersonique en considérant de surcroît les variations d'enthalpie totale. Enfin, les fluctuations de composition induites par la vaporisation d'un des deux réactifs sont elles-aussi prises en compte. Le modèle complet est implanté dans un code de calcul Navier-Stokes tridimensionnel compressible et réactif. Dans le cadre de cette étude, la résolution est couplée à une méthode d'adaptation de maillage qui permet d'améliorer significativement la représentation des zones de mélange et des fortes discontinuités. L'approche proposée est ensuite validée en s'appuyant sur différentes géométries: jets co-courants supersoniques H2-air vicié, jets fortement sous-détendus, chambre de combustion de type Scramjet. Enfin, le modèle est aussi employé pour effectuer un calcul de la configuration Mascotte de l'Onera dans un cas sous-critique. Les simulations numériques correspondantes conduisent à des résultats encourageants et ouvrent de nombreuses perspectives aussi bien quant à l'utilisation du modèle le cadre d'approches U-RANS ou LES que vis-à-vis de son extension à des conditions de combustion extrêmes (super-critiques).

  • Titre traduit

    Contribution to the modelling of turbulent non-premixed combustion in high-speed flows


  • Résumé

    This work is dedicated to the study of non-premixed turbulent combustion in high-speed and two-phase flows. From a modeling point of view, it is of primary importance to take into consideration the coupling that exists for those congurations between the effects of compressibility, turbulent mixing, and chemistry. In supersonic reactive flows, the conversion of a portion of kinetic energy into heat or enthalpy is to influence significantly the early developments of chemical reactions and thus, lead to an increase of the chemical conversion of reactants into products of reaction, and contribute to the stabilisation process of the flame. Moreover, the value of the time scale representative of the turbulent mixing and the value of the chemical time scale are expected to be comparable, so that the fast chemistry assumption can be questionned. In this study, an approach based on the estimation of the joint PDF of two scalars, the first quantity describing the local composition of the mixture, and the second characterizing the progress of the reaction, is retained. The model relies on the sudden chemistry assumption, thus permitting a strong but clearly stated functional dependence between the two scalars introduced. As a result, the joint PDF of the two scalars can be simply expressed from the knowledge of the marginal mixture fraction PDF. This approach is extended to the description of supersonic combustion by considering the variations of total enthalpy. Finally, the fluctuations of composition induced by the evaporation of one of the two reactants are also taken into account. The full model is implemented into Computational Fluid Dynamics code, solving the three-dimensional compressible and reactive Navier-Stokes equations. In this work, the representation of the mixing layers and discontinuities is improved thanks to the use of a mesh adaptation strategy, coupled to the CFD code. The numerical and modeling approach is then validated against various configurations : coflowing H2-vitiated air supersonic jets, highly underexpanded jets, and a Scramjet-like combustion chamber. Finally, the modeling framework is also extended to the simulation of the Mascotte configuration (ONERA) with sub-critical liquid oxygen. The results obtained on those configurations are in satisfactory agreement with both underlying physics and experimental data when available, and the numerical code and modeling strategy are shown to be viable tools for further developments and investigations within U-RANS or LES approaches, and for its extension to more extreme conditions (super-critical oxygen).

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (227 p.)
  • Annexes : Bibliogr. 182 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Section Sciences, Techniques et Sport.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.