Modélisation des chocs d’origine pyrotechnique dans les structures d’Ariane5 : développement de modèles de propagation et d'outils de modélisation

par Audrey Grédé (Grede)

Thèse de doctorat en Mécanique

Sous la direction de Denis Aubry et de Bing Tie.

Le président du jury était Pierre Ladevèze.

Le jury était composé de Denis Aubry, Bing Tie, Jean-François Deü, Louis Jézéquel, Philippe Roux.

Les rapporteurs étaient Jean-François Deü, Louis Jézéquel.


  • Résumé

    La compréhension et l’amélioration de l’environnement vibratoire des charges utiles demande la mise au point de démarches prédictives maîtrisées qui permettent de comprendre les phénomènes de transmission des ondes de chocs d’origine pyrotechnique dans le lanceur Ariane5. Plus particulièrement, la maîtrise du comportement transitoire des coques sandwichs en nid d’abeilles, principaux constituants de l’Adaptateur de Charges Utiles – structure porteuse des satellites, est nécessaire pour prédire les vibrations au pied des équipements électroniques des satellites et des lanceurs. Cette problématique présente un caractère multi-échelle tant d’un point de vue temporel (charge mobile supersonique, temps d’analyse) que spatial (dimensions des structures du lanceur, taille des cellules en nid d’abeilles, longueurs d’ondes liées aux hautes fréquences). Celui-ci a été traité dans cette thèse en s’appuyant d’une part, sur une qualification à la fois analytique et numérique des modèles classiques homogénéisés des plaques sandwichs en nid d’abeilles pour la gamme de fréquence mise en jeu et d’autre part, sur une application des stratégies de remaillage adaptatif pour la propagation des ondes développées dans le cadre de la méthode de Galerkin espace-temps discontinue en temps. Deux catégories de modèles de plaques épaisses ont été ainsi construites dans le but d’enrichir la cinématique classique de plaques épaisses de Mindlin-Reissner qui s’est avérée être insuffisante pour correctement représenter le comportement dynamique hors-plan des plaques sandwich en nid d’abeilles. Ainsi ont été analysés les modèles dits monocouches basés sur un enrichissement de la cinématique par ajout de degrés de liberté dans l’épaisseur, et les modèles multicouches composés d’une superposition de trois plaques avec une homogénéisation séparée des matériaux. Il a été montré que ces deux sortes de modèles améliorent la description des phénomènes de hautes fréquences, notamment ceux de flexion et de cisaillement transverse qui sont plus délicats à retranscrire. Toutes les études numériques ont été effectuées avec un code éléments finis qui emploie des solveurs adaptatifs dynamiques basés sur la méthode de Galerkin espace-temps discontinue en temps. Cette méthode d’intégration en temps introduit un amortissement numérique dépendant du pas de temps et qui peut interférer avec un amortissement physique susceptible d’être introduit dans un modèle numérique et conduire au final à un amortissement total différent de celui qui est attendu. Cette interaction a été analysée et mise en évidence dans ce travail à travers l’introduction de l’amortissement de Rayleigh dans les modèles de propagation de chocs. Les outils et les modèles de propagation ainsi développés ont été validés sur plusieurs structures académiques et industrielles. Des comparaisons avec des données expérimentales sur des structures industrielles de grande taille, plus particulièrement sur un Adaptateur de Charges Utiles d’Ariane5, sont effectuées et soulignent la cohérence de notre approche ainsi que la fiabilité et l’efficacité des modèles de propagation proposés.

  • Titre traduit

    Numerical modeling of pyrotechnic shock wave propagation in the Ariane5's structures : development of propagation models and numerical tools


  • Résumé

    Reliable and efficient numerical models for the pyrotechnic shock wave propagation in structures of the Ariane5 launcher are necessary for a good understanding and a predictive analysis of the payload vibration environment. More precisely, the correct modeling of the dynamic behaviour of the honeycomb sandwich shells, the main material composing the payload adaptor, is essential to control the vibration environment of the payload and the embarked electronic equipments and so to prevent them from damages caused by the shock wave propagation. The topic is obviously a multi-scale problem from both temporal and spatial points of view : short time intervals imposed by supersonic moving loads vs. large total time interval that the slowest waves need to travel throughout the adaptor ; very short wavelengths of high frequency waves, and very small size of the honeycomb cells vs. large structure dimensions. To take into account all involved space-time scales in a reliable and efficient way, the herein study is based both on the analytical and numerical qualification of the classical homogenized models of honeycomb sandwich shells for the frequency range introduced by the pyrotechnic shock wave, and on a dynamic solver based on the well-known space-time discontinuous Galerkin method, allowing the use of adaptive remeshes for the wave propagation. The classical Mindlin-Reissner’s kinematics of thick plates being inefficient to correctly represent the dynamic out-of-plane behaviour of the honeycomb sandwich plates, two kinds of its enrichment are considered : One-layered models based on an enrichment of the kinematics by adding degrees of freedom in the thickness, and multi-layered models composed of a superposition of three plates with separated material homogenisations. It has been shown theoretically and numerically that, both types of enrichment allow more precise descriptions of flexure and transverse shear modes in the high frequency range. However, the multi-layered models give much more promising results, as the important role played by the honeycomb core for the transverse shear behaviour of the whole sandwich is not “smeared” in a one-layered homogenized model. All the numerical studies were conducted with a finite element code which uses a dynamic solverbased on the time discontinuous space-time Galerkin method. The built-in numerical damping of this solver can interfere with a physical damping potentially introduced by the numerical model and results in a global damping totally unexpected. This interaction has been analysed and underlined in this work thanks to the introduction of the Rayleigh damping in the shock wave propagation models. Theoretical and numerical tools and propagating models thus developed have been validated on several academic and industrial structures. Comparison with experimental data on large size industrial structures, especially a real size payload adaptor, is performed and emphasizes the coherence of our approach and the reliability and the efficiency of the proposed propagating models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : CentraleSupélec. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.