Stabilité des ondes solitaires

par Frédéric Chardard

Thèse de doctorat en Mathématiques

Sous la direction de Frédéric Dias.

Soutenue en 2009

à Cachan, Ecole normale supérieure .


  • Résumé

    Cette thèse porte sur la stabilité des ondes solitaires et plus précisément sur les applications de l'indice de Maslov au problème de la stabilité spectrale des ondes solitaires unidimensionnelles. Nous montrons comment la stabilité peut être liée à l'étude d'une famille d'équations aux dérivées ordinaires linéaires hamiltoniennes. Il est alors possible de définir un indice de Maslov pour les ondes périodiques et les ondes solitaires. Nous calculons ensuite la limite de l'indice de Maslov d'une suite d'ondes périodiques approchant une onde solitaire et la comparons à l'indice de Maslov de l'onde solitaire. Nous décrivons un algorithme utilisant l'algèbre extérieure pour calculer cet indice de Maslov à la fois dans le cas périodique et le cas onde solitaire. Nous appliquons cette approche aux ondes périodiques et aux ondes solitaires de l'équation de Kawahara ainsi qu'aux ondes solitaires apparaissant dans un modèle pour l'interaction entre ondes longues et ondes courtes. Enfin, nous examinons la stabilité des ondes stationnaires apparaissant dans l'équation de Korteweg-de Vries avec forçage en utilisant une méthode légèrement différente.

  • Titre traduit

    Stability of solitary waves


  • Résumé

    This thesis is devoted to the stability of solitary waves, and more precisely to the applications of the Maslov index to the spectral stability problem. We show how the stability problem can be related to a family of linear Hamiltonian ODE. It is then possible to define a Maslov index for periodic waves and solitary waves. We compute the limit, when it exists, of the Maslov index of a sequence of periodic waves which converges to a solitary wave. We describe how exterior algebra can be used to compute the Maslov index, both in the periodic and solitary wave cases. We then use this framework for solitary waves and periodic waves arising in the Kawahara equation and for solitary waves arising in a longwave-shortwave interaction system. Lastly, we deal with the stability of stationary solutions of a model for flows over a non-uniform bottom by using a slightly different method.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (167 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 159-167

Où se trouve cette thèse ?

  • Bibliothèque : École normale supérieure. Bibliothèque.
  • Disponible pour le PEB
  • Cote : CTLes / THE CHA
  • Bibliothèque : École normale supérieure. Bibliothèque.
  • Disponible pour le PEB
  • Cote : THE CHA (Salle de réf.)
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.