Notions de petitesse, géométrie des espaces de Banach et hypercyclicité

par Pierre Moreau

Thèse de doctorat en Mathématiques

Sous la direction de Jean Esterle et de Etienne Matheron.

Le jury était composé de Robert Deville, Stanislav Kupin, Gilles Lancien, Pascal Lefèvre.


  • Résumé

    Il existe de nombreuses notions de petitesse en analyse. On considère trois d'entre elles: la Haar-négligeabilité, la Gauss-négligeabilité et la sigma-porosité. On étudie à quelles conditions le cône positif d'une base de Schauder est Haar-négligeable, et ce que cela entraîne pour l'espace de Banach associé. On étudie également sous quelles conditions l'ensemble des vecteurs non-hypercycliques d'un opérateur hypercyclique est Haar-négligeable ou sigma-poreux.


  • Résumé

    There are many notions of smallness in Analysis. We will consider three of them: Haar-negligeability, Gauss-negligeability and sigma-porosity. We will study on which conditions the positive cone of a Schauder basis is Haar-null, and its consequence on the Banach space. We will also study on which conditions the set of non-hypercyclic vectors of an hypercyclic operator is Haar-null or sigma-porous.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?