Apprentissage de modèles génératifs pour le diagnostic de systèmes complexes avec labellisation douce et contraintes spatiales

par Etienne Côme

Thèse de doctorat en Technologies de l'information et des systèmes

Sous la direction de Patrice Aknin et de Thierry Denoeux.

Soutenue en 2009

à Compiègne .

  • Titre traduit

    Statistical learning of generative models for complex system fault diagnosis with soft labels and spatial constraints


  • Pas de résumé disponible.


  • Résumé

    Le thème principal de cette thèse concerne la formalisation et la résolution du problème de l'apprentissage statistique lorsque les informations disponibles sur une ou plusieurs variables d'intérêt discrètes sont imprécises, incertaines. La solution proposée s'appuie sur une approche générative et sur l'utilisation de la théorie des fonctions de croyance afin de représenter l'information disponible sur ces variables. Nous montrons tout d'abord, comment des labels « doux », prenant la forme de fonctions de masse de croyance, peuvent être utilisés pour estimer les paramètres d'un modèle de mélange grâce à un critère étendant les critères rencontrés dans le cadre probabiliste. Le problème d'optimisation associé est quant à lui résolu grâce à une extension de l'algorithme EM. Une démarche similaire, dans le cadre de l'analyse en facteurs indépendants, modèle génératif extrêmement parcimonieux faisant intervenir un ensemble de variables d'intérêts discrètes, est également présentée et étudiée. D'autres part, une solution pour tirer parti d'informations sur le processus de génération des données dans le cadre de ce modèle est proposée. Enfin, des résultats concernant un problème réel de diagnostic permettent de juger de l'intérêt de ces propositions. Ce problème de diagnostic concerne un élément essentiel de la chaîne de contrôle-commande des trains sur le réseau français : le circuit de voie.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (193 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 220 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Technologie de Compiègne. Service Commun de la Documentation.
  • Disponible pour le PEB
  • Cote : 2009 COM 1796
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.